4,043 research outputs found

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Learning Kernel-Based Halfspaces with the Zero-One Loss

    Full text link
    We describe and analyze a new algorithm for agnostically learning kernel-based halfspaces with respect to the \emph{zero-one} loss function. Unlike most previous formulations which rely on surrogate convex loss functions (e.g. hinge-loss in SVM and log-loss in logistic regression), we provide finite time/sample guarantees with respect to the more natural zero-one loss function. The proposed algorithm can learn kernel-based halfspaces in worst-case time \poly(\exp(L\log(L/\epsilon))), for \emph{any} distribution, where LL is a Lipschitz constant (which can be thought of as the reciprocal of the margin), and the learned classifier is worse than the optimal halfspace by at most ϵ\epsilon. We also prove a hardness result, showing that under a certain cryptographic assumption, no algorithm can learn kernel-based halfspaces in time polynomial in LL.Comment: This is a full version of the paper appearing in the 23rd International Conference on Learning Theory (COLT 2010). Compared to the previous arXiv version, this version contains some small corrections in the proof of Lemma 3 and in appendix

    Robustness and Regularization of Support Vector Machines

    Full text link
    We consider regularized support vector machines (SVMs) and show that they are precisely equivalent to a new robust optimization formulation. We show that this equivalence of robust optimization and regularization has implications for both algorithms, and analysis. In terms of algorithms, the equivalence suggests more general SVM-like algorithms for classification that explicitly build in protection to noise, and at the same time control overfitting. On the analysis front, the equivalence of robustness and regularization, provides a robust optimization interpretation for the success of regularized SVMs. We use the this new robustness interpretation of SVMs to give a new proof of consistency of (kernelized) SVMs, thus establishing robustness as the reason regularized SVMs generalize well

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft
    • …
    corecore