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Solving systems of nonlinear equations is perhaps one of the most difficult problems in all of numerical computations, especially in
a diverse range of engineering applications. The convergence and performance characteristics can be highly sensitive to the initial
guess of the solution for most numerical methods such as Newton’s method. However, it is very difficult to select reasonable initial
guess of the solution for most systems of nonlinear equations. Besides, the computational efficiency is not high enough. Aiming
at these problems, an improved particle swarm optimization algorithm (imPSO) is proposed, which can overcome the problem
of selecting reasonable initial guess of the solution and improve the computational efficiency. The convergence and performance
characteristics of this method are demonstrated through some standard systems. The results show that the improved PSO for
solving systems of nonlinear equations has reliable convergence probability, high convergence rate, and solution precision and is a
successful approach in solving systems of nonlinear equations.

1. Introduction

Solving systems of nonlinear equations is one of the most
important problems in all of numerical computations, espe-
cially in a diverse range of engineering applications. Many
applied problems can be reduced to solving systems of
nonlinear equations, which is one of the most basic problems
in mathematics. This task has applications in many scientific
fields [1–7]. So great efforts have been made by a lot of
people and many constructive theories and algorithms are
proposed to solve systems of nonlinear equations [8–11].
However there still exist some problems in solving systems of
nonlinear equations. Formost traditional numericalmethods
such as Newton’s method, the convergence and performance
characteristics can be highly sensitive to the initial guess of
solution. However, it is very difficult to select reasonable
initial guess of solution for most nonlinear equations. The
algorithm would fail or the results may be improper if the
initial guess of the solution is unreasonable. Many different
combinations of the traditional numerical methods and the
intelligent algorithms are applied to solve the systems of
nonlinear equations [12, 13], which can overcome the problem

of selecting reasonable initial guess of the solution. But the
algorithms are too complicated or expensive to calculate
when there are a number of systems of nonlinear equations to
solve. Many improved intelligent algorithms, such as particle
swarm algorithm and genetic algorithm, are proposed to
solve systems of nonlinear equations. Though they overcome
the problem of selecting reasonable initial guess of the
solution, they lack the sophisticated search capabilities in
local area, which may lead to convergence stagnation.

Here an improved particle swarm optimization algorithm
(imPSO) is put forward, which can overcome the dependence
on reasonable initial guess of the solution and improve the
computational efficiency.

A system of nonlinear equations can be expressed as

𝐹 (𝑥) = [𝑓1 (𝑥) , 𝑓2 (𝑥) , 𝑓3 (𝑥) , . . . , 𝑓𝑛 (𝑥)]
𝑇

= 0, (1)

where 𝑥 = (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
)
𝑇 are the 𝑛 variables.

Set the value of 𝐺:

𝐺 =
󵄨󵄨󵄨󵄨𝑓1 (𝑥)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓2 (𝑥)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓3 (𝑥)

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥)

󵄨󵄨󵄨󵄨 . (2)
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Then the problem of solving nonlinear equations is
transformed to a problem of seeking a vector of x tominimize
the value of 𝐺 and the best value of 𝐺 is zero, which becomes
an optimization problem. Then the imPSO is employed to
solve the optimization problem.

Most solutions of the nonlinear equations in engineering
have a limitative span, according to which we can initialize
the initial guess. The sophisticated search capabilities in local
area are improved by changing the parameters in the particle
swarm algorithm. And the unnecessary iterations will be
cancelled if the value of𝐺meets the standard (such as𝐺 < 𝑃),
which can improve computational efficiency.

2. Particle Swarm Algorithm

Particle swarm optimization algorithm (PSO), originating
from the study of birds seeking food, is a kind of intelligent
optimization algorithm, which is proposed by Eberhart and
Kennedy in 1995 [17], and then, in order to promote the
explorations in early optimization stages, the inertia weight
𝑤 is introduced into PSO [18]. Owing to its simple structure,
PSO is developing rapidly and has plenty of modified forms.

A modified PSO put forward by Shi can be expressed as

V𝑘+1
𝑖

= 𝑤V𝑘
𝑖
+ 𝑐1𝑟1 (pbest

𝑘

𝑖
−𝑥
𝑘

𝑖
) + 𝑐2𝑟2 (gbest

𝑘

𝑖
−𝑥
𝑘

𝑖
) , (3)

𝑥
𝑘+1
𝑖

= 𝑥
𝑘

𝑖
+ V𝑘+1
𝑖

. (4)

Equation (3) is to update the velocity and (4) is to update
the new position; V is the velocity and 𝑥 is the position; 𝑤
represents the inertia weight; 𝑖 represents the 𝑖th particle and
𝑘 is the 𝑘th generation; 𝑐

1
and 𝑐
2
denote weighing factors

called accelerated coefficients; 𝑟
1
and 𝑟
2
are random variables

uniformly distributed within [0, 1]; pbest
𝑖
denotes the 𝑖th per-

sonal best fitness and gbest
𝑖
denotes the 𝑖th global best fitness;

the initial velocity and position of each particle are random
variables generated by the standard normal distribution.

3. Improved Particle Swarm Algorithm

3.1. The Selection of Inertia Weight 𝑤. Most intelligent opti-
mization algorithms require a large search scope in earlier
optimization stages to avoid falling into local optimal value
and a fast convergence speed in latter optimization stages to
get the optimal value quickly. The inertia weight 𝑤 is one of
the most important factors that affect the search scope and
convergence speed of PSO. The search scope will be large
when inertia weight 𝑤 is big and convergence speed will be
fast when inertia weight 𝑤 is small. So it is very important to
select the inertia weight 𝑤.

In order tomeet the demands, the inertia weight𝑤 can be
expressed by the following function:

𝑤 = 𝑎− 𝑐
1

𝑏gbest(𝑖) + 1
+𝑑

1
𝑓𝑏𝑓𝑐 + 1

, (5)

where the inertia weight𝑤 varies with the difference between
gbest(𝑖) and 𝑏𝑓𝑐. 𝑎 is a parameter, which is a number between

0.8 and 1. 𝑏, 𝑐, 𝑑, and 𝑓 are parameters selected according to
the nonlinear equations. Generally 𝑏 is a number between 1
and 1.5; 𝑐 is a number between 0.6 and 1.2; 𝑑 is a number
between 0.05 and 0.2;𝑓 is a number between 1 and 2.5. gbest(𝑖)
is the 𝑖th global best fitness, and 𝑏𝑓𝑐 is the standard deviation
of all the 𝑖th generation particles.

During the process of optimization, the inertia weight 𝑤
becomes smaller and smaller along with gbest(𝑖) becoming
smaller and smaller according to the second part of (5). Since
solving nonlinear equations is to make (2) equal to zero (or
a value close to zero), the lower bound of gbest is zero. But if
the gbest is too big, the inertia weight𝑤 is too big to converge,
so the gbest in (5) has an upper bound ugbest. If the gbest is
bigger than ugbest, gbest will equal ugbest in (5).

If the 𝑖th generation particles are scattered, the algorithm
will have a large searching scope. However, if the 𝑖th gener-
ation particles are too centralized, the algorithm will have
a small searching scope and may be lost into local optimal
value. The standard deviation 𝑏𝑓𝑐 reflects the distribution
of particles. According to the third part of (5), the inertia
weight𝑤 becomes bigger and bigger alongwith 𝑏𝑓𝑐 becoming
smaller and smaller. 𝑏𝑓𝑐may become zero at last, so the upper
bound of inertia weight𝑤 is 𝑎, and the lower bound of inertia
weight 𝑤 is 𝑎 − 𝑏/2, so the inertia weight 𝑤 can meet the
demands.

3.2. Dynamic Conditions of Stopping Iterating. For most
intelligent optimization algorithms, there must be enough
iterations to guarantee getting the best value. However, the
best value can be got through a few iterations for PSO, and
then there is many iterations that will be useless, which leads
to a low computational efficiency. Besides, if PSO is lost into
local optimal value, it may lead to useless iterations and the
wrong results. And these problems should be found timely
and solved.

Aiming at these problems, a comprehensive plan is
proposed.

Assign zero (or a value close to zero) to the standardized
fitness value (sfv) and then the iterations will be cancelled if
the fitness value is less than or equal to sfv; that is, gbest(𝑖)
equals zero. Now the solutions of the nonlinear equations are
got and the useless iterations are avoided. That is,

gbest (𝑖) ≤ sfv. (6)

For the problem of being lost into local optimal value, if
the difference between gbest(𝑖) and gbest(𝑖−𝑋) and the differ-
ence between positionb(𝑖) and positionb(𝑖−𝑋) equal zero, PSO
is considered as being lost into local optimal value. That is,

gbest (𝑖) − gbest (𝑖 −𝑋) = 0,

positionb (𝑖) − positionb (𝑖 −𝑋) = 0,

(7)

where gbest(𝑖) is the 𝑖th best fitness value and the gbest(𝑖 − 𝑋)

is the best fitness value before 𝑋 iteration. positionb(𝑖) is the
𝑖th best position, and the positionb(𝑖 − 𝑋) is the best position
before 𝑋 iteration. 𝑋 is a parameter between 50 and 250
generally.
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Equation (6) is the standard in which the optimal values
are found. Equations (7) are the standards in which PSO is
lost into local optimal value. If (7) are tenable, PSOwill restart
from the starting.

3.3. The Standardized Number of Restarting Times 𝑚𝑏. The
standardized number of restarting times 𝑚𝑏 is calculated
according to the reliability theory.

The probability of succeeding getting the optimal value
for a single PSO is 𝑝, which can be calculated through
thousands of times of computing, being generally between
0.1 and 1. So the probability of succeeding getting the optimal
value 𝑝

𝑚
before (𝑚 + 1)th restarting can be expressed as

𝑝
𝑚

= 𝑝+𝑝 (1−𝑝) +𝑝 (1−𝑝)
2
+ ⋅ ⋅ ⋅ + 𝑝 (1−𝑝)

𝑚−1

= 1− (1−𝑝)
𝑚

,

(8)

𝑚 = log(1−𝑝𝑚)1−𝑝 ,

𝑚𝑏 > ⌈𝑚⌉ .

(9)

If (1−𝑝)𝑚 is sufficiently small,𝑝
𝑚
will be large enough that

we can believe that the probability of succeeding getting the
optimal value 𝑝

𝑚
equals 1.𝑚𝑏 can be calculated through (9).

3.4. The Steps of the Improved PSO

Step 1. Set𝑚 equal to 1.

Step 2. Judge whether𝑚 is less than𝑚𝑏. If𝑚 is less than𝑚𝑏,
the algorithm goes to Step 3. If 𝑚 is not less than 𝑚𝑏, the
algorithm put out “no results.”

Step 3. Initialize the V1 and 𝑥
1 randomly, and calculate the

pbest(1) and gbest(1).

Step 4. Judge whether gbest(1) is less than sfv. If gbest(1) is
less than sfv, the algorithmwill end. If gbest(1) is not less than
sfv, the algorithm goes to Step 5.

Step 5. If the gbest is bigger than ugbest, gbestwill equal ugbest
in (5). If the gbest is smaller than or equal to ugbest, gbest
will be gbest in (5). Update the inertia weight 𝑤 according to
(5), and then calculate the V𝑖, 𝑥𝑖, pbest(𝑖), and gbest(𝑖). Judge
whether gbest(𝑖) is less than sfv. If gbest(𝑖) is less than sfv,
the algorithm will end. If gbest(1) is not less than sfv, the
algorithm goes to Step 6.

Step 6. Judge whether 𝑖 is less than 𝐼 (the biggest number
of iterations in 𝑚th time computing). If 𝑖 is less than 𝐼, the
algorithm goes to Step 8. If 𝑖 is not less than 𝐼, the algorithm
goes to Step 7.

Step 7. Judge whether the algorithm is lost into local optimal
value according to (7). If the algorithm is lost into local
optimal value, the algorithm goes to Step 8. If the algorithm is
not lost into local optimal value, the algorithm goes to Step 5.

Step 8. Set𝑚 = 𝑚+1. And then the algorithm goes to Step 2.

And then the imPSO is formed, whose steps are shown in
Figure 1.

4. Experiments and Results

In this section, benchmark functions are employed to inves-
tigate the performance of the imPSO.

Test 1 (Freudenstein-Roth function). Consider

𝑓1 (𝑥) = [−13+𝑥1 + (5𝑥2 −𝑥
2
2 − 2) 𝑥2]

2

+ [−29+𝑥1 + (𝑥
2
2 +𝑥2 − 14) 𝑥2]

2
,

− 5.12 ≤ 𝑥
𝑖
≤ 5.12.

(10)

Theminimum value of the Freudenstein-Roth function is
zero when 𝑥 is located at point 𝑥 = (5, 4).

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 =

1.5, 𝑑 = 0.2, and 𝑓 = 2. The calculated result is (5, 4),
and the calculated minimum value of the Freudenstein-Roth
function is zero. The number of iterations is 93. 𝑚 is 1. The
convergence history of test 1 is showed in Figure 2, and the
variation of 𝑤 is shown in Figure 3.

The number of iterations of PSO is 474, whose conver-
gence history is showed in Figure 4.

Test 2 (Rosenbrock function). Consider

𝑓2 (𝑥) = 100 (𝑥2 −𝑥
2
1)

2
+ (1−𝑥1)

2
. (11)

The Rosenbrock function is a nonconvex pathological
function, which has a long narrow and curved valley in
the function. So it may require a large number of iterations
to obtain the best solution. The minimum value of the
Rosenbrock function is zero when 𝑥 is located at point 𝑥 =

(1, 1).
The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.5,

𝑑 = 0.2, and 𝑓 = 2. The calculated result is (1, 1), and
the calculated minimum value of the Rosenbrock function is
zero. The number of iterations is 75. 𝑚 is 1. The convergence
history of test 2 is showed in Figure 5, and the variation of 𝑤
is shown in Figure 6.

The number of iterations of PSO is 435, whose conver-
gence history is showed in Figure 7.

Test 3 (Schaffer function). Consider

𝑓
󸀠

3 (𝑥) = 0.5−

sin2 (√𝑥
2
1 + 𝑥

2
2) − 0.5

[1 + 0.001 (𝑥
2
1 + 𝑥

2
2)]

2 .
(12)

The Schaffer function has the global maximum value 1
when 𝑥 is located at point 𝑥 = (0, 0). However, the Schaffer
function has many local maximums 0.9903 at the points
around the point 𝑥 = (0, 0). It is very hard to get the global
maximum. Here the Schaffer function is transformed to get
the minimum value through the following equation:

𝑓3 (𝑥) = 1−𝑓
󸀠

3 (𝑥) . (13)
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Figure 1: Calculation flow chart of imPSO.
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Figure 2: The imPSO convergence history of test 1.
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Figure 8: The imPSO convergence history of test 3.

So (13) has the minimum value zero at point 𝑥 = (0, 0).
The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.5,

𝑑 = 0.2, and 𝑓 = 2. The calculated result is (0, 0), and the
calculated minimum value of the Schaffer function is zero.
Thenumber of iterations is 28.𝑚 is 1.The convergence history
of test 3 is showed in Figure 8, and the variation of𝑤 is shown
in Figure 9.

The number of iterations of PSO is 150, whose conver-
gence history is showed in Figure 10.

Test 4 (Powell quartic function). Consider

min𝑓4 (𝑥) = (𝑥1 + 10𝑥2)
2
+ 5 (𝑥3 −𝑥4)

2

+ (𝑥2 − 2𝑥3)
4
+ 10 (𝑥1 −𝑥4)

4
.

(14)

The Powell quartic function is singular at the minimum
point. However, it is very hard to get the minimum value
[14]. The minimum value zero is obtained at the point 𝑥 =

(0, 0, 0, 0).
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Figure 10: The PSO convergence history of test 3.

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.6,
𝑑 = 0.2, and 𝑓 = 2. The calculated result is (0, 0, 0, 0), and the
calculated minimum value of the Powell quartic function is
zero.The number of iterations is 1973.𝑚 is 1.The convergence
history of test 3 is showed in Figure 11, and the variation of 𝑤
is shown in Figure 12.

The number of iterations of PSO is 10000 when the mini-
mum value is 1.948645494579354𝑒−315, whose convergence
history is showed in Figure 13.

Thenumber of iterations of PSO in [14] ismore than 4000.

Test 5 (Ackley function). Consider

𝑓5 (𝑥) = − 20 exp(−0.2√ 1
𝑛

𝑛

∑

𝑖=1
𝑥
2
𝑖
)

− exp(
1
𝑛

𝑛

∑

𝑖=1
cos (2𝜋𝑥

𝑖
))+ 20+ 𝑒,

− 32 ≤ 𝑥
𝑖
≤ 32.

(15)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Test 4

gb
es
t

10
−50

10
−100

10
−150

10
−200

10
−250

10
−300

10
0

Iteration

Figure 11: The imPSO convergence history of test 4.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test 4

Iteration

w

Figure 12: The imPSO variation of 𝑤.
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Figure 14: The imPSO convergence history of test 5.
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Figure 15: The imPSO variation of 𝑤.

The dimension here is 𝑛 = 4. Ackley function is a multi-
modal function, which has a global optimal value and many
local optimal values. And the variables have no relevance. It is
very easy to be lost into the local optimal values and cannot
jump out to find global local optimal values. The minimum
value is zero at point 𝑥 = (0, 0, 0, 0).

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 =

1.6, 𝑑 = 0.2, and 𝑓 = 2. The calculated result is
(−0.312039464691632𝑒 − 015, 0.386551762889035𝑒 − 015,
0.037866869728015𝑒 − 015, 0.089018775346847𝑒 − 015),
and the calculated minimum value of the Powell quartic
function is zero. The number of iterations is 109. 𝑚 is 1. The
convergence history of test 3 is showed in Figure 14, and the
variation of 𝑤 is shown in Figure 15.

The number of iterations of PSO is 9500 when the mini-
mum value is 3.552713678800501𝑒−015, whose convergence
history is showed in Figure 16.
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Figure 16: The PSO convergence history of test 5.

Test 6 (Griewank function). Consider

𝑓6 (𝑥) =
1

4000

𝑛

∑

𝑖=1
𝑥
2
𝑖
−

𝑛

∏

𝑖=1
cos(

𝑥
𝑖

√𝑖

)+ 1,

− 600 ≤ 𝑥
𝑖
≤ 600.

(16)

The dimension here is 𝑛 = 6. Griewank function is a
multimodal function, which has a global optimal value and
many local optimal values. And the variables are relevant. It
is very easy to be lost into the local optimal values and cannot
jump out to find global local optimal values. The minimum
value is zero at point 𝑥 = (0, 0, 0, 0, 0, 0).

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 =

1.6, 𝑑 = 0.2, and 𝑓 = 2. The calculated result is
(−0.095852536988518𝑒 − 007, 0.077579964471561𝑒 − 007,
0.011250486244803𝑒 − 007, 0.077788935476922𝑒 − 007,
−0.216911551137599𝑒−007, 0.152876829678368𝑒−007), and
the calculated minimum value of the Powell quartic function
is zero.The number of iterations is 49.𝑚 is 1.The convergence
history of test 3 is showed in Figure 17, and the variation of𝑤
is shown in Figure 18.

The number of iterations of PSO is 9500 when the mini-
mum value is 3.552713678800501𝑒−015, whose convergence
history is showed in Figure 19.

Table 1 shows the results of each test with 10000 times
computing. The value of𝑚𝑏 is 100.

Table 1 shows the total iteration times of each test with
10000 times computing, fromwhich themean iteration times
can be calculated. Value of (1 − 𝑝)

biggest𝑚 indicated that if
the 𝑚𝑏 is big enough, systems of nonlinear equations can be
solved successfully.

5. Case Study

In order to demonstrate the efficiency of the improved
particle swarm optimization algorithm for solving systems
of nonlinear equations, some standard nonlinear equations
systems are employed.
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Table 1

Test Total iteration Total restarting timesm 𝑝 The biggestm (1 − 𝑝)
biggest 𝑚 Fail (𝑚≥ 𝑚𝑏)

Test 1 1148836 10967 0.9110 6 5.314 × 10−13 0
Test 2 756972 10000 1 1 0 0
Test 3 379051 11149 0.8964 5 1.193 × 10−05 0
Test 4 19810789 10000 1 1 0 0
Test 5 1169838 20067 0.4957 18 1.635 × 10−05 0
Test 6 724026 11627 0.8597 6 7.6269 × 10−06 0
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Figure 17: The imPSO convergence history of test 6.
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Figure 18: The imPSO variation of 𝑤.

Case 1 (see [19]). Consider

𝑥
3
1 − 3𝑥1𝑥

2
2 − 1 = 0,

3𝑥2
1𝑥2 −𝑥

3
2 + 1 = 0.

(17)

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.6, 𝑑 =

0.2, and 𝑓 = 2. The calculated result is (−0.290514555507251,
1.084215081491351), and the number of iterations is 69, while
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Figure 19: The PSO convergence history of test 6.
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Figure 20: The imPSO convergence history of Case 1.

the number of iterations in [14] is more than 100. 𝑚 is 1.
The convergence history of Case 1 is shown in Figure 20, and
the variation of 𝑤 is shown in Figure 21. The result is more
accurate than the result in [19].
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Figure 21: The imPSO variation of 𝑤.
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Figure 22: The imPSO convergence history of Case 2.

Case 2 (see [20]). Consider

𝑒
𝑥
2
1 − 8𝑥1 sin (𝑥2) = 0,

𝑥1 +𝑥2 − 1 = 0,

(𝑥3 − 1)3 = 0.

(18)

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.6, 𝑑 =

0.2, and 𝑓 = 2. The calculated result is (0.175598924177659,
0.824401075822341, 1.000000000000000), and the number of
iterations is 147. 𝑚 is 1. The convergence history of Case 2
is shown in Figure 22, and the variation of 𝑤 is shown in
Figure 23. The result is more accurate than the result in [14].
The result in [14] is (0.17559892417766, 0.82440107582234, 1).
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Figure 23: The imPSO variation of 𝑤.
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Figure 24: The imPSO convergence history of Case 3.

Case 3 (see [20]). Consider

3𝑥1 − cos (𝑥2𝑥3) − 0.5 = 0,

𝑥
2
1 − 625𝑥2

2 − 0.25 = 0,

𝑒
−𝑥1𝑥2 + 20𝑥3 +

(10𝜋 − 3)
3

= 0.

(19)

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.6, 𝑑 =

0.2, and 𝑓 = 2. The calculated result is (0.500000000000000,
−0.000000000141655, −0.523598775601840), and the number
of iterations is 111, while the number of iterations in [14] is
more than 150. 𝑚 is 1, and the variation of 𝑤 is shown in
Figure 25.

The convergence history of Case 3 is shown in Figure 24.
Table 2 shows the results.
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Table 2

PPSO [14] imPSO
𝑥 𝑓(𝑥) 𝑥 𝑓(𝑥)

0.5 0 0.500000000000000 0
0 0 −0.000000000141655 0
−0.52359877559662 3.357669697834353𝑒 − 11 −0.523598775601840 5.329070518200751𝑒 − 15
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Figure 25: The imPSO variation of 𝑤.

Case 4 (see [13]). Consider

𝑥
𝑥2
1 +𝑥
𝑥1
2 − 5𝑥1𝑥2𝑥3 = 85,

𝑥
3
1 −𝑥
𝑥3
2 −𝑥
𝑥2
3 = 60,

𝑥
𝑥3
1 +𝑥
𝑥1
3 −𝑥2 = 2.

(20)

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 = 1.6, 𝑑 =

0.2, and 𝑓 = 2. The calculated result is (4.00000000000000,
3.00000000000000, 1.00000000000000), and the number of
iterations is 152, while the number of iterations in [14, 16]
is more than 200. 𝑚 is 3. The convergence history of Case
4 is shown in Figure 26, and the variation of 𝑤 is shown in
Figure 27.

Case 5 (see [21]). Consider

𝑓1 (𝑥) = 𝑏ℎ − (𝑏 − 2𝑡) (ℎ − 2𝑡) = 165,

𝑓2 (𝑥) =
𝑏ℎ

3

12
−

(𝑏 − 2𝑡) (ℎ − 2𝑡)3

12
= 9369,

𝑓3 (𝑥) =
2𝑡 (ℎ − 𝑡)

2
(𝑏 − 𝑡)

2

ℎ + 𝑏 − 2𝑡
= 6835.

(21)

The values of parameters are 𝑎 = 1, 𝑏 = 1.8,
𝑐 = 1.6, 𝑑 = 0.2, and 𝑓 = 2. The calculated
result is (12.256519599348696, 22.894938623626285,
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Figure 26: The imPSO convergence history of Case 4.
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Figure 27: The imPSO variation of 𝑤.

2.789817919538154) or (−12.256519599348696,
−22.894938623626285, −2.789817919538154), and the
number of iterations is 148, while the number of iterations
in [14] is more than 200. 𝑚 is 4. The convergence history
of Case 5 is showed in Figure 28, and the variation of 𝑤 is
shown in Figure 29.
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Figure 28: The imPSO convergence history of Case 5.
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Figure 29: The imPSO variation of 𝑤.

Case 6 (neurophysiology application). Consider

𝑥
2
1 +𝑥

2
3 = 1,

𝑥
2
2 +𝑥

2
4 = 1,

𝑥5𝑥
3
3 +𝑥6𝑥

3
4 = 0,

𝑥5𝑥
3
1 +𝑥6𝑥

3
2 = 0,

𝑥5𝑥1𝑥
2
3 +𝑥6𝑥2𝑥

2
4 = 0,

𝑥5𝑥
2
1𝑥3 +𝑥6𝑥

2
2𝑥4 = 0.

(22)

The values of parameters are 𝑎 = 1, 𝑏 = 1.8, 𝑐 =

1.4, 𝑑 = 0.2, and 𝑓 = 1.05. The calculated result
with imPSO is (−0.994926998030712, 0.539699980991932,
−0.100599545672903, 0.841857428854381, 0, 0), and the num-
ber of iterations is 2161. 𝑚 is 1. The convergence history of
Case 6 is showed in Figure 30, and the variation of𝑤 is shown
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Figure 30: The imPSO convergence history of Case 6.
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Figure 31: The imPSO variation of 𝑤.

in Figure 31. The best results in different methods and the
results of imPSO are shown in Table 3.

Table 4 shows the results of Case 1 with 10000 times
computing under different parameters.The value of𝑚𝑏 is 100
and the values of parameters are 𝑏 = 1.8 and 𝑓 = 1.05.

According to (1) and (2), total iterations become
fewer when parameter 𝑑 is bigger, but the probability of
convergence becomes bigger. According to (3) and (4), total
iterations become fewer when parameter 𝑐 is smaller, but the
probability of convergence becomes bigger. According to (5)

and (6), total iterations become fewer when parameter 𝑎 is
smaller, but the probability of convergence becomes smaller.
Table 4 shows that total iterations become fewer when
parameter 𝑎 − 𝑐/2 is less, but the probability of convergence
becomes smaller.
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Table 3: Different results with different methods of Case 6.

The results in [15] The results of ICA [16] The best results of imPSO
𝑥 𝑓(𝑥) 𝑥 𝑓(𝑥) 𝑥 𝑓(𝑥)

−0.8078668904 0.0050092197 −0.041096050919063 0 −0.994926998030712 0
−0.9560562726 0.0366973076 0.041096050919063 0 0.539699980991932 0
0.5850998782 0.0124852708 0.999155200456294 0 −0.100599545672903 0
−0.2219439027 0.0276342907 −0.999155200456294 0 0.841857428854381 0
0.0620152964 0.0168784849 0.098733550533454 0 0 0
−0.0057942792 0.0248569233 0.098733550533454 0 0 0

Table 4

Parameters Total iteration Total restarting times𝑚 𝑝 Biggest 𝑚 (1 − 𝑝)
biggest 𝑚 Fail (𝑚 ≥ 𝑚𝑏)

(1) 𝑎 = 1.0, 𝑐 = 1.6, 𝑑 = 0.4 815371 14955 0.6697 11 5.104 × 10−06 0
(2) 𝑎 = 1.0, 𝑐 = 1.6, 𝑑 = 0.2 756348 15011 0.6664 9 5.117 × 10−05 0
(3) 𝑎 = 1.0, 𝑐 = 1.6, 𝑑 = 0.2 755928 15009 0.6673 8 1.501 × 10−04 0
(4) 𝑎 = 1.0, 𝑐 = 1.4, 𝑑 = 0.2 1006006 14946 0.6711 10 1.481 × 10−05 0
(5) 𝑎 = 1.0, 𝑐 = 1.4, 𝑑 = 0.2 1005359 14942 0.6726 8 1.320 × 10−04 0
(6) 𝑎 = 0.8, 𝑐 = 1.4, 𝑑 = 0.2 550127 15074 0.6656 8 1.481 × 10−05 0

6. Conclusions

In this paper, a method for solving a system of nonlinear
equations is proposed, which is converted to an optimization
problem, and an improved particle swarm algorithm is
employed to solve the optimization problem. This method
overcomes the dependence on reasonable initial guess of
the solution. And then some standard systems of nonlinear
equations are presented to demonstrate the convergence
probability, convergence rate, and solution precision in
finding the best solution of nonlinear equations with the
improved particle swarm algorithm.
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