3 research outputs found

    A One-Vs-One classifier ensemble with majority voting for activity recognition

    No full text
    A solution for the automated recognition of six full body motion activities is proposed. This problem is posed by the release of the Activity Recognition database [1] and forms the basis for a classification competition at the European Symposium on Artificial Neural Networks 2013. The data-set consists of motion characteristics of thirty subjects captured using a single device delivering accelerometric and gyroscopic data. Included in the released data-set are 561 processed features in both the time and frequency domains. The proposed recognition framework consists of an ensemble of linear support vector machines each trained to discriminate a single motion activity against another single activity. A majority voting rule is used to determine the final outcome. For comparison, a six "winner take all" multiclass support vector machine ensemble and k-Nearest Neighbour models were also implemented. Results show that the system accuracy for the one versus one ensemble is 96.4% for the competition test set. Similarly, the multiclass SVM ensemble and k-Nearest Neighbour returned accuracies of 93.7% and 90.6% respectively. The outcomes of the one versus one method were submitted to the competition resulting in the winning solution

    Multitask and transfer learning for multi-aspect data

    Get PDF
    Supervised learning aims to learn functional relationships between inputs and outputs. Multitask learning tackles supervised learning tasks by performing them simultaneously to exploit commonalities between them. In this thesis, we focus on the problem of eliminating negative transfer in order to achieve better performance in multitask learning. We start by considering a general scenario in which the relationship between tasks is unknown. We then narrow our analysis to the case where data are characterised by a combination of underlying aspects, e.g., a dataset of images of faces, where each face is determined by a person's facial structure, the emotion being expressed, and the lighting conditions. In machine learning there have been numerous efforts based on multilinear models to decouple these aspects but these have primarily used techniques from the field of unsupervised learning. In this thesis we take inspiration from these approaches and hypothesize that supervised learning methods can also benefit from exploiting these aspects. The contributions of this thesis are as follows: 1. A multitask learning and transfer learning method that avoids negative transfer when there is no prescribed information about the relationships between tasks. 2. A multitask learning approach that takes advantage of a lack of overlapping features between known groups of tasks associated with different aspects. 3. A framework which extends multitask learning using multilinear algebra, with the aim of learning tasks associated with a combination of elements from different aspects. 4. A novel convex relaxation approach that can be applied both to the suggested framework and more generally to any tensor recovery problem. Through theoretical validation and experiments on both synthetic and real-world datasets, we show that the proposed approaches allow fast and reliable inferences. Furthermore, when performing learning tasks on an aspect of interest, accounting for secondary aspects leads to significantly more accurate results than using traditional approaches

    Signal processing and analytics of multimodal biosignals

    Get PDF
    Ph. D. ThesisBiosignals have been extensively studied by researchers for applications in diagnosis, therapy, and monitoring. As these signals are complex, they have to be crafted as features for machine learning to work. This begs the question of how to extract features that are relevant and yet invariant to uncontrolled extraneous factors. In the last decade or so, deep learning has been used to extract features from the raw signals automatically. Furthermore, with the proliferation of sensors, more raw signals are now available, making it possible to use multi-view learning to improve on the predictive performance of deep learning. The purpose of this work is to develop an effective deep learning model of the biosignals and make use of the multi-view information in the sequential data. This thesis describes two proposed methods, namely: (1) The use of a deep temporal convolution network to provide the temporal context of the signals to the deeper layers of a deep belief net. (2) The use of multi-view spectral embedding to blend the complementary data in an ensemble. This work uses several annotated biosignal data sets that are available in the open domain. They are non-stationary, noisy and non-linear signals. Using these signals in their raw form without feature engineering will yield poor results with the traditional machine learning techniques. By passing abstractions that are more useful through the deep belief net and blending the complementary data in an ensemble, there will be improvement in performance in terms of accuracy and variance, as shown by the results of 10-fold validations.Nanyang Polytechni
    corecore