237 research outputs found

    A Review of Particle Swarm Optimization: Feature Selection, Classification and Hybridizations

    Get PDF
    Particle swarm optimization (PSO) is a recently grown, popular, evolutionary and conceptually simple but efficient algorithm which belongs to swarm intelligence category. This paper outlines basic concepts and reviews PSO based techniques with their applications to classification and feature selection along with some of the hybridized applications of PSO with similar other techniques. DOI: 10.17762/ijritcc2321-8169.16041

    Feature Selection For The Fuzzy Artmap Neural Network Using A Hybrid Genetic Algorithm And Tabu Search

    Get PDF
    Prestasi pengelas rangkaian neural amat bergantung kepada set data yang digunakan dalam process pembelajaran. The performance of Neural-Network (NN)-based classifiers is strongly dependent on the data set used for learning

    Feature Selection For The Fuzzy Artmap Neural Network Using A Hybrid Genetic Algorithm And Tabu Search [QA76.87. T164 2007 f rb].

    Get PDF
    Prestasi pengelas rangkaian neural amat bergantung kepada set data yang digunakan dalam process pembelajaran. Secara praktik, set data berkemungkinan mengandungi maklumat yang tidak diperlukan. Dengan itu, pencarian ciri merupakan suatu langkah yang penting dalam pembinaan suatu pengelas berdasarkan rangkaian neural yang efektif. The performance of Neural-Network (NN)-based classifiers is strongly dependent on the data set used for learning. In practice, a data set may contain noisy or redundant data items. Thus, feature selection is an important step in building an effective and efficient NN-based classifier

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Research on Solving Systems of Nonlinear Equations Based on Improved PSO

    Get PDF
    Solving systems of nonlinear equations is perhaps one of the most difficult problems in all of numerical computations, especially in a diverse range of engineering applications. The convergence and performance characteristics can be highly sensitive to the initial guess of the solution for most numerical methods such as Newton’s method. However, it is very difficult to select reasonable initial guess of the solution for most systems of nonlinear equations. Besides, the computational efficiency is not high enough. Aiming at these problems, an improved particle swarm optimization algorithm (imPSO) is proposed, which can overcome the problem of selecting reasonable initial guess of the solution and improve the computational efficiency. The convergence and performance characteristics of this method are demonstrated through some standard systems. The results show that the improved PSO for solving systems of nonlinear equations has reliable convergence probability, high convergence rate, and solution precision and is a successful approach in solving systems of nonlinear equations

    FSCSCOOT: Functional Calculus Competitive Swarm Coot Optimization-based CNN transfer learning for Parkinson’s disease classification

    Get PDF
    Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. Generally dementia can be either classified as Alzheimer’s or Parkinson’s or sometimes may be due to tumor in brain. Therefore, effectual methods such as Competitive Swarm Coot Optimization_ Convolutional Neural Network (CSCOOT_CNN) with transfer learning and Fractional CSCOOT_ deep neuro-fuzzy network (FCSCOOT_DNFN are newly introduced for classification of brain diseases. At first, input images are acquired from particular datasets, and then input images are given to the pre-processing stage.  In a pre-processing module, median filter is utilized for the elimination of noises. Afterward, pre-processed image is then subjected to feature extraction in which CNN features are extracted. In the level of classification, the images are classified into Parkinson by DNFN that is trained utilizing the introduced FCSCOOT algorithm. Furthermore, the FCSCOOT algorithm is newly designed by combination of Fractional Calculus (FC) with CSCOOT algorithm
    corecore