6 research outputs found

    An improvement of RGB color image watermarking technique using ISB stream bit and Hadamard matrix

    Get PDF
    In the past half century, the advancement of internet technology has been rapid and widespread. The innovation provides an efficient platform for human communication and other digital applications. Nowadays, everyone can easily access, copy, modify and distribute digital contents for personal or commercial gains. Therefore, a good copyright protection is required to discourage the illicit activities. On way is to watermark the assets by embedding an owner's identity which could later on be used for authentication. Thus far, many watermarking techniques have been proposed which focus on improving three standard measures, visual quality or imperceptibility, robustness and capacity. Although their performances are encouraging, there are still plenty of rooms for improvements. Thus, this study proposes a new watermarking technique using Least Significant Bit (LSB) insertion approach coupled with Hadamard matrix. The technique involves four main stages: Firstly, the cover image is decomposed into three separate channels, Red, Green and Blue. Secondly, the Blue channel is chosen and converted into an eight bit stream. Thirdly, the second least signification bit is selected from the bit stream for embedding. In order to increase the imperceptibility a Hadamard matrix is used to find the best pixels of the cover image for the embedding task. Experimental results on standard dataset have revealed that average PSNR value is greater than 58db, which indicates the watermarked image is visually identical to its original. However, the proposed technique suffers from Gaussian and Poisson noise attacks

    Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking

    No full text
    International audienceThis paper presents a novel watermarking method, applied to the medical imaging domain, used to embed the patient's data into the corresponding image or set of images used for the diagnosis. The main objective behind the proposed technique is to perform the watermarking of the medical images in such a way that the three main attributes of the hidden information (i.e. imperceptibility, robustness, and integration rate) can be jointly ameliorated as much as possible. These attributes determine the effectiveness of the watermark, resistance to external attacks and increase the integration rate. In order to improve the robustness, a combination of the characteristics of Discrete Wavelet and Karhunen Loeve Transforms is proposed. The Karhunen Loeve Transform is applied on the sub-blocks (sized 8x8) of the different wavelet coefficients (in the HL2, LH2 and HH2 subbands). In this manner, the watermark will be adapted according to the energy values of each of the Karhunen Loeve components, with the aim of ensuring a better watermark extraction under various types of attacks. For the correct identification of inserted data, the use of an Errors Correcting Code (ECC) mechanism is required for the check and, if possible, the correction of errors introduced into the inserted data. Concerning the enhancement of the imperceptibility factor, the main goal is to determine the optimal value of the visibility factor, which depends on several parameters of the DWT and the KLT transforms. As a first step, a Fuzzy Inference System (FIS) has been set up and then applied to determine an initial visibility factor value. Several features extracted from the Co-Occurrence matrix are used as an input to the FIS and used to determine an initial visibility factor for each block; these values are subsequently re-weighted in function of the eigenvalues extracted from each sub-block. Regarding the integration rate, the previous works insert one bit per coefficient. In our proposal, the integration of the data to be hidden is 3 bits per coefficient so that we increase the integration rate by a factor of magnitude 3

    A study of the effects of ageing on the characteristics of handwriting and signatures

    Get PDF
    The work presented in this thesis is focused on the understanding of factors that are unique to the elderly and their use of biometric systems. In particular, an investigation is carried out with a focus on the handwritten signature as the biometric modality of choice. This followed on from an in-depth analysis of various biometric modalities such as voice, fingerprint and face. This analysis aimed at investigating the inclusivity of and the policy guiding the use of biometrics by the elderly. Knowledge gained from extracted features of the handwritten signatures of the elderly shed more light on and exposed the uniqueness of some of these features in their ability to separate the elderly from the young. Consideration is also given to a comparative analysis of another handwriting task, that of copying text both in cursive and block capitals. It was discovered that there are features that are unique to each task. Insight into the human perceptual capability in inspecting signatures, in assessing complexity and in judging imitations was gained by analysing responses to practical scenarios that applied human perceptual judgement. Features extracted from a newly created database containing handwritten signatures donated by elderly subjects allowed the possibility of analysing the intra-class variations that exist within the elderly population

    Brain Tumor Diagnosis Support System: A decision Fusion Framework

    Get PDF
    An important factor in providing effective and efficient therapy for brain tumors is early and accurate detection, which can increase survival rates. Current image-based tumor detection and diagnosis techniques are heavily dependent on interpretation by neuro-specialists and/or radiologists, making the evaluation process time-consuming and prone to human error and subjectivity. Besides, widespread use of MR spectroscopy requires specialized processing and assessment of the data and obvious and fast show of the results as photos or maps for routine medical interpretative of an exam. Automatic brain tumor detection and classification have the potential to offer greater efficiency and predictions that are more accurate. However, the performance accuracy of automatic detection and classification techniques tends to be dependent on the specific image modality and is well known to vary from technique to technique. For this reason, it would be prudent to examine the variations in the execution of these methods to obtain consistently high levels of achievement accuracy. Designing, implementing, and evaluating categorization software is the goal of the suggested framework for discerning various brain tumor types on magnetic resonance imaging (MRI) using textural features. This thesis introduces a brain tumor detection support system that involves the use of a variety of tumor classifiers. The system is designed as a decision fusion framework that enables these multi-classifier to analyze medical images, such as those obtained from magnetic resonance imaging (MRI). The fusion procedure is ground on the Dempster-Shafer evidence fusion theory. Numerous experimental scenarios have been implemented to validate the efficiency of the proposed framework. Compared with alternative approaches, the outcomes show that the methodology developed in this thesis demonstrates higher accuracy and higher computational efficiency
    corecore