246 research outputs found

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges

    Full text link
    Participatory sensing is a powerful paradigm which takes advantage of smartphones to collect and analyze data beyond the scale of what was previously possible. Given that participatory sensing systems rely completely on the users' willingness to submit up-to-date and accurate information, it is paramount to effectively incentivize users' active and reliable participation. In this paper, we survey existing literature on incentive mechanisms for participatory sensing systems. In particular, we present a taxonomy of existing incentive mechanisms for participatory sensing systems, which are subsequently discussed in depth by comparing and contrasting different approaches. Finally, we discuss an agenda of open research challenges in incentivizing users in participatory sensing.Comment: Updated version, 4/25/201

    Incentive mechanism design for citizen reporting application using Stackelberg game

    Get PDF
    The growing utilization of smartphones equipped with various sensors to collect and analyze information around us highlights a paradigm called mobile crowdsensing. To motivate citizens’ participation in crowdsensing and compensate them for their resources, it is necessary to incentivize the participants for their sensing service. There are several studies that used the Stackelberg game to model the incentive mechanism, however, those studies did not include a budget constraint for limited budget case. Another challenge is to optimize crowdsourcer (government) profit in conducting crowdsensing under the limited budget then allocates the budget to several regional working units that are responsible for the specific city problems. We propose an incentive mechanism for mobile crowdsensing based on several identified incentive parameters using the Stackelberg game model and applied the MOOP (multi-objective optimization problem) to the incentive model in which the participant reputation is taken into account. The evaluation of the proposed incentive model is performed through simulations. The simulation indicated that the result appropriately corresponds to the theoretical properties of the model

    CENTURION: Incentivizing Multi-Requester Mobile Crowd Sensing

    Full text link
    The recent proliferation of increasingly capable mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to a crowd of participating workers that carry various mobile devices. Aware of the paramount importance of effectively incentivizing participation in such systems, the research community has proposed a wide variety of incentive mechanisms. However, different from most of these existing mechanisms which assume the existence of only one data requester, we consider MCS systems with multiple data requesters, which are actually more common in practice. Specifically, our incentive mechanism is based on double auction, and is able to stimulate the participation of both data requesters and workers. In real practice, the incentive mechanism is typically not an isolated module, but interacts with the data aggregation mechanism that aggregates workers' data. For this reason, we propose CENTURION, a novel integrated framework for multi-requester MCS systems, consisting of the aforementioned incentive and data aggregation mechanism. CENTURION's incentive mechanism satisfies truthfulness, individual rationality, computational efficiency, as well as guaranteeing non-negative social welfare, and its data aggregation mechanism generates highly accurate aggregated results. The desirable properties of CENTURION are validated through both theoretical analysis and extensive simulations

    Real-Time Urban Weather Observations for Urban Air Mobility

    Get PDF
    Cities of the future will have to overcome congestion, air pollution and increasing infrastructure cost while moving more people and goods smoothly, efficiently and in an eco-friendly manner. Urban air mobility (UAM) is expected to be an integral component of achieving this new type of city. This is a new environment for sustained aviation operations. The heterogeneity of the urban fabric and the roughness elements within it create a unique environment where flight conditions can change frequently across very short distances. UAM vehicles with their lower mass, more limited thrust and slower speeds are especially sensitive to these conditions. Since traditional aviation weather products for observations and forecasts at an airport on the outskirts of a metropolitan area do not translate well to the urban environment, weather data for low-altitude urban airspace is needed and will be particularly critical for unlocking the full potential of UAM. To help address this need, crowdsourced weather data from sources prevalent in urban areas offer the opportunity to create dense meteorological observation networks in support of UAM. This paper considers a variety of potential observational sources and proposes a cyber-physical system architecture, including an incentive-based crowdsensing application, which empowers UAM weather forecasting and operations
    • …
    corecore