1,399 research outputs found

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors

    Towards joint communication and sensing (Chapter 4)

    Get PDF
    Localization of user equipment (UE) in mobile communication networks has been supported from the early stages of 3rd generation partnership project (3GPP). With 5th Generation (5G) and its target use cases, localization is increasingly gaining importance. Integrated sensing and localization in 6th Generation (6G) networks promise the introduction of more efficient networks and compelling applications to be developed

    KF-Loc: A Kalman Filter and Machine Learning Integrated Localization System Using Consumer-Grade Millimeter-wave Hardware

    Get PDF
    With the ever-increasing demands of e-commerce, the need for smarter warehousing is increasing exponentially. Such warehouses requires industry automation beyond Industry 4.0. In this work, we use consumer-grade millimeter-wave (mmWave) equipment to enable fast, and low-cost implementation of our localization system. However, the consumer-grade mmWave routers suffer from coarse-grained channel state information due to cost-effective antenna array design limiting the accuracy of localization systems. To address these challenges, we present a Machine Learning (ML) and Kalman Filter (KF) integrated localization system (KF-Loc). The ML model learns the complex wireless features for predicting the static position of the robot. When in dynamic motion, the static ML estimates suffer from position mispredictions, resulting in loss of accuracy. To overcome the loss in accuracy, we design and integrate a KF that learns the dynamics of the robot motion to provide highly accurate tracking. Our system achieves centimeter-level accuracy for the two aisles with RMSE of 0.35m and 0.37m, respectively. Further, compared with ML only localization systems, we achieve a significant reduction in RMSE by 28.5% and 54.3% within the two aisles

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    Hybrid Indoor Localization via Reinforcement Learning-based Information Fusion

    Full text link
    The paper is motivated by the importance of the Smart Cities (SC) concept for future management of global urbanization. Among all Internet of Things (IoT)-based communication technologies, Bluetooth Low Energy (BLE) plays a vital role in city-wide decision making and services. Extreme fluctuations of the Received Signal Strength Indicator (RSSI), however, prevent this technology from being a reliable solution with acceptable accuracy in the dynamic indoor tracking/localization approaches for ever-changing SC environments. The latest version of the BLE v.5.1 introduced a better possibility for tracking users by utilizing the direction finding approaches based on the Angle of Arrival (AoA), which is more reliable. There are still some fundamental issues remaining to be addressed. Existing works mainly focus on implementing stand-alone models overlooking potentials fusion strategies. The paper addresses this gap and proposes a novel Reinforcement Learning (RL)-based information fusion framework (RL-IFF) by coupling AoA with RSSI-based particle filtering and Inertial Measurement Unit (IMU)-based Pedestrian Dead Reckoning (PDR) frameworks. The proposed RL-IFF solution is evaluated through a comprehensive set of experiments illustrating superior performance compared to its counterparts

    Smart and Intelligent Automation for Industry 4.0 using Millimeter-Wave and Deep Reinforcement Learning

    Get PDF
    Innovations in communication systems, compute hardware, and deep learning algorithms have led to the advancement of smart industry automation. Smart automation includes industrial sectors such as intelligent warehouse management, smart infrastructure for first responders, and smart monitoring systems. Automation aims to maximize efficiency, safety, and reliability. Autonomous forklifts can significantly increase productivity, reduce safety-related accidents, and improve operation speed to enhance the efficiency of a warehouse. Forklifts or robotic agents are required to perform different tasks such as position estimation, mapping, and dispatching. Each of the tasks involves different requirements and design constraints. Smart infrastructure for first responder applications requires robotic agents like Unmanned Aerial Vehicles (UAVs) to provide situation awareness surrounding an emergency. An immediate and efficient response to a safety-critical situation is crucial, as a better first response significantly impacts the safety and recovery of parties involved. But these UAVs lack the computational power required to run Deep Neural Networks (DNNs) that are used to provide the necessary intelligence. In this dissertation, we focus on two applications in smart industry automation. In the first part, we target smart warehouse automation for Intelligent Material Handling (IMH), where we design an accurate and robust Machine Learning (ML) based indoor localization system for robotic agents working in a warehouse. The localization system utilizes millimeter-wave (mmWave) wireless sensors to provide feature information in the form of a radio map which the ML model uses to learn indoor positioning. In the second part, we target smart infrastructure for first responders, where we present a computationally efficient adaptive exit strategy in multi-exit Deep Neural Networks using Deep Reinforcement Learning (DRL). The proposed adaptive exit strategy provides faster inference time and significantly reduces computations
    • …
    corecore