

Signal Processing and Analytics

of Multimodal Biosignals

Koh Bee Hock David

Work submitted to Newcastle University

for the degree of Doctor of Philosophy in the Faculty of Science,

Agriculture and Engineering

October 2019

ii

iii

Abstract

Biosignals have been extensively studied by researchers for applications in diagnosis, therapy,

and monitoring. As these signals are complex, they have to be crafted as features for machine

learning to work. This begs the question of how to extract features that are relevant and yet

invariant to uncontrolled extraneous factors.

In the last decade or so, deep learning has been used to extract features from the raw signals

automatically. Furthermore, with the proliferation of sensors, more raw signals are now

available, making it possible to use multi-view learning to improve on the predictive

performance of deep learning.

The purpose of this work is to develop an effective deep learning model of the biosignals and

make use of the multi-view information in the sequential data. This thesis describes two

proposed methods, namely:

(1) The use of a deep temporal convolution network to provide the temporal context of the

signals to the deeper layers of a deep belief net.

(2) The use of multi-view spectral embedding to blend the complementary data in an ensemble.

This work uses several annotated biosignal data sets that are available in the open domain. They

are non-stationary, noisy and non-linear signals. Using these signals in their raw form without

feature engineering will yield poor results with the traditional machine learning techniques. By

passing abstractions that are more useful through the deep belief net and blending the

complementary data in an ensemble, there will be improvement in performance in terms of

accuracy and variance, as shown by the results of 10-fold validations.

iv

Author’s Declaration

This thesis is submitted to Newcastle University for the degree of Doctor of Philosophy. The

research detailed within was performed between the years 2012-2018 and was supervised by

Dr W. L. Woo and Prof. Satnam Dlay. I certify that none of the material offered in this thesis

has been previously submitted by me for a degree or any other qualification at this or any other

university.

v

Acknowledgements

Acknowledgement is hereby given to my supervisor Dr W. L. Woo for advising and supporting

my work in this PhD program for the many years that it has taken.

I am also grateful to the sponsorship provided by Nanyang Polytechnic and the grant of leave

for the study.

Thanks are due to my colleagues at Embedded Technology Centre for providing me with the

computer, software and technical support during the course of this work.

Lastly, I would like to thank my family for their patience and tolerance during this time.

vi

vii

Table of Contents

Abstract iii

Author’s Declaration iv

Acknowledgements v

Table of Contents vii

List of Tables xiii

List of Figures xvii

Chapter 1. Introduction 1

1.1 Purpose 1

1.2 Background 2

1.2.1 Bias versus Variance in Machine Learning 5

1.2.2 Deep Learning 9

1.2.3 Data Preparation and Signal Processing 10

1.3 Hypotheses 12

1.3.1 Deep Temporal Convolution Network 12

1.3.2 Multi-view Temporal Ensemble 16

1.4 Evaluation Methods 21

1.4.1 Data Sets 22

1.4.2 Performance Metrics 22

1.4.3 Cross-Validation and Model Comparison 26

1.5 Organisation 27

Chapter 2. Review 28

2.1 Biosignals 29

2.1.1 Time Delay Representation 29

2.1.2 Electroencephalogram 33

viii

2.1.3 Electroencephalogram in Epilepsy 35

2.1.4 Electromyogram 36

2.1.5 Inertial Sensor Signals 38

2.1.6 Heart Sound 38

2.2 Deep Learning of Signals 40

2.2.1 Linear Model 40

2.2.2 Logistic Regression 43

2.2.3 Extreme Learning Machine 45

2.2.4 Support Vector Machine 47

2.2.5 Linear Gaussian Model 49

2.2.6 Neural Network 55

2.2.7 Deep Belief Net 62

2.2.8 Convolution Neural Network 67

2.2.9 Long Short-Term Memory Recurrent Neural Network 69

2.3 Time Series Classification 73

2.3.1 Feature-Based Methods 74

2.3.2 Distance-Based Methods 76

2.3.3 Neural-Network-Based Methods 78

2.3.4 Ensemble Methods 80

2.4 Multi-view Learning 82

2.4.1 Review of Multi-View Learning 83

2.4.2 Ensemble Learning 85

2.4.3 Multiple Kernel Learning 90

2.4.4 Spectral Embedding 91

2.4.5 Laplacian Eigenmap 94

ix

Chapter 3. Deep Temporal Convolution Network 99

3.1 Network with Temporal Context 100

3.1.1 Representation of Temporal Context 103

3.1.2 Distribution of Temporal Context 104

3.1.3 Learning with Many Layers 105

3.2 Data Preparation 106

3.2.1 Concatenation of Temporal Context 107

3.2.2 Concatenation in the Deeper Layers 110

3.2.3 Short-Term Temporal Order 111

3.2.4 Mini-Batches that Overlap 114

3.2.5 Randomization of the Mini-Batches 115

3.2.6 Pooling of Target Labels through Deeper Layers 116

3.3 Learning Algorithm 122

3.3.1 Pre-training 122

3.3.2 Training of the Final Classifier 123

3.3.3 Backpropagation 123

3.3.4 Gradient Routing 126

3.4 Summary of Deep Temporal Convolution Network 128

Chapter 4. Multi-view Temporal Ensemble 130

4.1 Overview 131

4.1.1 Construction of Views 133

4.1.2 Complementarity 135

4.1.3 Time-Frequency Features 136

4.2 Equality of Target Concept 137

4.2.1 Co-occurrence 137

x

4.2.2 Class-specificity 138

4.3 Implementation 139

4.3.1 Laplacian Matrix of Individual View 142

4.3.2 Spectral Embedding of Data Manifold 142

4.3.3 Global View Problem 144

4.3.4 Complementarity 145

4.4 CNN-LSTM Sub-Model 146

4.4.1 Time-Frequency Representation 147

4.4.2 CNN-LSTM 148

4.5 Summary of Multi-view Temporal Ensemble 150

Chapter 5. Data Experiments and Results 152

5.1 Data Analysis of the EEG Eye State Data Set 152

5.1.1 Data Exploration 153

5.1.2 Non-Stationarity 156

5.1.3 Time Dependency 159

5.1.4 Effect of the Sliding Window 164

5.2 EEG Eye State 165

5.2.1 Spot Checking 165

5.2.2 10-Fold Validation, TS = 1, 2, 5 169

5.2.3 Comparing with Equivalent DBN-DNN 173

5.2.4 Performance Improvement with Ensemble 177

5.2.5 Comparison with Existing Works 178

5.3 EEG Epileptic 179

5.3.1 Data Set 179

5.3.2 Spot Checking 181

xi

5.3.3 10-Fold Validation, TS = 1, 2, 5 183

5.3.4 Comparing with Equivalent DBN-DNN 186

5.3.5 Performance Improvement with Ensemble 189

5.3.6 Comparison with Existing Works 190

5.4 Human Activity Recognition 190

5.4.1 Data Set 191

5.4.2 Spot Checking 193

5.4.3 10-Fold Validation, TS = 1, 2, 5 195

5.4.4 Comparison with Existing Works 197

5.5 Freezing of Gait during Walking 198

5.5.1 Data Set 198

5.5.2 10-Fold Validation, TS = 1, 2, 5 200

5.5.3 Comparison with Existing Works 203

5.6 EMG Lower Limb Analysis 205

5.6.1 Data Set 205

5.6.2 10-Fold Validation, TS = 1, 2, 5 205

5.6.3 Comparison with Existing Works 208

5.7 Environment Sound 209

5.7.1 Data Set 209

5.7.2 Spot Checking 211

5.7.3 Performance of the Individual Views 212

5.7.4 Performance Improvement with Multi-view Temporal Ensemble 217

5.7.5 Comparison with Existing Works 217

5.8 Heart Sounds 219

5.8.1 Data Set 219

xii

5.8.2 Data Preparation 220

5.8.3 Performance of the Individual Views 220

5.8.4 Performance Improvement with Ensemble 224

5.8.5 Comparison with Existing Works 225

Chapter 6. Conclusion 227

6.1 Main Points 227

6.2 Future Works 229

6.2.1 Dimensions as Co-variates 230

6.2.2 Intelligent Sensor Network 230

6.2.3 More Robust to Noise 230

6.2.4 Incremental Learning 231

6.3 Final Words 231

References 232

xiii

List of Tables

Table 1.1. Confusion matrix 23

Table 1.2. An example of low precision despite high sensitivity and high specificity 25

Table 3.1. 10-fold cross-validation of DTCN, eye state 128

Table 3.2. Mean of 10-fold cross-validation of DTCN, eye state 129

Table 4.1. 10-fold cross-validation of individual views and MTE, eye state 150

Table 4.2. Mean of 10-fold cross-validation of individual views and MTE, eye state 151

Table 5.1. Summary statistic of the 14 electrodes by class 154

Table 5.2. Correlation between the electrode signals 161

Table 5.3. Classification accuracy without shuffling (eye state) 166

Table 5.4. Classification accuracy with shuffling (eye state) 167

Table 5.5. WEKA classification accuracy with shuffling (eye state) 168

Table 5.6. Configurations of the deep temporal convolution network 169

Table 5.7. Cross-validation results (accuracies in percentage) of DTCN at TS=1 (eye state)

 170

Table 5.8. Means and standard deviations of the 10-fold results of DTCN at TS=1 (eye state)

 170

Table 5.9. Cross-validation results (accuracies in percentage) for DTCN at TS=2 (eye state)

 170

Table 5.10. Means and standard deviations of the 10-fold results of DTCN at TS=2 (eye state)

 171

Table 5.11. Cross-validation results (accuracies in percentage) of DTCN at TS=5 (eye state)

 171

Table 5.12. Means and standard deviations of 10-fold results of DTCN at TS=5 (eye state) 172

Table 5.13. No. of adjustable parameters, DTCN, View 1, 2, and 3, at TS=1, 2, and 3 173

Table 5.14. Equivalent DBN-DNN of View 1, View 2, and View 3 at TS=2 (eye state) 174

xiv

Table 5.15. Equivalent DBN-DNN of View 1, View 2, and View 3 at TS=5 (eye state) 174

Table 5.16. Cross-validation results (accuracies in percentage) of equivalent DBN-DNN at

TS=2 (eye state) 175

Table 5.17. Means and standard deviations of 10-fold results of equivalent DBN-DNN at

TS=2 (eye state) 175

Table 5.18. Cross-validation results (accuracies in percentage) of equivalent DBN-DNN at

TS=5 (eye state) 176

Table 5.19. Means and standard deviations of 10-fold results of equivalent DBN-DNN at

TS=5 (eye state) 177

Table 5.20. Description of the 5 classes, EEG epileptic seizure 180

Table 5.21. Classification accuracy with shuffling (epileptic) 182

Table 5.22. Configuration of DTCN, View 1, View 2 and View 3 (epileptic) 183

Table 5.23. Cross-validation result for DTCN at TS=1 (epileptic) 183

Table 5.24. Means and standard deviations of cross-validation results for DTCN at TS=1

(epileptic) 184

Table 5.25. Cross-validation result for DTCN at TS=2 (epileptic) 184

Table 5.26. Mean of cross-validation result for DTCN at TS=2 (epileptic) 185

Table 5.27. Cross-validation result for DTCN at TS=5 (epileptic) 185

Table 5.28. Mean and std dev of cross-validation result for DTCN at TS=5 (epileptic) 185

Table 5.29. No. of adjustable parameters, DTCN, at TS=1, 2, 5 187

Table 5.30. Equivalent DBN-DNN for TS=2, epileptic 187

Table 5.31. Cross-validation result for equivalent DBN-DNN at TS=2 (epileptic) 188

Table 5.32. Mean and standard deviation cross-validation result for equivalent DBN-DNN at

TS=2 (epileptic) 188

Table 5.33. Description of the 12 classes in the HAR data set 191

Table 5.34. Number of data vectors in each of the 10 folds 193

Table 5.35. Classification accuracy with shuffling (HAR) 194

xv

Table 5.36. Configuration of DTCN, View 1, 2 and 3 (HAR) 195

Table 5.37. Cross-validation accuracies (%) for DTCN at TS=1 (HAR) 195

Table 5.38. Means and standard deviation deviations of cross-validation result for DTCN at

TS=1 (HAR) 196

Table 5.39. Cross-validation accuracies (%) for DTCN at TS=2 (HAR) 196

Table 5.40. Means and standard deviations of cross-validation result for DTCN at TS=2,

HAR 196

Table 5.41. Cross-validation accuracies (%) for DTCN at TS=5, HAR 197

Table 5.42. Means and standard deviations of cross-validation result for DTCN at TS=5, HAR

 197

Table 5.43. Configuration of DTCN, View 1, 2 and 3 (FoG) 200

Table 5.44. Cross-validation accuracies (%) for DTCN at TS=1 (FoG) 200

Table 5.45. Means and standard deviation deviations of cross-validation result for DTCN at

TS=1 (FoG) 201

Table 5.46. Cross-validation accuracies (%) for DTCN at TS=2 (FoG) 202

Table 5.47. Means and standard deviations of cross-validation result for DTCN at TS=2, FoG

 202

Table 5.48. Cross-validation accuracies (%) for DTCN at TS=5, FoG 203

Table 5.49. Means and standard deviations of cross-validation result for DTCN at TS=5, FoG

 203

Table 5.50. Classification accuracy with shuffling (FoG) 204

Table 5.51. Configuration of DTCN, View 1, View 2 and View 3 (EMG Lower Limb) 206

Table 5.52. Cross-validation accuracies (%) for DTCN at TS=1 (EMG Lower Limb) 206

Table 5.53. Means and standard deviation deviations of cross-validation result for DTCN at

TS=1 (EMG Lower Limb) 206

Table 5.54. Cross-validation accuracies (%) for DTCN at TS=2 (EMG Lower Limb) 207

xvi

Table 5.55. Means and standard deviations of cross-validation result for DTCN at TS=2

(EMG Lower Limb) 207

Table 5.56. Cross-validation accuracies (%) for DTCN at TS=5 (EMG Lower Limb) 207

Table 5.57. Means and standard deviations of cross-validation result for DTCN at TS=5

(EMG Lower Limb) 208

Table 5.58. Comparative analysis 208

Table 5.59. Target class labels of the environment sound data set 210

Table 5.60. Classification accuracy of ESC-50 based on different topologies 212

Table 5.61. CNN-LSTM Topology, View 1 (ESC-50) 213

Table 5.62. Classification accuracies (%) over 20 epochs, View 1 (ESC-50) 214

Table 5.63. CNN-LSTM Topology, View 2 (ESC-50) 215

Table 5.64. Classification accuracies (%) over 20 epochs, View 2 (ESC-50) 215

Table 5.65. CNN-LSTM Topology, View 3 (ESC-50) 216

Table 5.66. Classification accuracies (%) over 20 epochs, View 3 (ESC-50) 216

Table 5.67. State of the art performance on the ESC-50 data set 218

Table 5.68. Collection A, B, C, D, and E of normal and abnormal heart sound recordings 219

Table 5.69. CNN-LSTM Topology, View 1 (heart sounds) 221

Table 5.70. Performance over 20 epochs, View 1 (heart sounds) 222

Table 5.71. Confusion matrix, View 1 (heart sounds) 223

Table 5.72. Performance over 20 epochs, View 2 (heart sounds) 223

Table 5.73. Confusion matrix, View 2 (heart sounds) 223

Table 5.74. Performance over 20 epochs, View 3 (heart sounds) 224

Table 5.75. Confusion matrix, View 3 (heart sounds) 224

Table 5.76. Confusion matrix, multi-view temporal ensemble (heart sounds) 224

Table 5.77. Final scores for the 2016 Physionet Challenge 226

xvii

List of Figures

Figure 1.1. Five types of brain waves: (a) excited, (b) relaxed, (c) drowsy, (d) asleep, (e) deep

sleep. Reproduced from [1]. ... 3

Figure 1.2. Classification error rate of 14-channel EEG. Reproduced from [2]. 4

Figure 1.3. Machine learning pipeline .. 11

Figure 1.4. Concatenation of output vectors for the deeper layer .. 13

Figure 1.5. Natural and artificial views of multi-view ensemble ... 17

Figure 1.6. Alternate optimization of 𝑳 and 𝒀 .. 20

Figure 1.7. Comparing models ... 27

Figure 2.1. Time delay representation in table form .. 31

Figure 2.2. Structured format of panel data .. 32

Figure 2.3. Symbols for the placements of electrodes on the scalp. Reproduced from [1]. 34

Figure 2.4. A motor unit action potential (MUAP). Reproduced from [23]. 37

Figure 2.5. (Top) Heart sound and its four states: S1, systole, S2 and diastole. (Bottom)

Electrocardiogram (ECG). Reproduced from [23]. .. 39

Figure 2.6. A linear model represented as a network ... 41

Figure 2.7. Matrix shape of the weights 𝑾 of a linear network ... 41

Figure 2.8. Geometric interpretation of the linear model ... 43

Figure 2.9: Logistic regression used as (a) static network, (b) dynamic network 45

Figure 2.10. The two-layer arrangement of an extreme learning machine............................... 46

Figure 2.11. Linear Gaussian model: Kalman filter (left) and hidden Markov model (right) .. 50

Figure 2.12. A 3-layer MLP (two hidden layers and an output layer) 55

Figure 2.13. Visualization of a TDNN ... 58

Figure 2.14. Equivalent static network and the actual distributed TDNN 59

Figure 2.15. Binary tree network .. 62

xviii

Figure 2.16. Training process of a DBN-DNN .. 64

Figure 2.17. The probabilistic model of an RBM .. 64

Figure 2.18. Local receptive field in CNN ... 68

Figure 2.19. General form of an unrolled recurrent network ... 69

Figure 2.20. Unfolding of a general RNN ... 70

Figure 2.21. An LSTM cell .. 72

Figure 2.22. Two Views ... 82

Figure 2.23. Natural (left) and artificial (right) views for multi-view learning. 85

Figure 2.24. Multi-kernel training.. 90

Figure 2.25. Reduction of a non-linear manifold preserves the local proximity of the data

points. Reproduced from internet sources. ... 92

Figure 2.26: Simple graph, with node 1 connected to node 2, 3, 4, 5, and 6 93

Figure 3.1. Architecture of the proposed deep temporal convolution network 101

Figure 3.2. Time Steps and Concatenation .. 102

Figure 3.3. A tapped delay line at the input of a TDNN, 𝒘 = 𝟒, 𝒔 = 𝟏. 103

Figure 3.4. A distributed TDNN (left) and its equivalent network (right)............................. 104

Figure 3.5. Time-dependent feature ... 107

Figure 3.6. Time delay representation of a multivariate data set ... 108

Figure 3.7. Formation of concatenation sublayer, 𝑇𝑆 = 3. ... 109

Figure 3.8. Size reduction in a mini-batch ... 113

Figure 3.9. A two-stage sliding window to create mini-batches that overlap. 114

Figure 3.10. Unequal contribution at the deeper layer ... 115

Figure 3.11. A time series (top) and its target class labels of 1 and 0 (bottom) 117

Figure 3.12. Target label class in time delay representation .. 117

Figure 3.13. Target class labels in one-hot encoding format ... 118

xix

Figure 3.14. Result of class-wise summation ... 118

Figure 3.15. Majority voting, input layer ... 119

Figure 3.16. Pooling of the class counts of newly concatenated data. 120

Figure 3.17. Class counts of newly concatenated data set ... 120

Figure 3.18. Pooled class count of target class labels, concatenation sublayer 121

Figure 3.19. Majority voting, final output layer ... 121

Figure 3.20. RBM in the deep temporal convolution network ... 122

Figure 3.21. Backward path from concatenation sublayer to the pre-concatenation hidden

layer .. 124

Figure 3.22. The three steps of the “split-slide-add” method for gradient routing................. 127

Figure 4.1. Architecture of the proposed multi-view temporal ensemble. 132

Figure 4.2. Architecture of the proposed multi-view temporal ensemble. 134

Figure 4.3. Co-occurrence .. 138

Figure 4.4. Alternate optimization of 𝑳𝐺 and 𝛼𝑖 .. 141

Figure 4.5. Linear combination in small batches of 𝑁 co-occurring vectors of the same class

 .. 142

Figure 4.6. Time-frequency data format of a segment ... 148

Figure 4.7. Architecture of the CNN-LSTM sub-model for the multi-view temporal ensemble

 .. 149

Figure 5.1. Target class labels of an electrode - 0 for eye-open and 1 for eye-closed 153

Figure 5.2. Top left to bottom right: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,

AF4 ... 155

Figure 5.3. AF3 (top left) and F7 (top right), with their corresponding eye state (bottom) ... 155

Figure 5.4. Stack of line plots of all the 14 electrodes on top of the eye state 156

Figure 5.5. AF3 (left) and F7 (right): moving average (top) and moving variance (bottom) 157

Figure 5.6. Distribution of the 14 electrode signals by amplitude values 158

xx

Figure 5.7. QQ plots of the 14 electrode signals, class 0 (eye open) 158

Figure 5.8. QQ plots of the 14 electrode signals, class 1 (eye closed) 159

Figure 5.9. Autocorrelation of AF3 (left), and cross-correlation of AF3 and F7 (right) 160

Figure 5.10. Heat map of the correlation of the electrode signals ... 161

Figure 5.11. Top-left to bottom-right: auto-correlation plots of 14 electrodes (AF3, F7, F3,

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) .. 162

Figure 5.12. (Left) Autocorrelation of first difference of AF3. (Right) Cross-correlation of the

first difference of AF3 and F3.. 163

Figure 5.13. Quantile-to-quantile plot of AF3’s first difference, class 0 (left) & class 1 (right)

 .. 163

Figure 5.14. Kernel density estimation of AF’s first difference, class 0 (left) & class 1 (right)

 .. 164

Figure 5.15. Autocorrelation of column 1 (left), and cross-correlation of column 1 & 2 (right)

 .. 165

Figure 5.16. Boxplot of algorithm comparison without shuffling (eye state)........................ 167

Figure 5.17. Boxplot of algorithm comparison with shuffling (eye state) 168

Figure 5.18. Classification accuracy over 10 folds, DTCN, View 1, 𝑇𝑆 = 1,2 and 5 (eye state)

 .. 172

Figure 5.19. Performance of DTCN vs equivalent DBN-DNN, 𝑇𝑆 = 2 (eye state) 176

Figure 5.20. Performance of DTCN vs equivalent DBN-DNN, 𝑇𝑆 = 5 (eye state) 177

Figure 5.21. Validation result for View 1, View 2, View 3 and their ensembles at 𝑇𝑆 = 1 (eye

state) ... 178

Figure 5.22. An example of EEG signals of all the 5 classes, 1 second long 181

Figure 5.23. Boxplot of algorithm comparison (epileptic) .. 182

Figure 5.24. Classification accuracy over 10 folds, DTCN, View 1, 𝑇𝑆 = 1,2 and 5 (epileptic)

 .. 186

Figure 5.25. Performance of DTCN vs equivalent DBN, 𝑇𝑆 = 2 (epileptic) 189

xxi

Figure 5.26. Validation result for View 1, 2, 3 and their ensembles at 𝑇𝑆 = 1 (epileptic) ... 189

Figure 5.27. Boxplot of algorithm comparison (HAR) .. 194

Figure 5.28. Deep learning with two layers of LSTM, ESC-50 ... 211

Figure 5.29. Comparison of MTE vs individual view (ESC-50) ... 217

Figure 5.30. Comparison of MTE vs individual view (heart sound) 225

Figure 6.1. Classification accuracies of DTCN with 𝑇𝑆 = 1,2,5, eye state 228

Figure 6.2. Classification accuracies for View 1, 2, 3, their average, and MTE (eye state) . 229

1

Chapter 1. Introduction

1.1 Purpose

Computers can learn patterns from data, such as analysing brain waves to predict if the eyes are

open or not. Once trained, the models can work well with future and yet-to-be-seen data. With

the support of technologies in sensors, networks and cloud computing, the users can benefit

from the analytics quickly. Incorporating signal processing and analytics into a solution can

thus create compelling value proposition.

In the biomedical domain, numerous researchers have studied biosignals extensively for

applications in diagnosis, therapy and monitoring. As these signals are complex, the signals

have to be characterised and crafted as features for machine learning to work. In the absence of

domain knowledge, this begs the question of how to extract relevant features that are invariant

to uncontrolled extraneous factors in time and scale.

In the last decade or so, deep learning has been used to extract features from the raw signals

automatically. With the proliferation of sensors, more raw signals are now available, making it

possible to improve generalization performance by making use of the complementarity in the

measurements.

The purpose of this work is to apply deep learning and multi-view learning to the predictive

modelling of biosignals that are time series data. This thesis proposes two novel methods. They

are first set as hypotheses and then validated with data experiments. They are, namely:

(1) The use of a deep temporal convolution network to provide the temporal context of the

signals to the deeper layers of a deep belief net.

(2) The use of multi-view spectral embedding to blend the complementary data in an ensemble.

This work uses several annotated biosignal data sets that are available in the open domain. They

are time series data, measured in discrete time steps, numeric in values, and non-stationary in

distribution. The generative models of the phenomenon and the factors of variation are assumed

unknown. With shallow static networks, these signals, in their raw form (without feature

2

engineering), will yield poor results. By passing abstractions that are more useful through the

deep belief net and blending the complementary data in an ensemble, there will be improvement

in performance in terms of accuracy and variance, as shown by the results of 10-fold validations

and the significance level of the Student’s paired t-test.

1.2 Background

This section provides some concepts of signal processing and analytics, particularly on machine

learning, so that the hypotheses that assume this background knowledge can be better

understood when they are described in the next section.

A signal, such as the brain wave, is a time-varying quantity that represents some phenomenon

in the real world. Nowadays, sensors collect signals which are stored digitally, and so the term

“signal” is often used interchangeably with the term “time series”.

Biosignals are signals generated by living organisms. Living organisms can generate the signals

either by themselves, or by interaction with their environment. They provide valuable

information about the subjects. Examples of biosignals include physioelectrical signals, motion

signals, sounds, etc.

The notion of analysing biosignals is daunting. The waveforms look random with no obvious

patterns. However, they are predictable (from the point of view of machine leaning), unlike the

white noise. There is a relationship between the neighbouring observations in a time series.

They can be hard to see, but time-varying, i.e. temporal, patterns do exist in the biosignals.

To complicate the matter, biosignals often come as a set of signals rather than a single signal.

For example, in brain waves, multiple signals are measured concurrently at different spatial

locations, forming multivariate signals (Figure 1.1). It is also possible that, for the same context,

sensors of different types collect signals that are related, forming heterogeneous signals, such

as the accelerometer and gyroscope signals of a moving person. Furthermore, different latent

modes may exist in a data set, such as the signals from different subjects. The content between

the signals in a data set can supplement and/or complement each other. With data fusion, it is

possible to increase the discriminatory information and reduce the noise in the signals in the

data set.

3

Figure 1.1. Five types of brain waves: (a) excited, (b) relaxed, (c) drowsy, (d) asleep, (e) deep

sleep. Reproduced from [1].

However, without the proper context, domain knowledge, and a good dose of practical skills in

statistics, the biosignals will be too complex to be analysed and run with algorithms. For

example, in a study [2], a set of brain waves were collected using 14 electrodes. 42 different

machine learning algorithms in the WEKA toolkit [3] were used to train and test the data set.

The purpose was to predict whether the eyes of the subject were open or not. The average

classification error was 44.9%. This is a surprisingly high figure. Even classifiers with a proven

track record in classification, such as support vector machine and neural network, produced

rather poor results of over 30% classification error (Figure 1.2).

4

Figure 1.2. Classification error rate of 14-channel EEG. Reproduced from [2].

The poor performance is because biosignals are highly varying in both time and scale. The

number of variations in a biosignal is much higher than the limited number of training instances

(i.e. the input vectors). The high-dimensionality of the signal, even if it is short, exacerbates the

problem. For example, the total number of possible combinations for a short time sequence of

10 samples, each sample represented by an 8-bit number, is 28×10. In contrast, a typical data

set will only have a few thousand instances.

5

A highly varying signal needs a complex function to fit it. However, this often leads to the

overfitting of the function to the noise in the data. The following methods may overcome the

problem: (1) signal pre-processing to account for the variations, for example, de-trending,

curve-fitting, etc., (2) extract features that are invariant in time and scale, based on what is

important in the signal, (3) arrange the signal in short time segments, so that the distribution is

quasi-stationary, and (4) regularize the model to reduce the effective complexity of the model.

These methods can be demanding on the data analyst, as they require a fair amount of domain

knowledge and statistical skills.

This is where deep learning, or as some would have said, re-labelled neural network, proves to

be helpful. An early evidence of the efficient representation of a highly varying function by a

deep network was provided by the depth-breadth trade-off in the design of Boolean circuits [4].

Not only can a deep network approximate the function with an exponentially lower number of

training parameters compared to a shallow network with an equivalent approximation accuracy,

it seems to be immune to overfitting too [5].

The key idea in deep learning is the composition of functions that distributes the features over

multiple layers. At each successive layer, the true factors are disentangled from the raw data

better.

Compositional functions are a common phenomenon in many natural signals such as image,

text and speech [6]. They have the property of locality, which means that the features formed

by the neighbouring points are related to one another at different time and scales. The success

of deep network is due to the good fit of these types of signals to the deep learning model. It

works well with images, and with some variations, will work well with natural time series such

as biosignals too. This understanding motivates the use of deep learning in this thesis for the

biosignals.

1.2.1 Bias versus Variance in Machine Learning

Machine learning, including deep learning, consists of two parts – (1) prediction/classification

(also known as inference), and (2) statistical learning of the model parameters. The aim of

statistical learning, given a training set (a sample from the population), is not to attain perfect

6

classification result with the training data, but to approximate the new and unseen data coming

from the underlying population.

The approximate mapping from the input vector 𝒙 to the output 𝑦, where 𝑦 is the target class

label, is represented by the function 𝑓(𝒙; 𝜽), where it is called a model. The model represents

the population, even though it is trained by the sample. If the values of the model parameters 𝜽

are known, the model is a trained model. A trained model can be used to predict/classify/infer

𝑦, given 𝒙.

𝒙 ↦ 𝑓(𝒙; 𝜽) ≈ 𝑦 (1.1)

Different algorithms make different assumptions about the functional form of 𝑓(𝒙; 𝜽) and how

it can be learnt. Variations in the form and learning of 𝑓(𝒙; 𝜽) in the algorithms may result in

better or worse approximation of the underlying function.

The adjustable model parameters 𝜽 are learnt by minimizing an error function over the 𝑁 data

pairs (𝒙𝑖, 𝑦𝑖), 𝑖 ∈ {1, … ,𝑁}, in the training set. As shown in Equation (1.2), the error function

typically consists of two parts, the training loss and the regularization.

𝐸 ((𝒙1, 𝑦1), … , (𝒙𝑁, 𝑦𝑁); 𝜽) = {
1

𝑁
∑𝑙𝑜𝑠𝑠(𝑓(𝒙𝑖; 𝜽), 𝑦𝑖)

𝑁

𝑖=1

} + 𝑟𝑒𝑔(‖𝑓(𝒙; 𝜽)‖)
(1.2)

Three types of errors exist in the approximation - bias, variance, and irreducible error, i.e. the

error that is intrinsic in the problem and cannot be generalized. Equation (1.3) below shows the

bias variance decomposition of the error.

𝑒𝑟𝑟𝑜𝑟2 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑒𝑟𝑟𝑜𝑟2 (1.3)

The cause of bias is underfitting. In underfitting, the algorithm assumes an inaccurate functional

form, such as the use of a model that is too simple. When there is underfitting, the training data

(as well as the test data) will have a high error rate.

7

The cause of variance is overfitting. In overfitting, the model fits to the noise in the training

data. This is often due to the use of a model that is too complex for the data. If there is overfitting,

the out-of-sample problem will occur - the performance on the out-of-sample test data will be

poor despite the good performance on the in-sample training data. Another symptom of

overfitting is the fluctuating error rates over repeated trials (epochs and validation folds) during

testing.

The regularization term in Equation (1.2) controls the effective complexity of the model. More

formally, the complexity can be stated as the Vapnik-Chervonenkis (VC) dimension, where for

a neural network with 𝑉 nodes and 𝐸 weights, the VC dimension is at least 𝒪(|𝐸|2) and at

most 𝒪(|𝐸|2 ∙ |𝑉|2) [7]. There are many regularization methods in the literature, such as

parameter norm penalties, data set augmentation, early stopping, dropout, multi-task learning

etc. [8].

In theory, it is possible to reduce both the bias and the variance by using a larger data set,

together with a more complex model. This is because a complex model will have a large number

of adjustable parameters and so has an expressive hypothesis space to accommodate the

complex patterns in the signals.

In practice, due to the limited number of training instances, it is not possible to train a complex

model without overfitting, so a trade-off in the model complexity between the bias and the

variance is often necessary.

The approach based on the Occam’s razor principle is to use a simple model to avoid overfitting

the problem, and then check it against the possibility of underfitting. In reality, the opposite

approach is taken - a complex model is used to fit the data, and a penalty term (i.e. the

regularization term in Equation (1.2)) is then added to the error function to regularize (reduce)

its effective complexity.

As mentioned earlier, the adjustable model parameters 𝜽 are learnt by minimizing an error

function. Optimization minimizes the error function at the right 𝜽 values. There are three broad

categories of optimization methods, namely (1) direct analytical calculation, (2) alternate

8

optimization, and (3) gradient descend method (and the various versions based on it, such as

the momentum, line search, and conjugate gradient method). The latter two methods are

applicable to non-convex optimization where there exists multiple local minima with respect to

the parameters 𝜽 of the associated cost function.

The simplest algorithm for statistical learning as mentioned in the literature is density

estimation. In density estimation, a simple functional form, such as the multivariate Gaussian

distribution or a mixture of Gaussian distributions [9], is used to fit the data. Fitting the

probability density function to the data means determining the values of the parameters 𝜽 of

the distribution. It is an unsupervised learning process for each of the classes. Optimization

such as expectation maximization can determine the parameters 𝜽. Once the class-conditioned

probability density distribution is fitted, the probability of a test data instance will be able to be

obtained from it. The class that has the highest posterior probability will become the predicted

class.

However, density estimation based on a finite data set with a large number of attributes (where

large can be as low as 𝑑 = 10) is prone to underfitting. Therefore, density estimation is hardly

useful for machine learning. This is because real world data used in machine learning are

scattered very sparsely in a high dimensional space. As a result, the data distribution and the

underlying function are far more complex than the shape of a Gaussian distribution, or even a

mixture of Gaussian distributions. In general, a global model with a single formula holding over

the entire data space is not likely to fit the underlying function well.

To avoid underfitting the underlying function, structures that are more powerful, such as

generalized linear models, decision trees, nearest neighbours and neural networks, should be

used whenever the number of attributes is large and the interaction between them is complicated.

The function 𝑓(𝒙; 𝜽) represented by these machine learning structures are universal

approximation functions. They can approximate, with differing performances, the underlying

function of any dimension by increasing the number of parameters linearly with the number of

attributes in the data set. These are used in a wide range of applications, from optical character

recognition to product recommendation.

9

1.2.2 Deep Learning

Deep network is a form of machine learning. It can overcome the problem of generalizing a

highly varying function in a noisy data set. Many different kinds of structures have been used

for deep learning, but they all share a common “stack” architecture where many different

functions are composed together. In general, a model with three or more hidden layers is

considered deep, although there exists some quantitative measures of “deepness” in the

literature, such as the concept of Credit Assignment Paths (CAP) [10].

In composition, the output of a layer is used as the input of the next layer. For example, if there

are three functions 𝑓, 𝑔, and ℎ, their composition will be ℎ (𝑔(𝑓(𝒙))), where 𝒙 is the input

layer, 𝑓 is the first layer, 𝑔 is the second layer, and ℎ is the third layer. Note that this is not the

same as the multiplication of the outputs of 𝑓, 𝑔 and ℎ.

Each function learns a set of adjustable parameters that represents the features. The composition

of functions distributes these features across the layers. Simple features at the lower layers are

recombined into higher order features at the deeper layers. This allows the underlying function

to be represented compactly and yet provides a large number of possible combinations for a

rich form of generalization.

The most basic argument on why deep learning works is that ‘when a function can be compactly

represented by a deep architecture, it will need a very large architecture to be represented by an

insufficiently deep one’ [5]. This means that a deep architecture can compactly represent a

highly varying function that would otherwise requires a very large shallow machine learning

network.

In practice, deep network may encounter computational issues that prevent it from being

effective. Standard gradient-based training from the random initialization of weights of a neural

network often yields poor result when three or more layers are used. The first successful attempt

to train deep multi-layer neural networks was the deep belief net (DBN) [11] in 2006. It makes

use of greedy layer-wise unsupervised pre-training of weights where each layer is deemed to

be a restricted Boltzmann machine (RBM). The proper initiation of weights places the network

10

parameters in a flat and smooth region of the cost function, alleviating the problem of exploding

or vanishing (go to zero or overflow) gradient.

Other common architectures used in deep learning, besides DBN, are convolutional neural

network (CNN) and long short-term memory (LSTM) recurrent neural network. They can be

used as modules in a combination of networks to improve the system performance, either in

series to form a sequence of layers, or in parallel to form an ensemble of sub-models.

1.2.3 Data Preparation and Signal Processing

With the “just show me the data” approach espoused by deep learning, less or even no feature

engineering may be required by machine learning. Will deep learning really dispense with

signal processing and cause it to die? This is up for debate. While it is true that an interesting

and important characteristic of deep learning is its ability to extract features directly from the

raw signals, how data are represented is still intricately related to the function 𝑓(𝒙; 𝜽) assumed

by the model. For example, if the two-dimensional CNN model is used, then it would be helpful

if the signal is represented in the two-dimensional time-frequency representation rather than the

one-dimensional time series representation. As such, to make the data more suitable for the

algorithm and give the performance a lift, some signal processing should still be applied to the

raw data at the pre-processing stage of deep learning.

Figure 1.3 below shows the machine learning pipeline used in this work. The first stage involves

understanding the data characteristics and setting the target performance based on the baseline

performance. The intermediate stages (data preparation and signal processing) pre-process the

data and put them into the expected structured data format of the machine learning algorithm.

The final stage develops and validates the machine learning algorithm with the data set.

11

Figure 1.3. Machine learning pipeline

The distinction between machine learning and signal processing is that the former contains

adjustable parameters 𝜽 whose values are set as part of the training process while the latter is

some fixed transformation of the data. Signal processing are usually complex linear operations,

such as Fourier transform. Simple non-linear operations, such as the grouping of data by sliding

window, or the early fusion of data by concatenation, are too simple to be called signal

processing and are referred to as data preparation.

The objective of data preparation and signal processing is to change the signal 𝒙 to a format

𝜙(𝒙) that is easier for learning to take place. When the change 𝜙 is specific to a particular type

of data, it is known as feature engineering. Feature engineering includes feature extraction and

feature selection. While feature engineering can yield better performance, it is tedious and is

often impossible due to the lack of domain knowledge.

Even without specific feature engineering, generic pre-processing should still be carried out,

such as the tasks listed below:

(1) Impute missing values and remove outliers.

(2) Standardize or normalize the attributes so that the scale of the data will not affect the

algorithm’s performance.

(3) Convert the categorical variables and/or the target class labels to one-hot encoding, so that

the algorithm can classify the data.

(4) Transform the signal to its spectrogram so that the patterns in both the time and frequency

domain can be exposed to the algorithm.

12

(5) Select a subset of relevant features and discard the rest, either by univariate statistical test,

recursive feature selection or model-based feature selection.

(6) Group the data into overlapping segments in the time delay representation to allow the

learning of the temporal patterns in the segments.

The end result of pre-processing is the placement of the natural signals in the structured data

format as expected by the algorithm. This is usually a two-dimensional data table. Each row in

the data table is an input vector, corresponding to a data instance as seen by the algorithm. The

input vectors are assumed independent and identically distributed according to the underlying

distribution.

One last step in pre-processing, before passing the input vectors to the algorithm, is to shuffle

the input vectors. This is an indispensable step. Without shuffling, the algorithm will learn the

simple output class patterns instead of the actual input patterns. Very poor performance will

result when the wrongly trained model is used to predict the new and unseen test data.

1.3 Hypotheses

Connecting the abovementioned background concepts can help to build new ideas on how to

analyse the biosignals. In the scientific method, these ideas form the hypothesis that will need

to be validated and tested later. It is in this vein (hypothesis followed by validation and testing)

that this thesis proposes two variations in the form and learning of the deep learning function,

as described in the following sub-sections.

1.3.1 Deep Temporal Convolution Network

The first hypothesis in this thesis is that the generalization performance will improve with the

use of a deep non-recurrent network to provide more of the temporal context of the signals for

abstraction by the deeper layers of a deep belief net (DBN).

The proposed deep temporal convolutional network exploits the compositional locality of the

biosignal at each level of the architecture. The purpose is to 1) improve generalization

performance by modelling the temporal context at each of the layers of the network, 2) classify

the patterns with shift-invariance, and (3) reduce the time resolution in time series classification.

13

In term of architecture, the deep temporal convolutional network extends from the DBN by

inserting a concatenation sublayer in each of the deeper layers of the DBN. The learning of the

network parameters is by backpropagation, with gradient routing introduced between the

concatenation sublayer and its parent layer.

The motivation for inserting the concatenation sublayer is for it to provide more temporal

context to the next hidden layer in the network. Figure 1.4 below illustrates this concept. The

left hand side shows a mini-batch of eight output vectors #1 to #8 of a hidden layer. The right

hand side shows the new mini-batch, consisting of six concatenated vectors, i.e. vectors formed

by the concatenation operation. The concatenated vectors will subsequently become the input

vectors of the next hidden layer. By doing so, the receptive field of the next hidden layer will

become larger and contain more temporal context, making a richer form of generalization

possible. (As an aside, this thesis uses the term “mini-batch” to differentiate it from the term

“batch” as used in batch gradient descend, where it refers to the entire data set.)

Figure 1.4. Concatenation of output vectors for the deeper layer

Each of the data vectors #1 to #8 in Figure 1.4 above are short time sequences. They are the

product of a window sliding over a time series, with some overlap in time depending on the

stride of the window. This arrangement, or time delay representation, results in shift invariance

within the mini-batch. Due to the overlapping of the short time sequences within the mini-batch,

the temporally-ordered data vectors may contain the same temporal pattern at slightly different

14

time points. The error gradients of these data vectors will be averaged out during the

backpropagation of the mini-batch, constraining them to be equal, thus effectively ignoring the

difference in time between them.

The data vectors in the mini-batch have natural time order. They are not shuffled. There is no

point to concatenate data vectors that have no natural time order, as the resulting concatenated

vector will not have the temporal context. In fact, shuffling the data vectors will cause the

performance of the proposed model to drop drastically, as randomness, i.e. noise, is now

injected into the concatenated vectors used for model training.

On the other hand, if the data instances are not shuffled, the neural network will unwittingly

learn the simple output class patterns. This will lead to an extremely poor performance. In fact,

this is the reason why it is a usual practice to shuffle the input vectors of the neural network.

The proposed solution to solve this dilemma (the need to maintain natural time order, and yet

having to shuffle the input) is to maintain short-term temporal order within the mini-batches

and then randomize the order of the mini-batches. In other words, in each mini-batch, the data

instances will be kept in their natural temporal order. The order of the mini-batches is then

randomized before feeding them to the training algorithm.

Another issue of the proposed model is that the first few and the last few of the data instances

in the mini-batch do not contribute to the training as much as the rest of the data instances. This

can be seen from the right hand side of Figure 1.4 above, where the data vectors #1 and #8

appear just once in the new mini-batch of concatenated vectors, and the data vectors #2 and #7

appear just twice, while the rest of the data vectors in the mini-batch appear three times in the

new mini-batch.

Overlapping the mini-batches when they are made from the original data set can alleviate the

problem of unequal contribution to training. Epoch wise, there will be an almost equal

contribution from each of the data instances when the mini-batches overlap with each other.

15

More importantly, the overlapping of the mini-batches ensures that the short-term temporal

order in the mini-batches is learnt in a shift-invariant manner. With shift-invariance, there is no

need to segment the beginning and end of the mini-batches precisely.

The proposed model also has an advantage in term of the time resolution in time series

classification over an equivalent network that does not make use of the temporal context in the

deeper layers. In both cases, the time resolution is the length of the short time sequence at the

input layer. However, the proposed model provides more temporal context to the network in

the form of short-term temporal order in the mini-batches. Thus, the proposed model can make

use of short time sequences that are shorter than the short time sequences of an equivalent

network to achieve the same performance.

Notation wise, if the 𝑡-th output vector at layer 𝑙 is denoted as 𝒙𝑡
(𝑙)

, then concatenating it with

the next two output vectors 𝒙𝑡+1
(𝑙)

 and 𝒙𝑡+2
(𝑙)

 at layer 𝑙 will form a new data instance 𝒙𝑡+2
(𝑙𝑐)

 at the

concatenation sublayer 𝑙𝑐.

𝒙𝑡+2
(𝑙𝑐) = (𝒙𝑡

(𝑙) ⌢ 𝒙𝑡+1
(𝑙) ⌢ 𝒙𝑡+2

(𝑙)) (1.4)

The concatenation of the three consecutive data vectors at layer 𝑙 , 𝒙𝑡
(𝑙)

, 𝒙𝑡+1
(𝑙)

, and 𝒙𝑡+2
(𝑙)

, is

equivalent to sliding a window of length 3 with a stride of 1 over the data vectors in the mini-

batch. The result is a new mini-batch of concatenated vectors for the next layer.

The above arrangement results in weight sharing. This is because the ingredients of the

concatenated vector 𝒙𝑡+2
(𝑙𝑐)

, which are 𝒙𝑡
(𝑙)

, 𝒙𝑡+1
(𝑙)

, and 𝒙𝑡+2
(𝑙)

, are generated from the same set of

weights. Due to weight sharing, the number of weights is smaller than what it would have been

if the longer concatenated vector 𝒙𝑡+2
(𝑙𝑐)

 is obtained directly as 𝒙𝑡
(𝑙) ⌢ 𝒙𝑡+1

(𝑙) ⌢ 𝒙𝑡+2
(𝑙)

. Weight

sharing enables the proposed network to learn features that are invariant across the time

dimension.

The concatenation operation added to the proposed model, as described above, will not affect

the use of unsupervised DBN pre-training in the proposed model. This is because unsupervised

DBN pre-training by contrastive divergence [12] is greedy layer-wise. In contrastive divergence,

16

no other layer in the stack of layers in the network will be involved, other than the pair of layers

in the restricted Boltzmann machine. In a DBN, the pair would be layer 𝑙 and layer 𝑙 + 1. In the

proposed model, it would be the concatenated sublayer 𝑙𝑐 and the next hidden layer 𝑙 + 1. What

about the weights between layer 𝑙 and the concatenation sublayer 𝑙𝑐? Well, there is no weight

there, and so there is no need to train the non-existent weights. The concatenation sublayer 𝑙𝑐

is obtained from layer 𝑙 by the concatenation operation, a simple non-linear operation that does

not involve the use of weights.

However, the existence of the concatenation sublayer does cause some difficulty to the

backpropagation procedure during fine-tuning (as opposed to pre-training). The concatenation

operation, being a non-continuous process, is not amenable to differentiation. It stands in the

backward path of backpropagation and obstructs the chain rule of differentiation used by

backpropagation. Therefore, a method will have to be devised to solve the problem of

backpropagation in the proposed model. The general idea of the solution is that, with the

concatenation sublayer added to the proposed architecture, the error at the concatenation

sublayer will have to be attributed to the parent layer, i.e. the pre-concatenation layer. This

thesis will describe the proposed gradient routing method, termed “split-slide-add”, in Chapter

3.

1.3.2 Multi-view Temporal Ensemble

The second hypothesis in this thesis is that the generalization performance will improve with

the use of multi-view spectral embedding to blend the complementary data of the ensemble’s

sub-models.

In an ensemble, multiple sub-models combine to produce the final output. In such a system, the

output of each sub-model is a view. Each of the views is somewhat different from the other

views. The difference could be due to: (1) the inputs of the sub-models are different (i.e. the

natural views are different), or (2) the configurations of the sub-models are different (i.e. the

artificial views of the same data are different). Figure 1.5 below shows the architectures for

these two types of views:

17

Figure 1.5. Natural (left) and artificial (right) views of multi-view ensemble

According to the Representer theorem, the approximate function 𝑓(𝒙; 𝜽) is a linear

combination of the basis functions [13]. Thus, assuming that each view is the result of a basis

function, the views can be combined linearly, with appropriate weights assigned to each of the

views. Equation (1.5) shows the linear combination of 𝑀 views, where each of the 𝑀 views is

denoted as 𝑽(𝑖), 𝑖 ∈ {1, … ,𝑀}. The weights 𝛼𝑖, 𝑖 ∈ {1, … ,𝑀} are the mixing coefficients of the

ensemble.

𝑽𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =∑𝛼𝑖𝑽
(𝑖)

𝑀

𝑖=1

(1.5)

In many cases, the views 𝑽(𝑖), 𝑖 ∈ {1, … ,𝑀} are simply deemed as independent and

supplemental, in which case the logical way to blend them is to average them out with the

average weight 1/𝑀. The supplemental nature of the independent views results in a less noisy

combined output. When such a combined output is used as the input of the final classifier, the

overall system performance will have a lower variance.

Instead of the average weight 1/𝑀, it is proposed in this work that the complementarity of the

views be used as the weights of the ensemble. Complementary views are non-independent.

They share some similarities (i.e. consensus), as well as some differences, with each other. By

18

combining the complementary views, a more complete view of the underlying phenomenon is

available to the final classifier. The consensus between the views will reduce the variance. The

increase in the discriminatory information will reduce the bias.

The measure of complementarity is the contribution of each of the views to a global view.

Larger contribution implies that more of the complementary information is available in the view.

Chapter 4 of this thesis will explain the procedure for computing complementarity. The

following provides a summary of it.

To obtain the measure of complementarity, first compute the adjacency matrix of the data

instances in the individual view, which is the local proximity of the data instances in the data

manifold. Then compute the Laplacian matrix from the adjacency matrix. After that, merge the

individual Laplacian matrices by linear combination and apply eigen-decomposition to the

global Laplacian matrix. The eigenvectors are the spectral embedding of the global view. Lastly,

update the weights of the linear combination by computing the cost values of preserving the

local proximity of the individual views in the spectral embedding of the global view. This two-

stage alternate optimization process (getting the spectral embedding of the global view, and

then updating the weight values of the linear combination) will continue until there is a

convergence in the weight values. The weights that converged are the measure of

complementarity.

The above description makes use of a spectral embedding method called Laplacian eigenmap

(LE). Laplacian eigenmap preserves the local proximity of the original data instances in the

spectral embedding. This preservation is achieved by the minimization of the cost function as

shown in Equation (1.6) below.

𝐽(𝒀) = ∑ ‖𝒚𝑖 − 𝒚𝑗‖
2
[𝑾]𝑖,𝑗

𝑖,𝑗∈{1,…,𝑁}

(1.6)

As seen from Equation (1.6) above, the cost function 𝐽(𝒀) is the total amount of differences

between any two embedded vectors (𝒚𝑖 and 𝒚𝑗) that are modulated by the distance [𝑾]𝑖,𝑗

between their corresponding data instances (𝒙𝑖 and 𝒙𝑗). When the pair (𝒙𝑖 and 𝒙𝑗) is in close

19

proximity (i.e. the distance is small), the value of the adjacency matrix [𝑾]𝑖,𝑗 will be large, thus

contributing more to the cost function.

It was shown [14] that the solution of the above minimization problem can be reduced to

𝒀∗ = 𝑎𝑟𝑔 min
𝒀𝑇𝑫𝒀=1,𝒀𝑇𝑫1=0

𝒀𝑇𝑳𝒀 (1.7)

In Equation (1.7) above, the newly introduced variable 𝑳 is the Laplacian matrix, and 𝒀 =

[𝒚1, … , 𝒚𝑁]
𝑇 is the data matrix made up by the 𝑁 embedded vectors. The Laplacian matrix is

defined as 𝑳 = 𝑫 −𝑾, where 𝑾 is the adjacency matrix and the diagonal element of 𝑫 is the

sum of the corresponding column in 𝑾, i.e. 𝑫𝑖,𝑖 = ∑ 𝑾𝑗,𝑖
𝑁
𝑗=1 .

Importantly, finding 𝒀∗ = 𝑎𝑟𝑔 min
𝒀𝑇𝑫𝒀=1,𝒀𝑇𝑫𝟏=0

𝒀𝑇𝑳𝒀 is equivalent to finding the eigenvectors

𝒀 corresponding to the smallest eigenvalues of the generalized eigenvalue problem 𝑳𝒀 = 𝝀𝑫𝒀.

In other words, the eigenvectors 𝒀∗ are the solutions to the minimization of the cost function as

shown in Equation (1.6) above. Thus, given the Laplacian matrix 𝑳, the spectral embedding 𝒀∗

can be found. The resulting cost value is 𝒀∗𝑇𝑳𝒀∗. The lower the cost value, the easier it is to

attain the objective of preserving the local proximity in the spectral embedding.

When there are more than one view, the minimization as shown in Equation (1.7) above cannot

be carried out. This is because there are now two unknowns in the solution. Not only is the

spectral embedding 𝒀∗ unknown, the global Laplacian matrix 𝑳 is also unknown, as only the

individual Laplacian matrix 𝑳(𝑖) of the 𝑖-th view is available.

Fortunately, the global Laplacian matrix 𝑳 can be represented by the linear combination of the

Laplacian matrix of the individual views, as shown in Equation (1.8).

𝑳 =∑𝛼(𝑖)𝑳(𝑖)
𝑀

𝑖=1

(1.8)

20

Still, what should be the weight values 𝛼(𝑖) in Equation (1.8)? It is proposed that the reciprocal

of the cost value 𝒀∗𝑇𝑳(𝑖)𝒀∗ of the 𝑖-th view be used as the weight values 𝛼(𝑖). These values

should be normalized so that the 𝐿1 norm of 𝜶 = {𝛼(1), … , 𝛼(𝑀)} is 1.

The weight values of 𝛼(𝑖) are initialised to 1/𝑀 to kick-start the computation of the global

Laplacian matrix 𝑳. Once the global Laplacian matrix 𝑳 is computed, the global embedding 𝒀∗

can be obtained by eigen-decomposition. This enables the subsequent values of 𝛼(𝑖) to be

computed. The computation process for 𝛼(𝑖), 𝑖 ∈ {1, … ,𝑀} with 𝑀 = 3 is summarised in

Figure 1.6 below.

Figure 1.6. Alternate optimization of 𝑳 and 𝒀

The above procedure is a form of alternate optimization. Since the cost function 𝐽(𝒀) involves

not one but two unknowns (namely, the global embedding 𝒀∗ and the global Laplacian matrix

𝑳), they will have to be computed alternately by assuming that the value of one of the two

unknowns is fixed. This leads to the eventual minimization of the cost function 𝐽(𝒀), at which

point the local proximity of the original data instances will be preserved in the global

embedding.

21

The weight values 𝛼(𝑖), 𝑖 ∈ {1, … ,𝑀} can be viewed as the contribution of the individual

Laplacian matrix to the global embedding. The contribution is relative to the other Laplacian

matrices. Thus, the larger the value of 𝛼(𝑖), the more complementary the view.

In order for the computed complementarity to be meaningful, the data instances in the views

must be time-aligned to each other, i.e. co-occurring. The data instances need not be in their

original time order, but they will have to be at the same time point relative to the other views.

To ensure this, the same data set (in whichever random order) will have to be used as input by

all the sub-models. Both training and testing will have to enforce the rule on co-occurrence.

The multi-view ensemble should use sub-models based on deep learning, such as the proposed

deep temporal convolution network or the CNN-LSTM sub-models. This is because the output

of deep learning sub-models are smooth in the data manifold, and smoothness is a requirement

for spectral embedding.

The topology proposed in this thesis is to first make use of CNN in two dimensions, followed

by CNN in one dimension, and eventually LSTM. To facilitate the use of CNN-LSTM as the

sub-models, the input data should be decomposed into the two-dimensional time-frequency

representation. This will allow both the temporal and spectral patterns to be extracted by the

CNN-LSTM sub-model, thus providing good discriminatory data for multi-view learning in the

multi-view temporal ensemble.

1.4 Evaluation Methods

Algorithms in machine learning, including deep learning, are black boxes. The relationship

between the input and the output are not well described by any kind of theory. As such, the

validity of the algorithm cannot be proved by mathematical deduction. In place of proof, the

repeatability of the algorithm is validated with data sets.

The proposed deep temporal convolution network and multi-view temporal ensemble are

algorithmic in nature. The validity of these algorithmic methods will have to be validated with

data sets through data experiments. This section names the data sets used in the data

22

experiments, the performance metrics used in analysing the results of the data experiments, and

the cross-validation and model comparison method.

1.4.1 Data Sets

Data analysis starts with an annotated data set and the benchmark for its performance. This

work uses open source data sets from the biomedical domain because data acquisition is not in

the scope of this work. The data sets used in this thesis are:

(1) EEG Eye State [2]

(2) EEG Epileptic Seizure [15]

(3) Human Activity Recognition based on Smart Phone Sensors [16]

(4) Freezing of Gait during Walking [17]

(5) EMG Lower Limb Analysis [18]

(6) Environmental Sounds [19]

(7) Heart Sounds [20]

1.4.2 Performance Metrics

In classification, the confusion matrix is the source of all the classification performance metrics,

be they classification accuracy, sensitivity/specificity, recall/precision, 𝐹1 score, etc.

Table 1.1 below shows the confusion matrix of a 3-class test set as an example of the confusion

matrix of a multi-class classification problem. The terms “true” and “false” as used in Table 1.1

below refer to whether that prediction corresponds to the actual target class labels or not.

23

Table 1.1. Confusion matrix

Predicted Class

Class 0, 𝑝(0) Class 1, 𝑝(1) Class 2, 𝑝(2)

Actual

Class

Class 0, 𝑎(0) 𝑡𝑟𝑢𝑒𝑐𝑙𝑎𝑠𝑠 0

(𝑎(0), 𝑝(0))

𝑓𝑎𝑙𝑠𝑒𝑐𝑙𝑎𝑠𝑠 0

(𝑎(0), 𝑝(1))

𝑓𝑎𝑙𝑠𝑒𝑐𝑙𝑎𝑠𝑠 0

(𝑎(0), 𝑝(2))

Class 1, 𝑎(1) 𝑓𝑎𝑙𝑠𝑒𝑐𝑙𝑎𝑠𝑠 1

(𝑎(1), 𝑝(0))

𝑡𝑟𝑢𝑒𝑐𝑙𝑎𝑠𝑠 1

(𝑎(1), 𝑝(1))

𝑓𝑎𝑙𝑠𝑒𝑐𝑙𝑎𝑠𝑠 1

(𝑎(1), 𝑝(2))

Class 2, 𝑎(2) 𝑓𝑎𝑙𝑠𝑒𝑐𝑙𝑎𝑠𝑠 2

(𝑎(2), 𝑝(0))

𝑓𝑎𝑙𝑠𝑒𝑐𝑙𝑎𝑠𝑠 2

(𝑎(2), 𝑝(1))

𝑡𝑟𝑢𝑒𝑐𝑙𝑎𝑠𝑠 2

(𝑎(2), 𝑝(2))

The performance of a classifier can be gleaned from the diagonal elements of the confusion

matrix. The diagonal elements are the counts of the true predictions. The rest are the false

predictions. Obviously, the larger the counts in the diagonal, the better is the classification

performance.

Metrics that are quantitative in nature are needed for the evaluation of the results shown in the

confusion matrix. Classification accuracy, as the most common type of classification

performance metric, is defined as the count of the total number of true predictions over the total

number of instances in the test set.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒

𝑡𝑜𝑡𝑎𝑙
=
(𝑎(0), 𝑝(0)) + (𝑎(1), 𝑝(1)) + (𝑎(2), 𝑝(2))

𝑎(0) + 𝑎(1) + 𝑎(2)

(1.9)

Class-specific classification accuracy is useful in specifying the performance of the individual

classes. Equation (1.10) below shows the class 0 accuracy.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 0 =
𝑡𝑟𝑢𝑒𝑐𝑙𝑎𝑠𝑠 0
𝑡𝑜𝑡𝑎𝑙𝑐𝑙𝑎𝑠𝑠 0

=
(𝑎(0), 𝑝(0))

𝑎(0)

(1.10)

24

In the biomedical domain, a common scenario is the 2-class problem, where class 0 is normal

and class 1 is abnormal. The class-specific classification accuracies for class 0 (normal) and

class 1 (abnormal) are termed as specificity (Sp) and sensitivity (Se).

Equation (1.11) below shows specificity, which is class 0 accuracy. From the Bayesian

perspective, it is the conditional probability of the prediction being class 0 when the actual class

is class 0.

𝑆𝑝 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 0 =
(𝑎(0), 𝑝(0))

𝑎(0)
= 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 0|𝑎𝑐𝑡𝑢𝑎𝑙 = 0)

(1.11)

Equation (1.12) below shows sensitivity, which is class 1 accuracy. From the Bayesian

perspective, it is the conditional probability of the prediction being class 1 when the actual class

is class 1.

𝑆𝑒 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑐𝑙𝑎𝑠𝑠 1 =
(𝑎(1), 𝑝(1))

𝑎(1)
= 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 1|𝑎𝑐𝑡𝑢𝑎𝑙 = 1)

(1.12)

In a multi-class problem, the class-specific performance metrics are often macro-averaged by

assuming that all the classes are equally important. So, for a 2-class problem,

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑚𝑎𝑐𝑟𝑜 =
𝑆𝑝 + 𝑆𝑒

2

(1.13)

There are two kinds of false predictions, namely “false positive” (also known as Type I error,

or false alarm) and “false negative” (also known as Type II error, or miss). It will be more

meaningful for the classification performance metric to take into consideration both these errors,

instead of just the “false negative” as is the case in classification accuracy. The diagnostic

testing of rare disease illustrates the importance of this point [21]. Table 1.2 shows the

confusion matrix of a diagnostic testing indicating high sensitivity (99%) and high specificity

(99%). The precision is poor (10%), however, as only 99 subjects tested positive are truly

positive, out of 1099 subjects tested positive. This is the famous false positive paradox in Bayes

theorem.

25

Table 1.2. An example of low precision despite high sensitivity and high specificity

Tested

Normal Has Disease Total

Actual

Normal 99,000 1000 100,000

Has Disease 1 99 100

Total 99,001 1099 100,100

The macro-average of sensitivity and specificity, as shown in Equation (1.13), does not make

sense with an imbalanced data set such as the rare disease case. In this case, the 𝐹1 score should

be used instead.

The 𝐹1 score is the harmonic mean of its sub-metrics, precision and recall. Recall is the same

as class-specific classification accuracy. It is defined as the true positive over all the actual

instances. For example, for Class 1, it is:

𝑟𝑒𝑐𝑎𝑙𝑙𝑐𝑙𝑎𝑠𝑠 1 =
(𝑎(1), 𝑝(1))

𝑎(1)
= 𝑃(𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 1|𝑎𝑐𝑡𝑢𝑎𝑙 = 1)

(1.14)

Precision is defined as the true positive over all the predicted instances. From the Bayesian

perspective, it is the posterior probability given a prediction. For example, for Class 1, it is:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠 1 =
(𝑎(1), 𝑝(1))

𝑝(1)
= 𝑃(𝑎𝑐𝑡𝑢𝑎𝑙 = 1|𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 1)

(1.15)

The 𝐹1 score of class 1 is the reciprocal of the average parallel sum of the recall and precision

of class 1.

1

𝐹1,𝑐𝑙𝑎𝑠𝑠 1
=
1

2
(

1

𝑟𝑒𝑐𝑎𝑙𝑙𝑐𝑙𝑎𝑠𝑠 1
+

1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠 1
)

(1.16)

26

In a multi-class problem, the macro-average of the 𝐹1 scores of all the classes should be used,

as shown in Equation (1.7) below for a 3-class problem, even though there are other schemes

such as the weighted average of the 𝐹1 scores based on the class sizes.

𝐹1,𝑚𝑎𝑐𝑟𝑜 =
𝐹1,𝑐𝑙𝑎𝑠𝑠 0 + 𝐹1,𝑐𝑙𝑎𝑠𝑠 1 + 𝐹1,𝑐𝑙𝑎𝑠𝑠 2

3

(1.17)

1.4.3 Cross-Validation and Model Comparison

In a data experiment, multiple identical trials are run with randomly-partitioned sets of data in

what is called the 𝑘-fold cross-validation. This validation process produces a set of performance

scores, which is a sample from the population (of the performance scores). Based on the law of

large numbers, the mean of this sample is a good approximation of the true performance of the

model. It is the figure of merit for the model performance.

Since the mean of the sample is only an approximation of the true performance, it will contain

some error. It is desirable to specify the confidence interval of the approximation. According to

the central limit theorem, the approximation (the sample mean) is Gaussian distributed. So 𝑚

repetitions of 𝑘-fold cross-validations (with new random splits of the 𝑘 folds in each of the 𝑚

repetitions) will produce 𝑚 sample means 𝑥̅𝑖, 𝑖 ∈ {1, … ,𝑚} that are Gaussian distributed. The

standard error (i.e. standard deviation of the sample means) is given as:

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 =
𝜎̃

√𝑚
=

1

√𝑚
√
1

𝑚
∑(𝑥̅𝑖 − 𝜇)2
𝑚

𝑖=1

(1.18)

Note that in Equation (1.18) above, the standard error is estimated with 𝜇 and 𝜎̃2, which are the

mean and variance of the 𝑚 sample means. This is because the population mean 𝜇 and variance

𝜎2 are unknown. Note also that the standard deviation of the 𝑚 sample means is divided by

√𝑚, where 𝑚 is the repetitions. Thus, an approximation with 95% confidence is the mean of

the 𝑚 sample means ±1.96 of the estimated standard error. This process is rather long and

tedious, as it involves 𝑚× 𝑘 trials. As such, it will only be used expeditiously, as deep learning

can be time consuming and make it less than practical when time is of concern.

27

To compare the performance of one model against another, two samples of performance scores

obtained by 𝑘-fold validation of the same data set can be used in a Student’s paired 𝑡-test. The

null hypothesis is that the two samples of performance scores are drawn from the same

distribution, and any differences are due simply to statistical noise.

Figure 1.7. Comparing models

1.5 Organisation

This chapter covers the purpose and background of the study, followed by the two main

hypotheses in this thesis. It then describes the evaluation methods used in the validation.

The next chapter will provide a literature review on biosignals, deep learning and multi-view

learning. Following that, two dedicated chapters will describe the two proposed methods, first

on Deep Temporal Convolution Network, and then on Multi-view Temporal Ensemble.

The fourth chapter, which is the second last chapter, describes the data and results of the data

experiments that were conducted to test the effects of the hypotheses. The concluding chapter

follows with a summary of the main points, and the plan for future works.

The references quoted in this thesis are available at the end of the thesis.

28

Chapter 2. Review

This chapter provides the systematic foundation in understanding the research topics in this

thesis. It contains the background information necessary for this work, and describes some of

the latest methods and techniques used to address the classification problem of time series data.

It also serves as a general guide to the terms and notations used in this thesis.

This chapter starts with the explanation of what the object of interest in this thesis is all about

– biosignals that are time series. The specific examples mentioned are electroencephalogram,

electromyogram, inertial sensor signals and heart sounds. It highlights the characteristics of the

signals to facilitate the understanding of the object of interest. This will form the basis for

further discussion in the later part of the thesis on selecting and developing models for the data.

This is because the model for the data is intrinsically linked to the characteristics of the data -

the reason why deep learning is so effective when used on certain types of data.

Following that, the section on the deep learning of signals will describe the motivations and the

principles of deep leaning. It does so in a progressive manner, starting with machine learning

topics that are generally well known, such as static linear model, logistic regression, linear

Gaussian model, and hidden Markov model. Along the way, it will describe a useful model

called the extreme learning machine. It will then move on to the time delay neural network

(TDNN) and its unrolled expansion. This is followed by a brief description of deep belief net

(DBN) and the two current workhorses in deep learning – CNN and LSTM. The overarching

idea espoused here is that a deep architecture is a hierarchical structure with many successive

layers of non-linear operations. The front layers form the feature extractor, and the final layer

is the classifier. It can be used end-to-end, with raw data fed to the network at the front end,

and the prediction obtained from the network at the final layer.

The next section focusses on the latest methods and techniques used to address the problem of

time series classification. It divides the methods into three broad categories, namely feature-

based, distance-based and neural network-based methods. It will briefly describe some specific

techniques, such as COTE (Collective of Transformation-based Ensembles).

29

The section on multi-view learning, or data fusion of multiple feature sets, follows the general

outline of dividing data fusion techniques into early data fusion, intermediate data fusion and

late data fusion techniques. It uses the concatenation of feature sets as an example of early data

fusion, and ensemble learning by stacking as an example of late data fusion. It explains why an

ensemble that exploits the complementarity of multi-view data will outperform algorithms

based on single-view. The intuitive sense that data complementarity is useful is explained as a

drop in performance when the number of attributes in a feature set is reduced, implying that the

reduction has removed some of the complementary information in the features. Then, to

facilitate the discussion on the complementarity of multi-view data, the concept of spectral

embedding, in particular Laplacian eigenmap, will be described.

2.1 Biosignals

A biosignal is the result of interaction between the physiological process, the body volume, and

the sensors. In general, it is non-stationary, non-linear, and noisy. However, it is not white

noise. There is temporal dependence (i.e. correlation) between the values at different points in

time. Because of this, they cannot be swopped in order. Due to the presence of temproal patterns

in the biosignal, they can be classified by machine learning algorithms, even though they cannot

be easily distinguished by humans.

As there are many biosignals, it is important that they can all be formed in a structured data

format that can be used by machine learning algortithms. The time delay representation exposes

the temporal patterns to the machine learning algorithms and will be discussed first. This will

then be followed by other sub-sections on electroencephalogram, electromyogram, inertial

sensor signals and heart sounds.

2.1.1 Time Delay Representation

The biosignals considered in this thesis have numeric data type and discrete time steps. They

are time series data. Many biosignals collected by sensors fall into this category, such as

physiological signals, motion signals, and sounds.

30

A time series is a sequence of 𝑁 sampling points (i.e. observations) sampled at uniform time

intervals. It is different from the time-stamped transactional data collected at no particular

frequency. Notation wise, a time series is denoted as 𝒙 = (𝒙1, … , 𝒙𝑡, … , 𝒙𝑁), with the time steps

being 1,… , 𝑡, … , 𝑁. For a multivariate time series with 𝑑 input variables or attributes, each

sampling point, i.e. the column vector 𝒙𝑡, will have 𝑑 rows in it.

The experimenter will annotate the time series data by comparing the time series data with other

information, such as the video recoding of the subjects. Annotation will result in four kinds of

relationships between the sampling points and the annotated classes: (1) one-to-one, (2) one-

to-many, (3) many-to-one, and (4) many-to-many. Out of these four kinds of relationship, the

most natural annotation for a biosignal is the one-to-one association. It assigns each sampling

point a particular state (output class). This results in an output class sequence 𝒚 =

(𝑦1, … , 𝑦𝑡, … , 𝑦𝑁) for a sequence of 𝑁 sampling points, 𝒙 = (𝒙1, … , 𝒙𝑡, … , 𝒙𝑁). The process of

assigning the output class to the sampling points, despite being ono-to-one for the sampling

points, is actually quite efficient. This is because it can be done in relatively large chunks

according to the easily observable subject’s state.

In general, given a biosignal data set in time series format, the initial steps are to understand the

biosignal, set the performance benchmark for the data set, choose the algorithm for the data set,

and change the time series data to the structured data format expected by the algorithm. The

most basic structured data format for time series data is the time delay representation.

The time delay representation reveals the temporal dependence of the sampling points along

the time axis to the algorithm. So, for a multivariate signal 𝒙 = (𝒙1, …𝒙𝑁) having 𝑁 sampling

points, multiple short time sequences will be made from it, with each short time sequence

having 𝑤 sampling points, 𝑤 < 𝑁. The way to make these short time sequences is by sliding a

window of fixed length 𝑤 across the biosignal. Usually, the sliding is done with a stride of

length 𝑠, where the stride length 𝑠 is a fraction of the window length 𝑤, i.e. 𝑠 < 𝑤.

Sliding the window across the biosignal will result in a set of fixed-length short time sequences

that overlap with their immediate neighbours. Each of the short time sequences is placed in a

row in a table, forming a table of short time seuqneces. Each row in the table is a data instance

31

vectorized from the window of 𝑑 × 𝑤-dimension, where 𝑑 is the number of input variables in

the multivariate signal and 𝑤 is the window length. The data instance has 𝑑 × 𝑤 features or

attributes. When the data are arranged in this manner, they form a new data set and are said to

be in the time delay representation, as shown in Figure 2.1 below.

𝒙1
𝑇 𝒙2

𝑇 … 𝒙𝑤
𝑇

𝒙1+𝑠
𝑇 𝒙2+𝑠

𝑇 … 𝒙𝑤+𝑠
𝑇

⋮ ⋮ ⋮ ⋮
𝒙𝑡
𝑇 𝒙𝑡+1

𝑇 … 𝒙𝑡+𝑤−1
𝑇

⋮ ⋮ ⋮ ⋮
Figure 2.1. Time delay representation in table form

The annotation of time delay representation is obtained from the one-to-one annotation of the

time series data by majority voting, where the most frequently occurring output class in the

short time sequence becomes the output class of that short time sequence. The output class is

represented by one-hot encoding in a vector. For example, if there are in total 𝑘 = 5 output

classes, then class 2 will be encoded as 𝒚𝑡 = [0,1,0,0,0]𝑇, instead of 𝑦𝑡 = 2.

The time delay representation is a structured data format amenable for use by standard machine

learning algorithms. The algorithm can learn the relationship between the short time sequence

(𝒙𝑡, 𝒙𝑡+1, … , 𝒙𝑡+𝑤−1) and the output 𝒚𝑡. The function learnt from the data set is the classifier

𝑔(∙). Equation (2.1) below shows the generalized linear model as an example of 𝑔(∙).

𝒚𝑡 = 𝑔(𝑏0 + 𝒃1
𝑇𝒙𝑡 + 𝒃2

𝑇𝒙𝑡+1 +⋯+ 𝒃𝑤
𝑇𝒙𝑡+𝑤−1) (2.1)

The window length 𝑤 and the stride length 𝑠 are the hyper-parameters of the classifier. Suitable

values for 𝑤 and 𝑠 are chosen based on prior knowledge, or determined by sensitivity analysis

methods such as the grid search. In a grid search, a suite of 𝑤 and 𝑠 values are used to see which

one yields a better performance. At some point, there will be diminishing return. In general, the

window length has to be large enough to enclose most of the possible temporal features. At the

same time, it should also be small enough to provide good temporal resolution. As for the stride

length, it has to be large enough to capture a portion of the temporal features in the previous

window to mimic the time-shift of the temporal features. Typically, 𝑠 is 50% of 𝑤. Using data

arranged in this manner will result in a classifier having time-invariance in feature detection.

32

This means that the short time sequences need not have clear-cut start and end time with respect

to the temporal features.

Sometimes, summary statistics such as minimum, mean, median, maximum etc. are extracted

from the rows in the table as statistical features. In general, this should not done in deep learning,

as the deep network is able to extract the features automatically. There is a loss of information

with summary statistics, so the performance will deteriorate with the use of summary statistics.

The biosignal can be associated with co-variates such as the gender and age of the subject. This

is known as panel data in epidermiology (the use of statistics to explain the phenomenon in the

population) [22]. The co-variates are often categorical in data type rather than numeric. In such

cases, the categorical data will have to be represented as indicative variables, i.e. one-hot

encoding of the categorical data. The indicative variables can be placed alongside the short time

sequences of the biosignal, as shown in Figure 2.2 below.

M W Temporal Signals Outcome

1 0 [𝑿]1,∙ = {𝒙1
𝑇 , , … , 𝒙𝑤

𝑇} 2

1 0 [𝑿]2,∙ = {𝒙1+𝑠
𝑇 , , … , 𝒙𝑤+𝑠

𝑇} 1

0 1 [𝑿]3,∙ = {𝒙1+2𝑠
𝑇 , , … , 𝒙𝑤+2𝑠

𝑇} 2

0 1 [𝑿]4,∙ = {𝒙1+3𝑠
𝑇 , , … , 𝒙𝑤+3𝑠

𝑇} 1

Figure 2.2. Structured format of panel data

Figure 2.2 above shows the indicative variables for the gender (M: men, W: women) placed

alongside the short time sequences generated by the sliding window. The first indicative

variable M (indicated as greyed-out) is optional, as the rest of the indicative variables (in this

case W) are enough to represent all the possible categories.

There is no temporal information in the co-variates, unlike the biosignal data. It is therefore a

common practice to distinguish the effect of the time series data on the outcome as the random

effect, and the effect of the co-variates on the outcome as the fixed effect.

33

With the conversion of the time series data to the time delay representation as mentioned above,

most algorithms, including neural network, will be able to use them for supervised training. For

applications such as the predictive modelling of biosignals, this kind of data-based approach,

i.e. supervised training followed by the tesing of new and unseen data on the trained model, is

more practical than the knowledge-based approach of building models from first principles and

non-linear differentiation equations. A data-based approach does not require complicated

mathematical modelling of the generaticve process that is specific to the problem. As long as

the data set is large enough to cover the range of variation in the underlying phenomenon, the

input-output mappings will form a function that can be used to predict the actual class of the

new and unseen data.

2.1.2 Electroencephalogram

Besides the structure, the content of the data is also important. It is necessary to understand the

information that is carried in the biosignal because this will ensure that the classes are

understood correctly and the results are interpreted in line with the base facts.

The surface electroencephalogram (EEG), or the brain waves, is the “poster boy” of

physiological signals. It is often used in graphics related to neurology because of its mystifying

randomness. It is in fact the electrical activity of the brain as recorded by the electrodes on the

scalp. There are two kinds of surface EEG, spontaneous and evoked, according to the cause of

the signal. The spontaneous brain signal is the brain activity in the background, while the

evoked brain signal is the brain activity due to external stimulus, such as touch or sound.

Spontaneous brain activity can be analyzed and used in many applications, such as in brain-

computer interface for neuroprosthetics and the diagnosis of diseases like epilepsy, sleep

disorders and dementia.

The clinical surface EEG is commonly recorded using 21 electrodes attached to the surface of

the scalp, as shown in Figure 2.3. The signals are normally very weak. A typical adult human

EEG signal is about 10 𝜇𝑉 to 100 𝜇𝑉 in amplitude when measured from the scalp.

34

Figure 2.3. Symbols for the placements of electrodes on the scalp. Reproduced from [1].

The letters 𝐹, 𝑃, 𝐶, 𝑇, 𝑂, and 𝐴 in Figure 2.3 denote the frontal, parietal, central, temporal,

occipital, and auricle region of the cerebral cortex in the brain. The odd-numbered electrodes

are on the left side, even-numbered electrodes are on the right side, and 𝑧 (zero) is along the

midline [23].

There is no single mathematical model that can fully explain the EEG rhythms. In general, the

EEG rhythms depends on the mental state of the subject. When the subject is attentive, the

neuron activity will be unsynchronized, resulting in low amplitude. When the subject is asleep,

the neurons will be synchronized, resulting in high amplitude.

Conventionally, the EEG rhythms are classified according to the following five frequency

bands:

• 𝛼 alpha rhythm, 8-13 𝐻𝑧. This is the most prominent EEG rhythm in a relaxed subject with

the eyes closed. It is reduced when the eyes are open. The amplitude of the alpha rhythm is

largest in the occipital regions.

• 𝛽 beta rhythm, 14-30 𝐻𝑧 . This is a fast rhythm with low amplitude associated with

35

dreaming (rapid eye movement). It is mainly observed in the frontal and central regions of

the scalp.

• 𝛾 gamma rhythm, >30 𝐻𝑧. This is the EEG rhythm of an excited subject. It occurs for only

a few seconds each time.

• 𝛿 delta rhythm, <4 𝐻𝑧. This is a large amplitude EEG rhythm usually observed in deep

sleep. It may indicate dementia if it is observed in subjects who are awake.

• 𝜃 theta rhythm, 4-7 𝐻𝑧. The theta rhythm occurs during drowsiness.

Traditionally, the Rechtschaffen & Kales (R&K) rule [24] is used to analysis the sleep stages,

i.e. wake, rapid eye movement sleep, S1 (light sleep), S2, S3 and S4 (deep sleep). It requires

the classification all the 30-second subsequences of an eight-hour recording, which is a time-

consuming task that could benefit from machine learning.

2.1.3 Electroencephalogram in Epilepsy

Besides the EEG rhythms (𝛼, 𝛽, 𝛾, 𝛿, and 𝜃), there may also be an increase in entropy and other

abnormal electrical activities in epileptic patients [25].

Epilepsy is a chronic neurological disorder affecting approximately 70 million people in the

world. It is characterised by unpredictable seizures. Most epileptic patients have an unknown

etiology, although there are some who may be due to brain injury and genetic factors.

Most epileptic patients will only have a few seizures during a lifetime, although some may have

a few dozen seizures during a single day. The duration of each seizure ranges from a few

seconds to a few minutes. For most epileptic patients, the interictal state (period between

seizures) corresponds to more than 99% of their life.

During the interictal period, clinicians may diagnose epilepsy by analysing the EEG trace, since

there may be small spikes and sharp waves (SSWs) in the EEG when there is no observable

seizure. SSWs are transient waveforms that stand out from the EEG rhythm with an irregular

36

temporal pattern. A spike has a duration in the range of 20 − 70 𝑚𝑠, while a sharp wave is

70 − 200 𝑚𝑠 long. Spike-wave complexes occur repeatedly, from less than 3 𝐻𝑧 to 6 𝐻𝑧.

For subjects with suspected epilepsy, an EEG is recorded for half an hour in a relatively dark

and quiet room. During this period, the subject is asked to open and close his eyes to study the

changes in the EEG. At the end of that, the subject is asked to breathe rapidly and deeply and

to look at a strobe light flashing at a rate of 1-25 𝐻𝑧 to trigger the SSWs.

2.1.4 Electromyogram

Motion signals refer to the speed and direction of a body in a scene. They represent the

locomotion and other movements caused by the muscles and joints of an organism. An example

of motion signal is the surface electromyogram (EMG).

EMG is the electrical activity of the skeletal muscles. Skeletal muscles are muscles attached to

the skeleton, as opposed to the heart muscles and the smooth muscles. These muscles facilitate

body movement and facial expression. As such, EMG can be used in many areas concerning

muscle movement in the limbs and face, such as motion analysis for rehabilitation purpose [26].

A motor unit comprises a motor neuron and the fibers to which it connects (see Figure 2.4

below). The summation of the action potentials in the muscle fibres of a motor unit is termed

the motor unit action potential (MUAP) [23].

37

Figure 2.4. A motor unit action potential (MUAP). Reproduced from [23].

The surface EMG is the gross activity due to a large number of MUAPs near to the recording

electrode. Although it is the gross activity and not the individual MUAP, the surface EMG does

contain the necessary timing and amplitude information required for the study of motion. Most

of the spectral power of the surface EMG is below 400-500 Hz, so a sampling rate of I kHz or

higher is often used to sample the surface EMG.

There are two forms of muscular contraction. They are (1) spatial muscular contraction (more

motor units are used), and (2) temporal muscular contraction (higher firing rate of the action

potentials). The spatial form dominates at lower muscular intensity, while the temporal form

dominates at higher muscular intensity.

Artefacts in EMG include (1) motion artefacts (usually less than 20 𝐻𝑧), (2) powerline

interference, and (3) superposition of the electrocardiogram on the EMG signal.

From the description above, it is clear that the EMG, like the EEG, has no single mathematical

model to describe it. It is, however, suitable for time series classification, as it contains

discriminatory motion information detectable by algorithms.

38

2.1.5 Inertial Sensor Signals

Besides the surface EMG, another common mean to read body motion signals is the use of

inertial sensors such as accelerometer and gyroscope. Although they are noisy and not so

accurate, they have the advantage of being less intrusive than the surface EMG. Together, they

provide a rich set of body motion data that are sufficient for artificial motion perception for use

in human activity recognition (HAR).

The smartphone is often used to collect the motion signals for HAR because it is ubiquitous

and is packed with sensors - video camera, microphone, GPS, and inertial sensors

(accelerometer and gyroscope). It has built-in communication capability to send data to other

devices. A low-pass filter can separate the acceleration data into two parts, (1) the low-

frequency (almost constant) acceleration due to the gravity, and (2) the high-frequency

acceleration of the body due to the movement of the body.

HAR is a human-centred field of study with applications in ambient intelligence and assistive

technology. Potential benefits include eco-friendly facilities and the provision of elderly care

with less supervision.

In HAR, sensors are used to collect data from the ambience or the body, followed by machine

learning to identify the physical activity. Theses activities can be classified as (1) basic activities,

(2) transitional activities, and (3) complex activities. Basic activities are simple actions such as

standing or walking. Transitional activities are the postural change, such as from sitting to

walking. Complex activities are a sequence of activities that are executed for a common purpose,

such as playing a game.

2.1.6 Heart Sound

The heart sound is another biosignal that can be measured on the body surface. During the

cardiac cycle, the heart generates electrical impulses that cause the atria and the ventricles to

contract. This forces the blood round the body. The opening and closure of the heart valves

causes the entire cardiac structure to vibrate. These vibrations are audible at the chest wall.

39

Auscultation (listening for arrhythmia and murmurs with a stethoscope) can give an indication

of the health of the heart. For data analysis, the heart sound is recorded as a phonocardiogram

(PCG). Figure 2.5 below illustrates a short section of a PCG recording.

Figure 2.5. (Top) Heart sound and its four states: S1, systole, S2 and diastole. (Bottom)

Electrocardiogram (ECG). Reproduced from [23].

Fundamental heart sounds include the first (S1) and second (S2) heart sounds. S1 occurs at the

beginning of isovolumetric ventricular contraction, when the mitral and tricuspid valves close

due to the rapid increase in pressure within the ventricles. S2 occurs at the beginning of diastole

with the closure of the aortic and pulmonic valves.

While the fundamental heart sounds (S1 and S2) are the most recognizable sounds of the heart

cycle, the mechanical activity of the heart may also cause other sounds. These include the third

heart sound (S3), the fourth heart sound (S4), the systolic ejection click (EC), the mid-systolic

click (MC), the diastolic sound or opening snap (OS), as well as the heart murmurs caused by

the turbulent, high-velocity flow of blood [23].

Patients with abnormal heart sounds suffer from a variety of illnesses, such as heart valve

defects and coronary artery disease. Heart valve defects include mitral valve prolapse, mitral

regurgitation, and aortic stenosis.

40

It is possible to differentiate normal heart sound from abnormal heart sound based on the heart

sound signal. Subjects with abnormal heart sounds will go to the specialist for further

examination.

2.2 Deep Learning of Signals

With the proliferation of sensors, time series data are now widely available. They are

encountered in many real-world applications, such as the identification of epileptic condition

[15], human activity recognition [16], diagnostic of heart diseases [20], and many others. Due

to the non-stationary, non-linear, and noisy nature of real-world time series data, it is daunting

for the human cognitive process to classify them. This is, however, not a problem for machine

learning, and in particular deep learning.

Before describing the workhorses of deep learning (deep belief net (DBN), convolutional neural

network (CNN) and long short-term memory (LSTM) recurrent network), some descriptions of

the linear model and its derivatives (logistic regression, extreme learning machine, support

vector machine, hidden Markov model etc.) will be provided. This will allow deep learning to

be understood in the context of machine learning, where deep learning comes from.

2.2.1 Linear Model

A linear model is the basis of many classifiers, such as the neural network and the support

vector machine. It is a function that depends linearly on the adjustable parameters, i.e. the

weights. For a data instance 𝒙 with 𝑑 input variables, i.e. 𝒙 = [1, 𝑥1, … , 𝑥𝑑]
𝑇 and weights 𝒘 =

[𝑤0, 𝑤1, … , 𝑤𝑑]
𝑇, the output 𝑦(𝒙) is a scalar value and is the convolution sum of the inputs 𝒙

and the weights 𝒘.

𝑦(𝒙) = 𝑤01 + 𝑤1𝑥1 +⋯+𝑤𝑑𝑥𝑑 =∑𝑤𝑖𝑥𝑖

𝑑

𝑖=0

= 𝒙𝑇𝒘

(2.2)

Several linear functions can form a linear network with multiple outputs. In Figure 2.6 below,

the linear network has 𝑐 linear functions forming 𝑐 output variables (𝑦1(𝒙), … , 𝑦𝑐(𝒙)).

41

Figure 2.6. A linear model represented as a network

A 𝑑 × 𝑐 matrix, as shown in Equation (2.3) below, stores the weights of the linear network

compactly. Each column in 𝑾 is a vector of weights associated with a particular output variable.

𝑾 = [

𝑤1,1 … 𝑤1,𝑐
⋮ ⋱ ⋮

𝑤𝑑,1 … 𝑤𝑑,𝑐
]

(2.3)

The 𝑑 × 𝑐 matrix is sometimes used in its 𝑐 × 𝑑 transposed form, due to convenience. This

thesis will use the 𝑑 × 𝑐 matrix form for consistency sake. Figure 2.7 below shows the shape

of the 𝑑 × 𝑐 matrix in relation to the input and the output variables of the linear network.

Figure 2.7. Matrix shape of the weights 𝑾 of a linear network

Suppose there is a data matrix 𝑿 with 𝑁 data instances (𝒙𝑖
𝑇 , 𝒚𝑖

𝑇), 𝑖 ∈ {1, … ,𝑁}, where each

data instance 𝒙𝑖
𝑇 is a 𝑑-dimensional row vector in the 𝑖-th row of 𝑿, and each output vector

42

𝒚𝑖
𝑇 is a 𝑐-dimensional row vector in the 𝑖-th row of 𝒀. The linear network will then take the

linear algebra form as shown in Equation (2.4) below.

𝒀 = 𝑿𝑾 (2.4)

There is no exact solution to the system shown in Equation (2.4) above when the data matrix 𝑿

has more data instances than input variables, i.e. 𝑁 > 𝑑. The system is overdetermined, as there

are more equations than there are unknowns in the system.

An approximate solution for the weights 𝑾 is possible when the system is overdetermined.

This is often done in linear regression by framing the problem as an ordinary least square

problem. In the ordinary least square problem, the cost function is the mean squared error

𝐽(𝑾) = ‖𝒀 − 𝑿𝑾‖2 with respect to the weights 𝑾 . The estimated weights 𝑾̂ is the

pseudoinverse 𝑿† post-multiplied by 𝒀, as shown in Equation (2.5) below.

𝑾̂ = 𝑎𝑟𝑔 min
𝑾
‖𝒀 − 𝑿𝑾‖2 = (𝑿𝑇𝑿)−1𝑿𝑇𝒀 = 𝑿†𝒀 (2.5)

There is a geometrical interpretation to the linear algebra 𝒀 = 𝑿𝑾. The column space of 𝑿, i.e.

𝐶(𝑿), is spanned by 𝑑 column vectors, and so 𝐶(𝑿) is a 𝑑-dimensional hyperplane passing

through the origin. When the output 𝒀 is orthogonally projected to this hyperplane, it results in

the projection 𝒀̂ = 𝑿𝑾̂ . The projection 𝒀̂ is the linear combination of 𝑿 by 𝑾̂ and is the

approximation of 𝒀 on the hyperplane with the error 𝒀 − 𝒀̂. This is shown in Figure 2.8 below.

43

Figure 2.8. Geometric interpretation of the linear model

2.2.2 Logistic Regression

The linear model as described in the previous sub-section is useful for linear regression but not

for classification. This is because the outputs of the linear model are numeric with unlimited

range (−∞,+∞). There is no meaningful threshold value to separate the output values into

classes. For the linear model to be useful for classification, it will have to be generalised, either

by transforming the outputs with a non-linear activation function to keep the numeric values to

the range [0,1], or by transforming the inputs with a non-linear kernel function so that the output

can be separated by a linear hyperplane.

Logistic regression, despite its name, is a method not for regression but binary classification. It

is a generalised linear model derived from the linear model used for linear regression. It

transforms the outputs of the linear model with a non-linear activation function. The non-linear

activation function 𝑔(∙) that acts on the linear output 𝒙𝑇𝒘 is the sigmoid function 𝜎(∙). The

sigmoid function 𝜎(∙) is an element-by-element function that takes any real-valued vector and

maps the vector elements to a value between 0 and 1. The values of the sigmoid function, or

the activation 𝑎, can thus be interpreted as the probability 𝑝(𝒙). Equation (2.6) below shows

the sigmoid function acting on the linear output 𝒙𝑇𝒘.

44

𝑎 = 𝜎(𝒙𝑇𝒘) =
1

1 + exp (−𝒙𝑇𝒘)
= 𝑝(𝒙)

(2.6)

The log-transform of the odds, where the odds is defined as
𝑝(𝒙)

1−𝑝(𝒙)
, is known as “log-odds” or

“logit”. By re-arranging Equation (2.6), it can be shown that the log-transform links the

probability 𝑝(𝒙) to the linear output 𝒙𝑇𝒘 in the following form:

𝑙𝑛 (
𝑝(𝒙)

1 − 𝑝(𝒙)
) = 𝒙𝑇𝒘

(2.7)

For a data set with 𝑁 data instances (𝒙(𝑖), 𝑦(𝑖)), the cost function for logistic regression is the

negative of the average amount of correlation between the actual outcome 𝑦(𝑖) and the log of

the sigmoid output, for both possibilities of 𝑦(𝑖) (i.e. 1 and 0), as shown in Equation (2.8) below.

The cost function uses the negative of the log of the sigmoid output because it increases the

cost to a very high value when the actual outcome 𝑦(𝑖) and the predicted outcome 𝜎 (𝒙(𝑖)
𝑇
𝒘)

are not the same.

𝐽(𝑾) = −
1

𝑚
∑(𝑦(𝑖)𝑙𝑜𝑔 (𝜎 (𝒙(𝑖)

𝑇
𝒘)) + (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1 − 𝜎 (𝒙(𝑖)

𝑇
𝒘)))

𝑁

𝑖=1

(2.8)

The cost function 𝐽(𝑾) in Equation (2.8) above can be minimised with the gradient descend

method. The general form of the gradient descend method is 𝑾𝑘+1 = 𝑾𝑘 − 𝛼
𝜕

𝜕𝑾
𝐽(𝑾), where

𝛼 is the step size and
𝜕

𝜕𝑾
𝐽(𝑾) is the differentiation of the cost function 𝐽(𝑾) with respect to

the weights 𝑾. Based on the gradient descend method, the update equation for the weights in

logistic regression is as follows:

𝑾𝑘+1 = 𝑾𝑘 −
𝛼

𝑁
∑(𝜎 (𝒙(𝑖)

𝑇
𝒘) − 𝒚(𝑖)) 𝒙(𝑖)

𝑁

𝑖=1

(2.9)

The logistic regression model as described above is a static model, i.e. a model with no memory.

The elements in the data instance 𝒙 are input variables not related to each other in time. The

45

logistic regression model, with some changes in the data instance 𝒙, will become a dynamic

model. With a tapped delay line at the input, the data instance 𝒙 will contain the temporal

context of the input. It will then be possible to use the logistic regression on time series

classification. Figure 2.9 below shows the logistic regression method applied to both the static

network and the dynamic network.

Figure 2.9: Logistic regression used as (a) static network, (b) dynamic network

2.2.3 Extreme Learning Machine

It is interesting that the linear network, despite the well-known argument against it (which says

that a data set based on the XOR function is linearly inseparable), can in fact be used effectively

for classification in what is called the extreme learning machine (ELM) [27].

This is because the exact representation of a given data set is irrelevant when the objective is to

generalize the model to new and unseen data. An approximation, rather than an exact

representation, of the input-output relationship is more robust on new and unseen data. The

approximation is facilitated further by the fact that most practical problems have data that are

smooth (small changes in the inputs lead to small changes in the outputs). Since the output of

deep learning has the smooth property, it can use the ELM as the final classifier. The advantage

of using ELM is its simplicity and its surprisingly good performance despite its simplicity.

The architecture of an ELM, shown in Figure 2.10 below, consists of an input layer, a non-

linear hidden layer, and a linear output layer. Each of the output neurons represents an output

class. The target output value is “1” if the input instance belongs to that class, and “-1” if the

46

input instance does not belong to that class. During inference, the output neuron with the largest

value will become the predicted class. This is the one vs. rest method.

Figure 2.10. The two-layer arrangement of an extreme learning machine

The adjustable parameters in the ELM consist of two sets of weights, namely (1) the input

weights (the weights of the non-linear hidden layer), and (2) the output weights (the weights of

the linear output layer).

The input weights are set to random values. The output weights are obtained from the pseudo-

inverse 𝑿† as follows: 𝑾̂ = 𝑿†𝒀 (refer to Equation (2.5)), where 𝑿 refers to the activation of

the non-linear hidden layer and 𝑿† is its pseudo-inverse.

The weights 𝑾̂ obtained by the pseudoinverse 𝑿† will only be meaningful in the least square

sense if the data are linearly separable. The well-known problem of the data not being linearly

separable is resolved by using a non-linear hidden layer before the linear output layer. This

gives the non-linearly separable data a chance to become linearly separable.

The weights of the non-linear hidden layer are random in values. As long as there are enough

hidden units in the non-linear hidden layer, it will preserve much of the information at the input

data for classification at the output layer.

Once the output weights 𝑾̂ are obtained, they can be used to predict the target value of the test

data 𝒙𝑡𝑒𝑠𝑡.

𝒚̂𝑡𝑒𝑠𝑡
𝑻 = 𝒙𝑡𝑒𝑠𝑡

𝑇𝑾̂ (2.10)

47

As the above description shows, the weights of the ELM can be obtained in just one run, unlike

logistic regression where multiple epochs are needed. The fast training time makes it suitable

for incremental learning. When a trained model needs to work on a new data set, training at the

final ELM classifier will be enough to adapt the trained but old model to the new data set.

2.2.4 Support Vector Machine

Another way to increase the computational power of a linear machine is to use a non-linear

kernel function to map the input variables to a higher dimensional space, and then use a linear

hyperplane to separate the output variables into classes.

A kernel is a similarity function 𝐾(∙) with a scalar output value, such that for all pairs of data

instances (𝒙, 𝒛) ∈ 𝑿,

𝐾(𝒙, 𝒛) = 〈𝜙(𝒙) ∙ 𝜙(𝒛)〉 (2.11)

where 𝜙(∙) is the mapping from 𝑿 to a higher dimensional space, sometimes called the feature

space or Hilbert space, and 〈∙〉 is the dot product [28]. There is no need to specify 𝜙(∙) in a valid

kernel. This is known as the kernel trick. A popular kernel is the Gaussian kernel, also known

as the radial basis function (RBF), where
1

𝜎2
 (called “gamma”) controls the size of the region

around 𝒙𝑖. This is shown in Equation (2.12).

𝐾(𝒙, 𝒙𝑖) = 𝑒−‖𝒙−𝒙𝑖‖
2/𝜎2 (2.12)

The transformation of data instances to a higher dimensional space is called the kernel trick.

With the kernel trick, the SVM is able to classify many non-linear data very well. Besides the

kernel shown in Equation (2.11) above, a popular kernel used by SVM is the Gaussian kernel

𝐾(𝒙, 𝒙𝑖) = 𝑒
−‖𝒙−𝒙𝑖‖

2/𝜎2 , also known as the radial basis function (RBF), where
1

𝜎2
 (called

“gamma”) controls the size of the region around 𝒙𝑖.

48

The support vector machine (SVM) is a kernel-based binary classifier that combines the kernels

of a number of support vectors linearly, as shown in Equation (2.13) below. For any data

instance 𝒙, the output 𝑓(𝒙) of the SVM model is either 1 or -1

𝑓(𝒙) = {
1 𝑖𝑓 𝑠𝑖𝑔𝑛 (𝑤0 +∑𝛼𝑖𝐾(𝒙, 𝒙𝑖)

𝑖∈𝒮

) = 1

−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.13)

In Equation (2.13) above, 𝒮 is a set of 𝑝 support vectors 𝒙𝑖, 𝑖 ∈ {1, … , 𝑝}, and the alpha vector

𝜶 is the set of weights {𝛼0, … , 𝛼𝑖, … , 𝛼𝑝} that in essence defines how much influence the 𝑖-th

support vector has on the final decision.

The support vectors 𝒙𝑖, 𝑖 ∈ {1, … , 𝑝}, are determined by maximising the margin between the

classes. This means reducing the norm of 𝜶, which is the perpendicular of the hyperplane. The

hyperplane separates the data instances into two sides. Those data instances within the margins

of the hyperplane are the support vectors. By increasing the amount of slack allowed in the

margin, more support vectors 𝑝 will result.

The alpha vector 𝜶 is determined by the gradient descend method. The objective function of

the gradient descend method consists of a loss function, called the hinge loss, and the 𝐿2 norm

regularizer. Equation (2.14) below shows the loss function for a training set with 𝑁 data

instances.

𝐽(𝜶) = {∑(1 − 𝑦𝑛 × 𝑓(𝒙𝑛))

𝑁

𝑛=1

} + {min
𝑤
𝜆‖𝜶‖2}

(2.14)

In Equation (2.14) above, if 𝑓(𝒙𝑛) is on the correct side, then the term 𝑦𝑛 × 𝑓(𝒙𝑛) will be 1,

otherwise it will be -1. It is costly for 𝑓(𝒙𝑛) to be at the wrong side of the hyperplane.

Conversely, the cost is zero if it is at the correct side.

49

Weight update, based on the gradient descend method, is the sum of the partial derivative of

the regularizer and the loss function with respect to 𝜶, as shown in Equation (2.15) and (2.16)

below.

𝜕

𝜕𝜶
𝜆‖𝜶‖2 = 2𝜆𝜶

(2.15)

𝜕

𝜕𝜶
(1 − 𝑦𝑛 × 𝑓(𝒙𝑛)) = {

0 𝑖𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

−𝑦𝑛𝐾(𝒙𝑛, 𝒙𝑖) 𝑓𝑜𝑟 𝑖 ∈ {1,… , 𝑝} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.16)

If a sample is misclassified, the alpha vector 𝜶 is updated using the gradients of both terms.

Otherwise, 𝜶 is updated by using just the gradient of the regularizer.

Once the support vectors and the alpha weights are determined, they will be stored in memory,

ready for the prediction of new and unseen data.

All the kernels used by SVM are local kernels. This means that 𝐾(𝒙, 𝒙𝑖) > 𝜌 if 𝒙 is in a

connected region around the support vector 𝒙𝑖 . A local kernel provides the discrimination

criteria when the target function is smooth. For a highly varying function, the target function

may not be smooth and may scatter over a large section of the input space. Hence, for complex

data, the trained SVM model may not be able to generalize to new variations outside of the

limited section of the input space not covered by the training set [29].

2.2.5 Linear Gaussian Model

The linear Gaussian model extends the linear model by adding noise to the linear model. It

associates the signal data, called the observation, to the state of the process. At any point in

time, the observation 𝒙 (a column vector with 𝑑 input variables) is visible, while the hidden

state 𝒚 (a column vector with 𝑐 state variables) is latent. Both 𝒙 and 𝒚 are stochastic.

From the generative point of view, it is the hidden state 𝒚 that emits the observation 𝒙. From

the point of view of machine learning, it is the output 𝒚 that ought to be predicted, given the

input 𝒙.

50

In the linear Gaussian model, the hidden state 𝒚 is a process that evolves according to the first

order Markov chain. This means that the current state 𝒚𝑡 depends only on the previous state

𝒚𝑡−1 and not earlier.

Equations (2.17) and (2.18) below form the linear Gaussian model. The 𝑐 × 𝑐 transition matrix

𝑨 and the 𝑑 × 𝑐 measurement matrix 𝑪, together with the zero-mean process noise 𝒘 and the

observation noise 𝒗, are the model parameters.

𝒚𝑡 = 𝑨𝒚𝑡−1 +𝒘 (2.17)

𝒙𝑡 = 𝑪𝒚𝑡 + 𝒗

(2.18)

Figure 2.11 below shows two common linear Gaussian models used for time series, namely the

Kalman filter and the hidden Markov model.

Figure 2.11. Linear Gaussian model: Kalman filter (left) and hidden Markov model (right)

The Kalman filter is a linear Gaussian model with continuous state. The vector elements in 𝒚𝑡

are numeric in data type. Like linear regression that predicts a continuous output for every input,

Kalman filter predicts the latent state values from the observation 𝒙𝑡 continuously, so it is

suitable for use in tracking,.

51

For classification, the hidden Markov model (HMM) should be used instead. It adopts the

winner-take-all strategy for the state 𝒚𝑡, where the most probable vector element in 𝒚𝑡 will be

set to 1 and the rest set to 0.

The HMM is widely used in automatic speech recognition [30], since it can handle inputs of

variable-length (for example, different versions of “hello”) and still predict the state

accordingly. The biggest limitation on the use of the HMM model is the assumption of

conditional independence (i.e. the observation depends on the current state only). This is not

really true for complex signals.

The HMM is often used with the probabilistic Gaussian mixture model (GMM) instead of the

deterministic measurement matrix 𝑪. It is then known as HMM-GMM [9]. In HMM-GMM, it

is assumed that (1) the state 𝒚𝑡 is a process that changes according to the Markov chain defined

by the initial state distribution 𝝅 and the transition matrix 𝑨, with [𝑨]𝑡−1,𝑡 = 𝑝(𝒚𝑡|𝒚𝑡−1), and

(2) the emissive probability 𝑏𝑘(𝒙𝑡) of observing an input vector 𝒙𝑡 at a particular state 𝑘 is a

mixture of 𝑀 multivariate Gaussian distribution, denoted as

𝑏𝑘(𝒙𝑡) =∑[𝒂]𝑙,𝑘𝒩(𝒙𝑡|𝜽𝑙,𝑘)

𝑀

𝑙=1

(2.19)

where [𝒂]𝑙,𝑘 is the value of the membership distribution of the 𝑙-th component in state 𝑘, and

𝜽𝑙,𝑘 is the parameters (mean and covariance) of the 𝑙-th component in state 𝑘.

In the Baum-Welch algorithm, which is a form of EM algorithm, the GMM parameters 𝜽 and

𝒂 are used to compute the emissive probability 𝑏𝑘(𝒙𝑡) and the other model parameters (the

transition matrix 𝑨 and the state distribution 𝝅), which are then in turn used to update the GMM

parameters 𝜽 and 𝒂.

The Baum-Welch algorithm has two parts, the forward and the backward algorithm. The

forward algorithm determines the probability of observing the time sequence (𝒙1, … , 𝒙𝑡) and

the hidden state 𝒚𝑡 at 𝑡. Equation (2.20) below shows the forward probability.

52

𝜶𝑡 = 𝑝(𝒚𝑡, 𝒙1, … , 𝒙𝑡) (2.20)

The backward algorithm determines the probability of observing the time sequence

(𝒙𝑡+1, … , 𝒙𝑇), i.e. the time sequence from 𝑡 + 1 to the end of the signal, given the hidden state

𝒚𝑡 at 𝑡. Equation (2.21) shows the backward probability.

𝜷𝑡 = 𝑝(𝒙𝑡+1, … , 𝒙𝑇|𝒚𝑡) (2.21)

In the above definitions, 𝜶𝑡 and 𝜷𝑡 are vectors of the same length as the hidden state 𝒚𝑡 .

Notation wise, the 𝑘 -th element in 𝜶𝑡 is [𝜶𝑡]𝑘 = 𝑝(𝒚𝑡 = 𝑘, 𝒙1, … , 𝒙𝑡) . Likewise, the 𝑘 -th

element in 𝜷𝑡 is [𝜷𝑡]𝑘 = 𝑝(𝒙𝑡+1, … , 𝒙𝑇|𝒚𝑡 = 𝑘).

In the forward algorithm, at 𝑡 = 1, the probability of the time sequence up to 𝒙1 and at state 𝑘

is the product of two probability values: (1) 𝑏𝑘(𝒙1), the emissive probability of 𝒙1 at state 𝑘,

and (2) [𝝅]𝑘, the initial probability of being in state 𝑘.

[𝜶1]𝑘 = [𝝅]𝑘𝑏𝑘(𝒙1), 𝑘 ∈ {1, … , 𝑐} (2.22)

Once the initial value [𝜶1]𝑘 is available, subsequent values of [𝜶𝑡]𝑘 at 𝑡 = 2,… , 𝑇 can be

computed from the transition matrix 𝑨, as shown in Equation (2.23) below.

[𝜶𝑡]𝑘 = [∑[𝜶𝑡−1]𝑖[𝑨]𝑖,𝑘

𝑐

𝑖=1

] 𝑏𝑘(𝒙𝑡)
(2.23)

In the backward algorithm, the probability of the time sequence (𝒙𝑡+1, … , 𝒙𝑇), given state 𝒚𝑡,

is computed at 𝑡 (one time-step before 𝑡 + 1). When 𝑡 = 𝑇, the backward probability will be

fixed at 1.

[𝜷𝑇]𝑘 = 1 (2.24)

Once the final value [𝜷𝑇]𝑘 is fixed, subsequent values of [𝜷𝑡]𝑘 at 𝑡 = 𝑇 − 1, , … ,1 can be

computed from the transition matrix 𝑨, as shown in Equation (2.25) below:

53

[𝜷𝑡]𝑘 = [∑[𝜷𝑡+1]𝑖[𝑨]𝑘,𝑖𝑏𝑖(𝒙𝑡+1)

𝑐

𝑖=1

]
(2.25)

Once the forward and backward probabilities 𝜶𝑡 and 𝜷𝑡 are computed progressively for all the

sampling points in the 𝒙 sequence, two other variables, 𝜸(𝑡) and 𝝃(𝑡), will have to be computed

over the entire 𝒙 sequence for the update of the adjustable parameters in HMM-GMM.

𝜸𝑡 is the probability of the entire sequence 𝒙 = (𝒙1, … , 𝒙𝑇) being in state 𝑘 ∈ {1,… , 𝑐} at time

step 𝑡.

[𝜸𝑡]𝑘 = 𝑃(𝒚𝑡 = 𝑘|𝒙) (2.26)

It is a vector defined in terms of the forward probability [𝜶𝑡]𝑘 and the backward probability

[𝜷𝑡]𝑘, normalized across all the state values.

[𝜸𝑡]𝑘 =
[𝜶𝑡]𝑘[𝜷𝑡]𝑘

∑ [𝜶𝑡]𝑖[𝜷𝑡]𝑖
𝑐
𝑖=1

(2.27)

𝝃𝑡 is the joint probability of the entire sequence 𝒙 = (𝒙1, … , 𝒙𝑇) being in state 𝑘 ∈ {1, … , 𝑐} at

time 𝑡 and state 𝑗 ∈ {1, … , 𝑐} at time 𝑡 + 1.

[𝝃𝑡]𝑘,𝑗 = 𝑝(𝒚𝑡 = 𝑘, 𝒚𝑡+1 = 𝑗|𝒙) (2.28)

It is a matrix defined in terms of the forward probability [𝜶𝑡]𝑘 and the backward probability

[𝜷𝑡+1]𝑗 and then normalized to make the sum of the resultant matrix as 1, as shown in Equation

(2.29) below.

[𝝃𝑡]𝑘,𝑗 =
[𝜶𝑡)]𝑘[𝜷𝑡+1]𝑗𝑏𝑗(𝒙𝑡+1)

∙

(2.29)

The sum of [𝜸𝑡]𝑘 over the entire length of the signal, ∑ [𝜸𝑡]𝑘
𝑇
𝑡=1 , is the expected number of

times the signal is in state 𝑘. Similarly, the sum of [𝝃𝑡]𝑘,𝑗 over the entire length of the signal,

∑ [𝝃𝑡]𝑘,𝑗
𝑇−1
𝑡=1 , is the expected number of transitions from state 𝑘 to state 𝑗 . Therefore, the

54

proportion of transitioning from state 𝑘 to state 𝑗 when it is at state 𝑘 is the transition matrix

[𝑨]𝑘,𝑗, shown in Equation (2.30) below.

[𝑨]𝑘,𝑗 =
∑ [𝝃𝑡]𝑘,𝑗
𝑇−1
𝑡=1

∑ [𝜸𝑡]𝑘
𝑇−1
𝑡=1

(2.30)

A GMM has 𝑀 components. The probability that 𝒙, at 𝑡, is in the 𝑘-th state (𝑘 ∈ {1,… , 𝑐}) and

belong to the 𝑙-th component (𝑙 ∈ {1,… ,𝑀} is a matrix with [𝜸𝑡]𝑙,𝑘 as its elements. This matrix

can be obtained from the multiplication of [𝜸𝑡]𝑘 (see Equation (2.26) above) with the member

distribution [𝒂]𝑙,𝑘 (initialised as uniformly distributed), as shown in Equation (2.31) below.

[𝜸𝑡]𝑙,𝑘 = [𝜸𝑡]𝑘
[𝒂]𝑙,𝑘𝑏𝑘(𝒙𝑡)

∑ 𝑏𝑖(𝒙𝑡)
𝑐
𝑖=1

(2.31)

The member distribution 𝒂 and the GMM parameters 𝜽 at state variable 𝑘 are updated with the

use of [𝜸𝑡]𝑙,𝑘 in Equation (2.31) above. The GMM parameters 𝜽 consist of the mean 𝝁 and the

covariance 𝚺 of the 𝑙-th component in the GMM. They are computed as shown in Equations

(2.32), (2.33), and (2.34) below:

[𝒂]𝑙,𝑘 =
∑ [𝜸𝑡]𝑙,𝑘
𝑇
𝑡=1

∑ [𝜸𝑡]𝑘
𝑇
𝑡=1

(2.32)

[𝝁]𝑙,𝑘 =
∑ ([𝜸𝑡]𝑙.𝑘𝒙𝑡)
𝑇
𝑡=1

∑ [𝜸𝑡]𝑙.𝑘
𝑇
𝑡=1

(2.33)

[𝚺]𝑙,𝑘 =
∑ ([𝜸𝑡]𝑙.𝑘(𝒙𝑡 − 𝝁𝑙,𝑘)(𝒙𝑡 − 𝝁𝑙,𝑘)

𝑇
)𝑇

𝑡=1

∑ [𝜸𝑡]𝑙.𝑘
𝑇
𝑡=1

(2.34)

The Baum-Welch process gives consistent results with well-segmented sequences. However,

the accuracy drops with sequences that are not well-segmented.

55

2.2.6 Neural Network

Historically, neural network is the beginning of deep learning. In a neural network, the output

of a layer becomes the input of the next layer. This is composition, which is the foundation of

deep learning.

Just two layers (one hidden layer and one output layer) are all that is required for a neural

network to be a universal approximator [31]. A neural network with one or two hidden layers

is a shallow network.

The count of the number of layers in a neural network often omits the input layer. Figure 2.12

below shows a three-layer multilayer perceptron (MLP) network with one input layer 𝑙0, two

hidden layers, 𝑙1 and 𝑙2, and an output layer 𝑙3.

Figure 2.12. A 3-layer MLP (two hidden layers and an output layer)

In a neural network, learning of the adjustable parameters, i.e. the weights, is by gradient

descend and backpropagation. According to Schmidhuber (2015), the minimisation of errors

through gradient descent in the parameter space of nonlinear multi-stage systems has been

discussed at least since the early 1960s. Rumelhart et al (1986) demonstrated that the outputs

of the hidden layers represent useful abstractions, and this caused the neural network to be

widely used. The general form of gradient descend is as follows:

𝑾𝑘+1 = 𝑾𝑘 − 𝛼
𝜕

𝜕𝑾
𝐽(𝑾)

(2.35)

56

In Equation (2.35) above, 𝛼 is the step size, and 𝐽(𝑾) is the cost function (often abbreviated as

𝐸). What Equation (2.35) above shows is that the weights have to be changed in the direction

of the negative gradient of the cost function.

As the weights are distributed across multiple layers, the gradient at all the layers will have to

be computed layer by layer. This is made possible by the chain rule of differentiation. For each

layer 𝑙, two feedforward terms, computed during forward propagation, are stored in memory,

namely the linear output 𝒚(𝑙) and the non-linear activation 𝒂(𝑙). Using these feedforward terms,

the backward term, delta 𝜹(𝑙) ≜
𝜕𝐸

𝜕𝒚(𝑙)
, can be computed in backward manner from 𝒂(𝑙) to 𝒚(𝑙) to

𝒂(𝑙−1) to 𝒚(𝑙−1) and so on. The operation based on the chain rule of differentiation is

summarised in Equations (2.36) and (2.37) as shown below:

𝜕𝐸

𝜕𝑾(𝑙)
=

𝜕𝐸

𝜕𝒚(𝑙)
𝜕𝒚(𝑙)

𝜕𝑾(𝑙)
= 𝒂(𝑙−1)(𝜹(𝑙))

𝑇

(2.36)

𝜹(𝑙−1) ≜
𝜕𝐸

𝜕𝒚(𝑙−1)
=

𝜕𝐸

𝜕𝒚(𝑙)
𝜕𝒚(𝑙)

𝜕𝒂(𝑙−1)
𝜕𝒂(𝑙−1)

𝜕𝒚(𝑙−1)
= 𝑾(𝑙)𝜹(𝑙)⊙𝑓′(𝒚(𝑙−1))

(2.37)

As a result of the relationship 𝒚(𝑙) = 𝑾(𝑙)𝑇𝒂(𝑙−1) that links 𝒚(𝑙) to 𝒂(𝑙−1) , the
𝜕𝒚(𝑙)

𝜕𝑾(𝑙) term in

Equation (2.36) is 𝒂(𝑙−1), and the
𝜕𝒚(𝑙)

𝜕𝒂(𝑙−1)
 term in Equation (2.37) is 𝑾(𝑙).

The delta term 𝜹(𝑙) in Equation (2.36) above is backpropagated from layer 𝑙 to layer 𝑙 − 1 in

Equation (2.37). This can be seen by the presence of 𝜹(𝑙) on the right hand side of Equation

(2.37) and 𝜹(𝑙−1) on the left hand side of the same equation.

The backpropagation process starts at the final output layer with the computation of the delta

term there, i.e. 𝜹(𝐿). Its computation is shown in Equation (2.38) below.

𝜹(𝐿) ≜
𝜕𝐸

𝜕𝒚(𝐿)
=

𝜕𝐸

𝜕𝒂(𝐿)
𝜕𝒂(𝐿)

𝜕𝒚(𝐿)
= (𝒂(𝐿) − 𝒕)⊙ [𝒚(𝐿)(𝟏 − 𝒚(𝐿))]

(2.38)

57

Here, 𝒂(𝐿) is the softmax output vector as shown in Equation (2.39) below. It is the vector 𝑒−𝒚
(𝐿)

normalized by the sum of the vector elements.

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =
𝑒−𝒚

(𝐿)

sum(𝑒−𝒚
(𝐿)
)

(2.39)

Since 𝐽(𝑾) = (𝒂(𝐿) − 𝒕)
2
, its derivative

𝜕𝐸

𝜕𝒂(𝐿)
 is proportional to 𝒂(𝐿) − 𝒕. As for the term

𝜕𝒂(𝐿)

𝜕𝒚(𝐿)

in Equation (2.38) above, it is simply the derivative of the sigmoid function, which has the well-

known result of 𝒚(𝐿)(𝟏 − 𝒚(𝐿)).

The neural network accepts tabular data as its input. Other types of data, for example, the lag

observations of a time series, have to be rearranged into the vector form expected by the input

layer of the neural network. The vector at the input layer is actually a tapped delay line. This

forms what is called a time-delay neural network (TDNN). It was introduced by Waibel et al

(1989) and has been used in many time series applications, such as human sound location [34]

and the detection of Parkinson disease [35].

When the hidden layers (in addition to the input layer) have tapped delay lines also, the network

becomes a distributed TDNN. This can be visualized in two ways, as shown by the diagrams in

Figure 2.13 below.

58

Figure 2.13. Visualization of a TDNN

The left hand side of Figure 2.13 shows a neural network with (1) an input layer with 3 units

(each with a 2-tap delay line), (2) a hidden layer with 2 units (each with a 3-tap delay line), and

(3) a final output layer with 2 units. The right hand side of Figure 2.13 shows a neural network

with (1) an input layer with one unit (with a 4-tap delay line), (2) a hidden layer with 3 units

(sharing a 3-tap delay line), (3) another hidden layer with 5 units (sharing a 2-tap delay line),

and (4) an output layer with 1 unit. Over here, the term “unit” refers to a neuron with a tapped

delay line attached to it.

The distributed TDNN can be unrolled into its equivalent static network. The distributed TDNN

of Figure 2.13 above is shown on the right hand side of Figure 2.14 below. The left hand side

of the same figure shows the equivalent static network.

59

Figure 2.14. Equivalent static network and the actual distributed TDNN

Although the equivalent static network has no tapped delay line, it can be envisaged as having

nodes arranged according to the tapped delay lines. Note the dotted lines in Figure 2.14 above.

There are more nodes in the equivalent static network than the number of taps in the actual

distributed TDNN. In other words, for each of the layers, the equivalent tap length is either the

same or longer than the actual tap length. Notation wise, for a particular layer 𝑙, 𝑇𝑒𝑞𝑢𝑖
(𝑙) ≥ 𝑇𝑡𝑑𝑛𝑛

(𝑙)
.

In Figure 2.14 above, for the output layer, 𝑇𝑒𝑞𝑢𝑖
(𝐿) = 1 and 𝑇𝑡𝑑𝑛𝑛

(𝐿) = 1, for the hidden layer,

𝑇𝑒𝑞𝑢𝑖
(1) = 3 and 𝑇𝑡𝑑𝑛𝑛

(1)
=3, and for the input layer, 𝑇𝑒𝑞𝑢𝑖

(0) = 4 and 𝑇𝑡𝑑𝑛𝑛
(0) = 2.

The equivalent tap length at layer 𝑙 − 1, i.e. 𝑇𝑒𝑞𝑢𝑖
(𝑙−1)

, is equal to that of layer 𝑙 (i.e. 𝑇𝑒𝑞𝑢𝑖
(𝑙)

) plus

the actual tap length at layer 𝑙 − 1 minus 1. This is shown in Equation (2.40) below.

𝑇𝑒𝑞𝑢𝑖
(𝑙−1) = 𝑇𝑒𝑞𝑢𝑖

(𝑙) + 𝑇𝑡𝑑𝑛𝑛
(𝑙−1) − 1 (2.40)

For example, referring to Figure 2.14 where the final output layer has 1 unit (𝑇𝑒𝑞𝑢𝑖
(𝐿) = 1). The

equivalent tap length in the hidden layer is 𝑇𝑒𝑞𝑢𝑖
(1) = 1 + 3 − 1 = 3. Similarly, the equivalent

tap length in the input layer is 𝑇𝑒𝑞𝑢𝑖
(0) = 3 + 2 − 1 = 4.

60

The receptive field of the equivalent static network is longer than the number of actual taps at

the input layer. Not only is the equivalent tap length longer, the equivalent activation vector

𝒂𝑒𝑞𝑢𝑖
(𝑙)

 and the equivalent linear output vector 𝒚𝑒𝑞𝑢𝑖
(𝑙)

 are also longer. Notation wise, for a

particular layer 𝑙, 𝒂𝑒𝑞𝑢𝑖
(𝑙) > 𝒂𝑡𝑑𝑛𝑛

(𝑙)
 and 𝒚𝑒𝑞𝑢𝑖

(𝑙) > 𝒚𝑡𝑑𝑛𝑛
(𝑙)

. They are decomposed into 𝑇𝑒𝑞𝑢𝑖
(𝑙)

 sets of

vectors as shown in Equations (2.41) and (2.42) below, where the subscripts 0,… , 𝑇𝑒𝑞𝑢𝑖
(𝑙) − 1 act

as the selectors of the elements in 𝒂𝑒𝑞𝑢𝑖
(𝑙)

 and 𝒚𝑒𝑞𝑢𝑖
(𝑙)

.

 𝒂𝑒𝑞𝑢𝑖
(𝑙) = [𝒂𝑒𝑞𝑢𝑖

(𝑙)]
0
+ [𝒂𝑒𝑞𝑢𝑖

(𝑙)]
1
+⋯+ [𝒂𝑒𝑞𝑢𝑖

(𝑙)]
𝑇𝑒𝑞𝑢𝑖
(𝑙)

−1
 (2.41)

𝒚𝑒𝑞𝑢𝑖
(𝑙) = [𝒚𝑒𝑞𝑢𝑖

(𝑙)]
0
+ [𝒚𝑒𝑞𝑢𝑖

(𝑙)]
1
+⋯+ [𝒚𝑒𝑞𝑢𝑖

(𝑙)]
𝑇𝑒𝑞𝑢𝑖
(𝑙)

−1
 (2.42)

At each layer 𝑙, the unique weights 𝑾(𝑙) are reused and shared by sliding them between the

input side (i.e. layer 𝑙 − 1) and the output side (i.e. layer 𝑙). The number of slides is 𝑇𝑒𝑞𝑢𝑖
(𝑙)

. As a

result, there are 𝑇𝑒𝑞𝑢𝑖
(𝑙)

 exact copies of 𝑾(𝑙) in the equivalent static network.

For example, on the right hand side of Figure 2.14 above, the hidden layer 𝑙1 of the actual

TDNN has 12 weights in 𝑾(1) (3 input neurons × 2 hidden neurons, with 2 such sets

corresponding to the 2-tap delay line at the input layer). These weights are shared 3 times in the

equivalent static network on the left hand side of Figure 2.14 above. There are thus 36 weights

in layer 𝑙1of the equivalent static network. This is less than the 72 weights if the network is

fully connected. Out of the 36 weights, only 12 of them are unique, and the rest are reused and

shared.

In summary, there are 3 points to note about the equivalent static network:

(1) The input side is not fully interconnected to the output side.

(2) For the units that are connected, the weights 𝑾(𝑙) are reused and shared 𝑇𝑒𝑞𝑢𝑖
(𝑙)

 times.

61

(3) The number of unique weights in the equivalent static network is the same as the actual

distributed TDNN.

To update 𝑾(𝑙), weight sharing has to be taken into account during backpropagation. Now,

consider the activation [𝒂𝑒𝑞𝑢𝑖
(𝑙−1)]

𝑡
 at an arbitrary node position 𝑡 ∈ {0, … , 𝑇𝑒𝑞𝑢𝑖

(𝑙−1) − 1} at the input

side of the equivalent static network. It connects to the output node at position 𝑚 ∈

{0,… , 𝑇𝑒𝑞𝑢𝑖
(𝑙) − 1} in a fan-out that lies in the range of (𝑡 − 𝑇𝑡𝑑𝑛𝑛

(𝑙−1) + 1) ≤ 𝑚 ≤ 𝑡. Due to the

two exceptions at the beginning and end of layer 𝑙 − 1, this range can be re-expressed as

Equation (2.43) below.

𝑚𝑎𝑥(0, 𝑡 − 𝑇𝑒𝑞𝑢𝑖
(𝑙) + 1) ≤ 𝑚 ≤ 𝑚𝑖𝑛(𝑡, 𝑇𝑡𝑑𝑛𝑛

(𝑙−1)) (2.43)

The activation at layer 𝑙 is made up of 𝑇𝑒𝑞𝑢𝑖
(𝑙)

 sets of activations, as shown in Equation (2.44).

𝒂𝑒𝑞𝑢𝑖
(𝑙) = ∑ [𝒂𝑒𝑞𝑢𝑖

(𝑙)]
𝑚

𝑇𝑒𝑞𝑢𝑖
(𝑙)

−1

𝑚=0

(2.44)

Similarly, the backward term delta 𝜹𝑒𝑞𝑢𝑖
(𝑙) ≜

𝜕𝐸

𝜕𝒚𝑒𝑞𝑢𝑖
(𝑙) at the output side (layer 𝑙) is shown in

Equation (2.45) below.

𝜹𝑒𝑞𝑢𝑖
(𝑙) = ∑ [𝜹𝑒𝑞𝑢𝑖

(𝑙)]
𝑚

𝑇𝑒𝑞𝑢𝑖
(𝑙)

−1

𝑚=0

(2.45)

Let the unique weights that connect to the input node at positions 𝑡 ∈ {0,… , 𝑇𝑒𝑞𝑢𝑖
(𝑙−1) − 1} and

the output node at position 𝑚 ∈ {0,… , 𝑇𝑒𝑞𝑢𝑖
(𝑙) − 1} be denoted as [𝑾(𝑙)]

𝑡,𝑚
. To update the

unique weights and propagate the delta, simply decompose the activation and delta of the

equivalent static network according to Equation (2.43), (2.44) and (2.45), and then substitute

them in the standard backpropagation equations, as shown in Equation (2.46) and (2.47) below.

62

𝜕𝐸

𝜕𝑾(𝑙)
= ∑ [(∑ [𝒂𝑒𝑞𝑢𝑖

(𝑙−1)]
𝑡

𝑚+𝑇𝑡𝑑𝑛𝑛
(𝑙−1)

−1

𝑡=𝑚

)([𝜹𝑒𝑞𝑢𝑖
(𝑙)]

𝑚
)
𝑇

]

𝑇𝑒𝑞𝑢𝑖
(𝑙)

−1

𝑚=0

(2.46)

[𝜹𝑒𝑞𝑢𝑖
(𝑙−1)]

𝑡
=

(

 ∑ ∑ [𝑾(𝑙)]
𝑡,𝑚

𝑚𝑖𝑛(𝑡,𝑇𝑡𝑑𝑛𝑛
(𝑙−1)

)

𝑚=𝑚𝑎𝑥(0,𝑡−𝑇
𝑒𝑞𝑢𝑖
(𝑙)

+1)

[𝜹𝑒𝑞𝑢𝑖
(𝑙)]

𝑚

𝑇𝑡𝑑𝑛𝑛
(𝑙−1)

−1

𝑡=0
)

 ⊙ 𝑓′ ([𝒂𝑒𝑞𝑢𝑖
(𝑙−1)]

𝑡
)

(2.47)

In implementing the distributed TDNN, the activation 𝒂𝑒𝑞𝑢𝑖
(𝑙)

 and the delta values 𝜹𝑒𝑞𝑢𝑖
(𝑙)

 of the

equivalent delay lines will have to be stored in memory. They will then be available for use by

the above equations for backpropagation.

2.2.7 Deep Belief Net

A complex function can be represented compactly by factorization and composition. Figure

2.15 below illustrates this, where a function with eight variables 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥8) is distributed

to three separate layers in a binary tree network.

Figure 2.15. Binary tree network

𝑓(𝑥1⋯𝑥8) = ℎ3 (ℎ2,1 (ℎ1,1(𝑥1, 𝑥2), ℎ1,2(𝑥3, 𝑥4)) , ℎ2,2 (ℎ1,3(𝑥5, 𝑥6), ℎ1,4(𝑥7, 𝑥8)))
(2.48)

The distribution in Figure 2.15 above can be learnt by an MLP network. However, the

performance of an MLP with more than 2 hidden layers can be quite poor, due to the

computational issue of exploding and/or diminishing gradient. This causes the update direction

63

to become unreliable during gradient descend. When this happens, more data will not be able

to provide more information. [36].

The solution to this problem is to initialize the weights to some “good” values instead of random

values. “Good” values can be found by using ReLU (rectified linear unit) as the activation

function instead of the sigmoid, and a number of other methods. This will place the deep

network in a smooth region of the error surface. One particular method, pre-training by

restricted Boltzmann machine (RBM), was described in the paper “A Fast Learning Algorithm

for Deep Belief Nets” [11]. This breakthrough started the deep learning movement in 2006.

When done properly, deep learning is relatively immune to overfitting compared to the shallow

network. According to Mhaskar et. al. (2017), for a specified test error 𝜖, the size of a 𝑑-

dimensional training set needed by a deep network 𝑁𝑑𝑒𝑒𝑝 is smaller than that of a shallow

network 𝑁𝑠ℎ𝑎𝑙𝑙𝑜𝑤 by the following ratio:

𝑁𝑑𝑒𝑒𝑝

𝑁𝑠ℎ𝑎𝑙𝑙𝑜𝑤
≈ 𝜖𝑑

(2.49)

Suppose the length of the instance is 𝑑 ≈ 102 and the test error is 𝜖 ≈ 0.1. In this case, the size

of the training set required by the shallow network is 𝑁𝑠ℎ𝑎𝑙𝑙𝑜𝑤 ≈ 10
102𝑁𝑑𝑒𝑒𝑝. The size of the

training set required by the shallow network is much larger than that required by by the deep

network, causing the shallow network to have a much higher chance of overfitting than the deep

network.

A DBN is a stack of restricted Boltzmann machines (RBMs). The RBMs are pre-trained in a

greedy layer-wise unsupervised manner using contrastive divergence. A final output classifier

(for example, a softmax layer) is then added on top of the DBN. This forms a network known

as the deep belief net – deep neural network (DBN-DNN). The weights in the DBN-DNN are

then fine-tuned by backpropagation. This is shown in Figure 2.16 below.

64

Figure 2.16. Training process of a DBN-DNN

The RBM is the main component in the DBN. The term “restricted” as used in RBM means

that the only connections in an RBM are those between the input 𝒗 and the output 𝒉. There is

no connection between units of the same layer.

Figure 2.17. The probabilistic model of an RBM

The RBM is a so-called energy-based probabilistic model. In an energy-based model, a function,

called the energy function 𝐸(𝒗, 𝒉), assigns an energy value to the pair of binary vectors 𝒗 and

𝒉 according to Equation (2.50) below.

𝐸(𝒗, 𝒉) = −𝒃𝑇𝒗 − 𝒄𝑇𝒉 − 𝒗𝑇𝑾𝒉 (2.50)

65

where 𝒃 is the bias of the input, 𝒄 is the bias of the output, and 𝑾 is the weight between the

input and output. These parameters (𝒃, 𝒄, and 𝑾) may be collectively denoted as 𝜽.

The energy function 𝐸(𝒗, 𝒉) is related to the joint probability 𝑃(𝒗, 𝒉) as shown below:

𝑃(𝒗, 𝒉) =
𝑒−𝐸(𝒗,𝒉)

𝑍

(2.51)

where 𝑍 is the normalizing term. Thus, energy minimization is equivalent to the minimization

of the negative log of the probability. The objective is to increase the joint probability of having

the input 𝒗 and the output 𝒉.

Contrastive divergence is a sequential two-phase approximation of the minimization of the

energy. It generates the binary output 𝒉 from the visible data 𝒗 and the weights and bias 𝜽 by

binary stochastic sampling. This allows the reconstruction of the input by the transposed weight.

The negative phase uses the exact copy of RBM as the positive phase except for the use of the

reconstructed data 𝒗̃ as its input. The negative phase is thus the “dream” version of the positive

phase.

In the positive phase, the linear combination of the visible data 𝒗 by the weights and bias for

the 𝑖-th hidden unit is the energy as shown below:

𝑐𝑖 + 𝒗
𝑇𝑾.𝑖 (2.52)

The probability 𝑃(ℎ𝑖 = 1|𝒗) is the sigmoid activation of the energy, as shown in Equation

(2.53) below.

𝑃(ℎ𝑖 = 1|𝒗) =
1

1 + 𝑒−(𝑐𝑖+𝒗
𝑇𝑾.𝑖)

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑖 + 𝒗
𝑇𝑾.𝑖)

(2.53)

where 𝑾.𝑖 is the 𝑖-th column of 𝑾, a matrix arranged in the 𝑖𝑛𝑝𝑢𝑡 × 𝑜𝑢𝑡𝑝𝑢𝑡 form, and 𝑐𝑖 is the

bias of the 𝑖-th hidden unit.

66

The binary output of the positive phase, i.e. 𝒉, is obtained from the probability 𝑃(ℎ𝑖 = 1|𝒙) by

binary stochastic sampling, as shown in Equation (2.54) below.

𝒉 = 𝑃(ℎ𝑖 = 1|𝒗) > 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1) ∀𝑖 ∈ {0, … , |𝒉| − 1} (2.54)

The reconstructed data is obtained from the transposed weight as shown in Equation (2.55)

below.

𝒗̃ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑏𝑗 + 𝒉
𝑇𝑾.𝑗

𝑇) ∀𝑗 ∈ {0, … , |𝒗| − 1} (2.55)

where 𝑾𝑇
.𝑗 is the 𝑗th column of 𝑾𝑇 , and 𝑏𝑖 is the bias of the 𝑖-th reconstructed unit of the

negative phase.

𝒗 and 𝒗̃ play a symmetric role in the energy function. Thus, 𝑃(ℎ̃𝑗 = 1|𝒗̃) is the probability of

the negative phase.

𝑃(ℎ̃𝑗 = 1|𝒗̃) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑐𝑖 + 𝒗̃
𝑇𝑾.𝑖) ∀𝑖 ∈ {1,… , |𝒉̃|} (2.56)

The gradients
𝜕𝐸

𝜕𝑾
 of both the positive and the negative phase can be computed quite easily as

the outer product of the visible vector, 𝒗 or 𝒗̃, and the conditional probability vector of the

hidden layer. For the positive phase, this is represented by the symbol 〈𝒗, 𝑝(𝒉|𝒗)〉. For the

negative phase, this is represented by the symbol 〈𝒗̃, 𝑝(𝒉̃|𝒗̃)〉.

The gradient values of the positive and negative phase are different, due to binary stochastic

sampling applied at the hidden layer in the positive phase. The difference is used to update the

weights.

∆𝑾 ∝ 〈𝒗, 𝑃(𝒉|𝒗)〉 − 〈𝒗̃, 𝑃(𝒉̃|𝒗̃)〉 (2.57)

The biases (𝒃 and 𝒄) are updated in a similar vein. In Equation (2.58) below, the difference

between the probability vector of the hidden layer of the positive and negative phase is used to

67

update the hidden bias 𝒄. In Equation (2.59) below, the difference between the input and the

reconstructed data is used to update the visible bias 𝒃.

∆𝒄 ∝ 𝑃(𝒉|𝒗) − 𝑃(𝒉̃|𝒗̃) (2.58)

∆𝒃 ∝ 𝒗 − 𝒗̃ (2.59)

When the inputs are real rather than probabilistic (i.e. not in the range of (0,1)), the following

changes are needed for contrastive divergence to work: (1) use the real values for the visible

layer, and (2) simply use 𝑏𝑗 + 𝒉
𝑇𝑾.𝑗

𝑇 as the reconstructed data instead of its sigmoid (refer to

Equation (2.55)).

2.2.8 Convolution Neural Network

CNN has been the workhorse of image processing for a long time. Its initial form was

introduced by Fukushima in 1979 as the neocognitron based on the neurophysiological findings

on the visual systems of mammals [37]. The standard CNN as known today is credited to the

architecture used by LeCun et. al (1998) for the optical character recognition of handwritten

digits. It is a stack of layers consisting of groups formed by a convolution layer, a pooling layer

and a dropout layer.

The benefit of the CNN is its ability to represent two-dimensional features that are position and

scale invariant. This is important when working with images, as the images of the same object

are often captured at different distances and orientations.

In the convolution layer of the CNN, a rectangular kernel is slide across the entire input matrix.

The patch covered by the kernel at any point in time is the local receptive field of the hidden

neuron. The receptive field may overlap with other receptive fields during sliding. This is shown

in Figure 2.18 below.

68

Figure 2.18. Local receptive field in CNN

Kernel sliding is a form of weight sharing with a small local fan-in. This operation will form a

feature map at the hidden layer. More than one kernel will be needed if more than one feature

map is required. There are usually multiple feature maps at the hidden layer.

The pooling layer comes after the convolutional layer. It is here that pooling is applied to the

feature maps. It regularizes the model and prevents the CNN from being overfitted. It does this

by summarizing and reducing the data in the feature map. One common kind of pooling is max-

pooling. In max-pooling, a pooling unit, which is rectangular patch, will output the maximum

value within the feature region covered by it and discard the rest of the values.

Another form of regularization that can be applied to the CNN is dropout [8]. During training,

the individual nodes are dropped out of the network with a probability of 1 − 𝑝 (or kept with a

probability of 𝑝). This will reduce the learning of interdependent set of feature weights among

the nodes. During testing, all the nodes are used, but their values will have to be multiplied by

the factor 𝑝, a fractional number, to take into account the fact that some of the nodes were

ignored during training.

69

The CNN, with kernel sliding, pooling and dropout as described above, works well with images,

even when the weights in the first layers are initially random in nature. Thus, unlike the deep

belief net, there is no need to pre-train the weights to avoid overfitting.

The massive weight sharing is a particularly strong prior used by the CNN. It is particularly

suitable for image processing, and by decomposing the time series into two-dimensional time-

frequency representation, can be applied to time series data also.

2.2.9 Long Short-Term Memory Recurrent Neural Network

Unlike the CNN, which was first used on images, the recurrent neural network (RNN) is

designed for time series in mind. It passes its internal state to the next input so that both the

internal state and the next input can be used to generate the next output. This allows it to make

use of the past memory of the time series to predict the output.

The general form of an unrolled RNN is shown in Figure 2.19 below:

Figure 2.19. General form of an unrolled recurrent network

The application of the backpropagation training algorithm to a recurrent neural network

requires that the network be unrolled. This is to enable the error gradient to be calculated and

the weights to be updated. When unrolled, at each time step 𝑡 ∈ {1,… , 𝑇}, each unrolled neural

network will take an input 𝒙𝑡 and give an output 𝒐𝑡, and at the same time pass the hidden state

70

𝒉𝑡 to the next time step. Notation wise, the hidden state 𝒉𝑡 and the output 𝒐𝑡 can be expressed

as shown in Equation (2.60) and (2.61) below.

𝒉𝑡 = 𝜎(𝒛𝑡) = 𝜎(𝑾𝑥 ∙ 𝒙𝑡 +𝑾ℎ ∙ 𝒉𝑡−1 + 𝑐) (2.60)

𝒐𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑜 ∙ 𝒉𝑡) (2.61)

Backpropagation through time can be computationally expensive when the number of time

steps is increased. More importantly, this will cause the weights to vanish or explode which can

make the learning slow and the generalization performance poor [39]. This can be understood

by using the chain rule of derivative along the path of the backpropagation of the unrolled

network, as shown in Figure 2.20 below.

Figure 2.20. Unfolding of a general RNN

As can be seen from Figure 2.20, the error gradient
𝜕𝐽

𝜕𝑾
 depends on the chain of hidden states

𝒉𝑡 all the way from 𝑡 = 𝑇 to the current time step. This will cause the weights 𝑾ℎ to be

multiplied repeatedly, leading to the problem of exploding or vanishing gradient. This is shown

in the next few equations, starting from Equation (2.62) below.

Equation (2.62) shows the error gradient based on the chain rule.

71

𝜕𝐽

𝜕𝑾
=

𝜕𝐽

𝜕𝒐𝑇

𝜕𝒐𝑇
𝜕𝒉𝑇

(∏
𝜕𝒉𝑡
𝜕𝒉𝑡−1

𝑡∈{𝑇,…,2}

)
𝜕𝒉1
𝜕𝑾

(2.62)

Equation (2.63) below rewrites the term
𝜕𝒉𝑡

𝜕𝒉𝑡−1
 as the chain of terms over the linear value 𝒛𝑡 of

the hidden layer 𝒉𝑡, where 𝑔(𝒛𝑡) is the activation function and 𝑔′(𝒛𝑡) its derivative.

𝜕𝒉𝑡
𝜕𝒉𝑡−1

=
𝜕𝒉𝑡
𝜕𝒛𝑡

𝜕𝒛𝑡
𝜕𝒉𝑡−1

= 𝑔′(𝒛𝑡)𝑾ℎ
(2.63)

This leads to a re-expression of the error gradient in Equation (2.62) above to the form as shown

in Equation (2.64) below. Here, it can be seen that the weights 𝑾ℎ are being multiplied

repeatedly.

𝜕𝐽

𝜕𝑾
=

𝜕𝐽

𝜕𝒐𝑇

𝜕𝒐𝑇
𝜕𝒉𝑇

(∏ 𝑔′(𝒛𝑡)𝑾ℎ

𝑡∈{𝑇,…,2}

)
𝜕𝒉1
𝜕𝑾

(2.64)

Repeated multiplication of the weights 𝑾ℎ is problematic, as it will lead to exploding or

vanishing gradient. If the largest eigenvalue of 𝑾ℎ is 1, the gradient will propagate along the

backward path, which is fine. However, if it is < 1, the product will vanish along the backward

path, and if it is >1, the product will explode along the backward path.

LSTM was introduced by Hochreiter & Schmidhuber (1997). It is effective in solving the

problem of the vanishing/exploding gradient problem in recurrent neural network. In LSTM,

the state information is carried through the time in an additive (rather than multiplicative)

manner. Instead of using 𝒉 as both the state information and the carrier of that information

through time, it is now used solely as the state information at a particular time step. The carrier

of the state information is stored in a new variable, called the cell state 𝒄𝑡, which is the state of

a new kind of unit called the cell.

An LSTM cell has three gates (the input gate, the forget gate, and the output gate). All the gates

have a sigmoid activation function and a set of weights for 𝑾𝑥 and 𝑾ℎ. The weights for the

three gates are denoted as 𝑾𝑖, 𝑾𝑓, 𝑾𝑜 respectively. Their outputs (serving as the intermediate

72

values for the subsequent element-wise addition or multiplication) are denoted as 𝒊𝑡, 𝒇𝑡, and 𝒐𝑡.

In addition, there is another set of weights 𝑾𝑐 for the cell state.

The following three equations (Equation (2.65), (2.66), and (2.67)) show how the gate outputs

for the input gate, the forget gate and the output gate are determined.

The output of the input gate 𝒊𝑡 is computed as follows:

𝒊𝑡 = 𝜎(𝑾𝑖 ∙ [𝒉𝑡−1; 𝒙𝑡]) (2.65)

The output of the forget gate 𝒇𝑡 is computed as follows:

𝒇𝑡 = 𝜎(𝑾𝑓 ∙ [𝒉𝑡−1; 𝒙𝑡]) (2.66)

The output of the output gate 𝒐𝑡 is computed as follows:

𝒐𝑡 = 𝜎(𝑾𝑜 ∙ [𝒉𝑡−1; 𝒙𝑡]) (2.67)

The operations of an LSTM cell is summarized in Figure 2.21 below.

Figure 2.21. An LSTM cell

73

The candidate information of what goes into the cell state 𝒄𝑡 is determined as shown in Equation

(2.68) below. The tanh function will push the values to be between −1 and 1.

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑜𝑓 𝒄𝑡 ≜ 𝒄̃𝑡 = 𝑡𝑎𝑛ℎ(𝑾𝑐 ∙ [𝒉𝑡−1; 𝒙𝑡]) (2.68)

The cell state 𝒄𝑡 is computed from the candidate 𝒄̃𝑡 and the gate outputs (𝒊𝑡 and 𝒇𝑡). Note that

it is related to the previous cell state by addition, not multiplication.

𝒄𝑡 = 𝒊𝑡⊙ 𝒄̃𝑡 + 𝒇𝑡⊙𝒄𝑡−1

The hidden state 𝒉𝑡 is computed from the output gate 𝒐𝑡 and the cell state 𝒄𝑡, as follows:

𝒉𝑡 = 𝒐𝑡⊙ 𝑡𝑎𝑛ℎ(𝒄𝑡) (2.69)

Beside the LSTM, there are many other variants of the recurrent neural network, such as the

gated recurrent unit (GRU) [41]. In general, these recurrent networks are designed for time

series forecasting rather than time series classification [42]. However, they can be stacked with

other classifiers, such as CNN, to provide time series classification.

2.3 Time Series Classification

Time series problems are either classification or forecasting. Since the classification of time

series is more pertinent in biosignals than forecasting, this section will focus on time series

classification rather than time series forecasting.

Some words on time series forecasting first, to make clear how it is different from time series

classification. In forecasting, the future values are predicted a few time steps away from the

previous values. Accuracy measures such as symmetric mean absolute percentage error

(sMAPE) and mean absolute scaled error (MASE) [43] are used as the performance

metrics. The state of the art in time series forecasting still lies in statistical models such as

exponential smoothing (ETS), autoregressive integrated moving average (ARIMA) [44] and

multivariate generalized autoregressive conditional heteroskedasticity (GARCH) [45] models.

It was found [46] that these statistical models outperform many machine learning methods,

74

including multilayer perceptron network (MLP) and LSTM recurrent neural network. How deep

learning can be superior to the statistical models in time series forecasting remains an open

research question. For example, a stack of LSTM could outperform the ARIMA model [47].

In time series classification, a short sequence of a time series is associated with a class label

[48]. For example, in electrocardiography (ECG), several electrodes are used to pick up the

electrical activity of the heart on the body surface, and the signals are collectively labelled as

either normal or abnormal based on the pre-defined set of classes. Researchers have devised

many methods to solve the problem of time series classification. These methods can generally

be categorized as (1) feature-based, (2) distance-based, (3) neural network-based, i.e. deep

learning, and (4) ensemble-based.

2.3.1 Feature-Based Methods

The traditional approach in time series classification is feature-based. Feature extraction ignores

the redundant and irrelevant information and maps the time series to a lower dimensional space.

It can be done by morphological or statistical feature extraction, time series analysis, and

decomposition techniques. Morphological features are the measures or ratios of pertinent points

in the signal, such as the electrocardiogram’s peak-to-peak interval, i.e. RR value, while

statistical features are the frequency counts or the aggregated summary of the sub-sequences in

the signals. In time series analysis, the generative process of the time series [42] is represented

by a time series statistical model, such as the autoregressive model [49], the linear dynamic

system [50], and the hidden Markov model (HMM) [51]. In decomposition, the components of

the time series are obtained using non-parametric techniques such as principal component

analysis, non-negative matrix factorization and factor analysis. The model parameters or the

components are then used as features in machine learning [52]. The following are some works

in the literature based on these techniques.

Kampouraki et al. [53] classified electrocardiogram by extracting features with multiple

techniques, including morphological and statistical feature extraction, time series analysis, and

decomposition technique. The feature extraction started with the segmentation of the signals

into the QRS complex, which is an easily identifiable shapelet in electrocardiogram. After this,

the RR intervals were measured from the QRS complexes. Statistical features often used in

75

heart rate variability, such as the standard deviation, root mean square of successive differences,

autocorrelation, Shannon’s entropy etc. were computed from the series of RR intervals. They

also used the local linear prediction (LLP), a simple autoregressive prediction method [54], to

derive the features based on the mean values of the absolute differences between the predicted

and the actual values. Furthermore, they decomposed the electrocardiogram by discrete wavelet

transform with the Haar wavelet [55]. The standard deviation of the detail coefficients,

representing the high-frequency content of the signal, are used as the features [56]. All these

features were then used in a support vector machine (SVM).

Nigam et al. [57] extracted two time-domain attributes of EEG, namely, relative spike

amplitude and spike rhythmicity, and used them in neural network to detect epilepsy. They also

used frequency-domain features such as dominant frequency, average power in the main energy

zone, and normalized spectral entropy.

Zhou et al. [58] determined the relationships within the same variable (intra-temporal patterns)

and between different variables (inter-temporal patterns) at different time points based on data

statistics and frequency counts, and then combine the degree of these relationships as feature

vector. Thereafter, classifiers such as SVM and neural network were applied to the statistical

features.

Andrzejak et al. [15] analysed EEG with correlation dimension, a measure in chaos theory of

the dimensionality of the space occupied by a set of random points. They concluded that there

are significant differences in the features derived from correlation dimension in subjects that

are normal and those with seizure activity.

Flexer et al. [59] developed a sleep feature extractor based on the Gaussian Observation HMM

(GOHMM) model using only a single EEG signal. HMM exploits the probabilistic dependence

of successive sleep stages. They used the coefficients of the AR process as the reflection

coefficients in the GOHMM model, and Viterbi decoding to identify the most likely sequence

corresponding to a time series and compute the probabilities of being in any one of the states at

any point in time.

76

J. Grabocka et al. [60] used non-negative matrix factorization to project time series data, all

thirty seven data sets, into a latent space through stochastic learning. The projected data was

then used to train a logistic regression model.

Li et al. [61] applied singular value decomposition (SVD) on the data, where eigenvalue

analysis is carried out in order to find an optimal set of features, and then apply SVM on the

feature vectors to classify the time series data.

Weng et al. [62] projected the data into the PCA subspace by throwing away the smallest

principal components, and then project the PCA subspace further with supervised Locality

Preserving Projection (LPP) [63]. LPP finds the optimal linear approximations to the

eigenfunctions of the Laplace Beltrami operator [14] on the data manifold. The LPP is a linear

method, although it shares many of the data representation properties of nonlinear techniques

such as Laplacian eigenmaps.

The problem with the feature-based approach is that the important correlation among the

variables may be lost during feature extraction, and some of the features that have different

lengths cannot be extracted easily. Also, the data analyst will not be able to extract the features

if he does not know the important aspects of the complex signal.

2.3.2 Distance-Based Methods

There are two main approaches in distance-based methods. The first approach works directly

on the time series data by comparing the sequences as a whole and use the similarity between

them as the features, such as dynamic time warping (DTW) [64], while the second approach is

based on subsequence discovery techniques that searches for recurrent patterns in the time

series, such as motif analysis or shapelet discovery [65].

Working directly with the time series data is a global feature approach, while subsequence

discovery technique is a local feature approach. The global feature approach is relatively simple

and is the reason why the 1-nearest neighbour (1-NN) and other forms of k-nearest neighbour

(k-NN) classifiers [66] are widely used. They are simple methods that produce good

performance, even though they are sensitive to noise in the training set and are high in

77

classification time due to the need to scan the entire training set before taking a decision at test

time in an instance-based classifier. Their effectiveness is due to the distance measures, as the

shapes and structures of the sequences, such as temporal dependency, high dimensionality, and

variable lengths, have to be well represented by the distance measures. These distance measures

are either lock-step distance measures or elastic distance measures [66]. Lock-step distance

measures, such as the Euclidean distance, compare the 𝑖-th point of one sequence to the 𝑖-th

point of another sequence, whereas elastic distance measures, such as dynamic time warping

(DTW), creates a non-linear mapping in order to align and synchronize the sequences. It

calculates the distance between each possible pair of points out of two signals and then builds

a cumulative distance matrix to find the least expensive path through the matrix. Usually, the

signals are normalised and smoothed before the distances between the points are calculated.

Experimental comparison of distance measures of time series data suggests that the DTW

distance measure is difficult to beat [67][68].

The complexity of DWT is quadratic in the length of the sequences. Holt et al. [69] used a form

of DTW called derivative DTW on multi-dimensional time series for gesture recognition. In

derivative DTW, the distances are calculated not between the sequences but their associated

first order derivatives. In this way, synchronisation is based on slopes and peaks rather than the

raw values. They found that derivative DTW performed well under noisy conditions.

For complex classifiers other than k-NN classifiers, distance measures are used to represent the

time series as order-free feature vectors in ℝ𝑁, bridging the gap between the time series and the

general purpose classifiers. A global distance matrix [70] is built by calculating the distances

between each pair of sequences, and then each row of the distance matrix is used as the feature

vector for the sequence. The drawback of using the global distance matrix is its computational

intensity, as an 𝑛 × 𝑛 matrix needs to be computed for a data set with 𝑛 instances or sequences.

Gudmundsson et al. [71] used DTW to build the global distance matrix and then applied it to

an SVM classifier. They concluded that the new representation in conjunction with SVM is

competitive with the benchmark 1-NN with DTW. Jain et al. [72] used PCA to reduce the

dimensionality of the 𝑛 × 𝑛 global distance matrix by keeping only those dimensions that are

important. They found that PCA can have a consistent positive effect on the performance of the

78

classifier but this effect seems to be dependent of the choice of the kernel function applied in

the SVM.

The distance measures in the global distance matrix can be embedded as a vector representation

in a new feature space while preserving the distances [73]. Embedding techniques include

multidimensional scaling, pseudo-Euclidean space embedding and Euclidean space embedding

by the Laplacian eigenmap technique [74]. Mizuhara et al. [75] experimented with various

embedded techniques and found that the Laplacian eigenmap-based embedded method

achieved a better performance than the 1-NN classifier with DTW.

The aforementioned methods work on transforming distances to feature vectors. For some

machine learning algorithms, for example SVM, the feature vector form is not required. Only

the similarity of the input objects are required. If two inputs are similar, their kernel output will

be similar too. The kernel approach can handle any kind of data, including time series and

images, as long as there is a suitable kernel that can capture the similarity between pairs of

inputs. The kernel method has worked successfully with biosignals, although there are not many

“benchmark” kernels for time series in the literature [76]. Chaovalitwongse et al. [77] made use

of the Gaussian kernel and the Fourier kernel [78] of the DTW distance to classify normal and

pre-seizure electroencephalograms. The Fourier kernel is useful when the time series has

spectral patterns due to certain events, such as the spikes in the electroencephalogram.

In summary, distance-based methods, in particularly DTW and its variants, are widely used in

time series classification. Nevertheless, learning with the distance features can often become

cumbersome, depending on the length and size of the time series data. Modified DTW and other

dimensionality reduction technique are often required to lower the otherwise intractable

computational cost.

2.3.3 Neural-Network-Based Methods

The neural network-based method, also known as deep learning, is an end-to-end method. It is

exciting, as it is able to extract features from the raw signals without the need to perform feature

engineering or specify distance measure.

79

The foundation of all deep learning networks is composition. In composition, the output of a

layer becomes the input of the next layer. This kind of compositional structure matches with

the compositional function of many natural signals such as image, text and speech [6]. These

signals have what is called the property of locality [79], which means that the features formed

by neighbouring points are related to one another at different scales and time.

There are many network architectures for deep learning. Most of them are for image

classification, and only some are for the one-dimensional time series data. Although there exist

many types of deep neural networks, the three main deep learning networks in time series

classification are the multilayer perceptron (MLP), the convolutional neural network (CNN)

and the echo state network (ESN) [80].

The baseline network for time series classification is the MLP [81]. It consists of hidden layers

that are fully connected. The MLP is often preceded by an unsupervised pre-training phase,

such as stacked denoising auto-encoders (SDAEs) [82]. The auto-encoder learns the latent

features from the unlabelled data in an unsupervised manner, which are then leveraged to

classify the time series by training the MLP with the labels. This kind of MLP with auto-

encoders is called deep belief net – deep neural network (DBN-DNN).

Längkvist et al. [83] applied DBN-DNN to sleep stage classification. They showed that an

automatic sleep stager, i.e. auto-encoder, can be applied to multimodal sleep data without using

any hand crafted features.

Wang et al. proposed a form of DBN called the Cycle DBN where they performed unsupervised

learning to discover the structure hidden in the data. In essence, the Cycle DBN predicts the

label at time 𝑡 not only based on the current input but also the previous label at 𝑡 − 1.

The convolutional neural network is widely used in time series classification with two-

dimensional time-frequency representation [84]. Variants of CNN proposed for the time series

classification include the fully convolutional networks (FCN) [85], multi-channel deep

convolution neural network (MC-DCNN) [86] and residual network (ResNet) [87]. They make

use of layers such as the batch normalization (BN) layer [88] and the global average pooling

80

(GAP) layer to reduce the number of parameters to avoid overfitting, and shortcut links to

reduce the vanishing gradient effect.

Karim et al. [89] augmented the FCN with LSTM to significantly enhanced the FCN with a

nominal increase in model size. In particular, they used the attention mechanism of LSTM to

visualize the decision process of the LSTM cell.

An ESN consists of an input layer, a non-linear reservoir layer and a linear readout layer. The

reservoir layer is a large, sparsely connected, tanh-activated, recurrent layer used for the

contrastive encoding of the history of driving input signals into a state space. There is no need

to compute the gradient for the reservoir layer. The inter-connected weights inside the reservoir

and the input weights are not learnt by gradient descent; only the output weights are tuned using

a learning algorithm such as the logistic regression or softmax classifier, which in a way is

similar to the extreme learning machine (ELM). This reduces the training time of ESN and

avoid the vanishing gradient problem.

D. Bacciu et al. [90] focused on a particular variant of ESN [91] called the leaky integrator ESN

(LI-ESN) [92]. In LI-ESN, the standard tanh reservoir units are replaced by the leaky integrator

units, which apply an exponential moving average to the reservoir state values for better

handling of slow-changing input sequences. Using the LI-ESN, they were able to predict the

change of location of a subject as he moved room-to-room, based on the received signal strength

of the wireless sensors placed around the rooms.

2.3.4 Ensemble Methods

Single algorithm, whether feature-based, distance-based or neural network-based, may perform

poorly on the test set due to overfitting to the training data set. An ensemble is a set of base

classifiers, or sub-models, that are fused together. It makes use of weak base classifiers to inject

diversity into the system and then constructs a strong learner from the combination of the base

classifiers. Broadly speaking, the diversity can be achieved by employing different algorithms

as the sub-models, changing the training data of the sub-models by resampling the data, training

the sub-models on different attributes, or re-weighting the training data. The diversity reduces

the need to optimize the parameters of the sub-models and thus improves on the generalization

81

performance [93], at the expense of more training time. It can be used for time series

classification. For example, Deng et al. proposed a random forest built on summary statistics

of intervals [94], and Buza et al. [95] proposed an ensemble that combines alternative elastic

and inelastic distance measures.

Lines et al. [66] found that ensembling individual nearest neighbour classifiers with different

distance measures, e.g. weighted and derivative DTW, edit distance-based measures, time warp

with edit, etc., results in significantly better accuracy than the ensemble’s individual

components. Many other classifiers can be ensembled as well, such as decision trees (random

forest) [94] and SVM [96].

COTE (Collective Of Transformation-based Ensembles) [97] is an ensemble of 35 classifiers.

Not only does it ensemble different classifiers over the same transformation, it also ensembles

different classifiers over different time series representations.

HIVE-COTE [98] extended COTE with a Hierarchical Vote system. It achieved improvement

over COTE by leveraging a new hierarchical structure with probabilistic voting. It is considered

the state-of-the-art algorithm for time series classification [68] when evaluated over the 85

datasets from the UCR archive [99].

COTE and HIVE-COTE are hugely computationally intensive and impractical to run on a real

big data mining problem [68]. It requires training 37 classifiers, as well as cross-validating their

hyper-parameters. Some of the classifiers are time-consuming to run, such as shapelet transform

and nearest neighbour classifier. For example, the time complexity of shapelet transform [100]

is 𝒪(𝑛2 ∙ 𝑙4) where 𝑛 is the number of time series in the data set and 𝑙 is the length of each time

series [100]. The nearest neighbour classifier needs to scan the training set before taking a

decision at test time, which is a problem when the training set is large.

Besides ensembling traditional machine learning models, it is also possible to ensemble deep

neural networks too [85]. This approach has the desirable characteristics of end-to-end

processing, with the added bonus of a lift in performance.

82

Deng et al. [101] went beyond basic linear stacking to the log-linear stacking of sub-models

(DNN, CNN, and RNN) in an ensemble.. In linear stacking, the outputs of the sub-models are

linearly combined, whereas in log-linear stacking, the outputs of the sub-models are subjected

to the logarithmic function. The stacking parameters are learned using both the training and

validation data, with the cost function based on the total square error. When used on raw

acoustic signals in speech, it resulted in a significant increase in phoneme recognition accuracy.

Lin et al. [102] developed a DNN-based ensemble based on the “local and distorted” view

transformation. First, different filtering methods were used to pre-process the time series, and

then downsampled selectively. These views were then used to train two separate DNNs. In the

testing phase, the “subview prediction” of the two DNNs were averaged out for use by the final

classifier. Experiment results on the CCDD database [103] demonstrate that the method is

effective in electrocardiogram time series classification.

2.4 Multi-view Learning

Multi-view learning, or data fusion from multiple feature sets, is an emerging direction in

machine learning [104]. In multi-view learning, more than one feature set is used for learning.

The features may be redundant, but they are not entirely similar. As such, besides learning the

patterns in the features, the relationship among the feature sets can be used for learning too.

Figure 2.22 below illustrates the concept of multi-view data. It shows two views with some

overlap between them, highlighting that: (1) Part A and Part C exist as unique views, i.e., the

two views are complementary, (2) Part B is shared by both views, i.e., the two views are

supplementary.

Figure 2.22. Two Views

83

The objective of multi-view learning is to improve the generalization performance by exploiting

the discriminatory information in the views to complement each other, and the similarity among

the views to supplement each other.

An empirical way to check for the existence of complementarity in a data set is to first use all

the features in the data set for classification and then reduce the size of the feature set

progressively. The removal of the features will reduce the discriminatory information available

for training, which will likely cause the performance to drop, providing the evidence that these

features contribute to the training of the model.

2.4.1 Review of Multi-View Learning

This sub-section provides a general survey of the methods and techniques used to address the

multi-view learning problem.

Multi-view learning was first introduced as a framework by Blum and Mitchell [105] for the

semi-supervised learning of web page classification. The text of the web pages and the anchor

text in the hyperlinks of the web pages were used as the feature sets in the two-view setting.

Using co-training, two separate models built on the two disjoint views were used to predict the

unlabeled data. This was used to decide on which unlabeled data to add to the training set. In

this way, the training set can be enlarged for further training.

A survey on multi-view learning by Sun [106] reviews the theories, properties and behaviours

of multi-view learning. It shows that multi-view learning, as an emerging and rapidly growing

field in machine learning, has been used in all branches of machine learning, from unsupervised

learning [107], semi-supervised learning, active learning [108], supervised learning, transfer

learning [109], and ensemble training [110]. Some examples of applications include the

sentiment analysis of the attitude or opinion of a user [111], and speech analysis for phonetic

recognition [112]. As for the use of deep learning in multi-view learning, the first such

application was on audio-visual speech recognition [113].

At the moment, there are generally three ways to do multi-view learning: (1) early fusion, where

the data from different sources are concatenated and then fed to a single learner, (2) intermediate

84

fusion, where the data from different sources are combined as the common features for the final

classifier, and (3) late fusion, where the decisions by a number of classifiers are combined in a

fixed or trained combiner. By this categorization, the aforementioned framework by Blum and

Mitchell [105] is a late fusion technique applied to semi-supervised learning.

Yan Zheng [114] proposed selection strategies (multi-view simple disagreement sampling, and

multi-view entropy priority sampling) for the active learning, i.e. semi-supervised learning, of

environmental sounds. He used two views, namely (1) the CELP features in 10 dimensions, and

(2) the MFCC features in 13 dimensions. One of the two views is selected for use by the final

classifier based on the outcome of the selection strategies.

Teng Niu [111] showed that the human perception in image-text pairs (collected from Twitter)

can be learnt using bag-of-words (BoW) as textual features and SIFT, GIFT etc. as visual

features. In early fusion, the textual features and the visual features were concatenated as a

single feature vector. In late fusion, the output of the base classifiers are weighted to produce a

final score.

An important part of multi-view learning is the construction of the views. The views may be

naturally distinct, as in the text of the web page and the anchor text in the hyperlink of the web

page, or the video and audio signals of a multimedia content [115]. They may be distinct due

to the feature extraction methods used on the raw data, such as the CELP features and the MFCC

features of an audio signal [114]. They may be subsets that are split from a single feature set,

based on the ordered importance of the features in the feature set.

When multi-view features are not available, random feature split of a single view can be used

to construct artificial views. This can be done by, for example, resampling the data after data

augmentation, or generate the outputs from several networks that are configured differently.

The use of the artificial views in multi-view learning can still improve the generalization

performance, even though they are not natural views. This is because multi-view learning is

robust to the violated assumptions of its underlying classifiers [116].

The architectures for the two types of multi-view data, namely natural and artificial data, are

shown in Figure 2.23 below:

85

Figure 2.23. Natural (left) and artificial (right) views for multi-view learning.

2.4.2 Ensemble Learning

From the point of view of multi-view learning, the ensemble is a technique to blend multiple

views together. It can be used for either intermediate or late data fusion, depending on whether

the output of the ensemble is the final output of the multi-view learning, or whether the output

serves as the intermediate feature used by the final classifier. This sub-section will discuss

ensemble learning based on the way the outputs from the base learners are combined, namely

(1) ensemble by bagging, (2) ensemble by boosting, and (3) ensemble by stacking [117].

In ensemble by bagging, multiple random subsets are created, with replacement, from the

original training data set [118]. The final prediction is by averaging, if it is regression, and by

voting, if it is classification. An example of ensemble by bagging is random forest.

Bagging can be applied to imbalanced data set by applying the stratified resampling method. It

can be summarized as follows: (1) resample the minor class with replacement, using a size that

is the same as the minor class, (2) resample the major class with replacement, using a size that

is smaller than the minor class.

To prove that bagging can reduce overfitting, let’s say there are 𝑘 random subsets, and that each

subset 𝑖 ∈ {1⋯𝑘} results in an error 𝒆(𝑖) for a particular input vector. For 𝑘 subsets, the

average error for that input vector will be
1

𝑘
∑ 𝒆(𝑖)𝑘
𝑖=1 . Suppose the variance of the error is

86

𝔼 [(𝒆(𝑖))
2
] = 𝜈 , and that the covariance between the errors made by two such subsets is

𝔼[𝒆(𝑖)𝒆(𝑗)] = 𝑐. In this case, the expected squared error made by the ensemble will be:

𝔼 [(
1

𝑘
∑𝒆(𝑖)
𝑘

𝑖=1

)

2

] =
1

𝑘2
𝔼 [∑((𝒆(𝑖))

2
+∑𝒆(𝑖)𝒆(𝑗)

𝑗≠𝑖

)

𝑘

𝑖=1

]

=
1

𝑘
𝑣 +

𝑘 − 1

𝑘
𝑐

(2.70)

If the errors are perfectly correlated (𝑐 = 𝑣), the mean squared error will be reduced to 𝑣, so

ensemble averaging will not help with reducing the error. However, if the errors are perfectly

uncorrelated (𝑐 = 0), the expected squared error will be reduced to
1

𝑘
𝑣. This ideal situation will

occur if the outputs of the subsets are independent of each other.

Another way of looking at it is to denote the expectation of the squared error for the 𝑖-th sub-

model as 𝔼 [(𝒆(𝑖))
𝟐
]. This will result in the average performance of the 𝑘 subsets to be

𝐸𝑎𝑣𝑒 =
1

𝑘
∑𝔼[(𝒆(𝑖))

𝟐
]

𝑘

𝑖=1

(2.71)

By considering the Cauchy’s inequality,

𝐸𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = 𝔼 [(
1

𝑘
∑𝒆(𝑖)
𝑘

𝑖=1

)

2

] ≤
1

𝑘
∑𝔼[(𝒆(𝑖))

𝟐
]

𝑘

𝑖=1

= 𝐸𝑎𝑣𝑒

(2.72)

It is clear that 𝐸𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ≤ 𝐸𝑎𝑣𝑒 , which indicates that the ensemble can give more accurate

and reliable estimations than the average performance of the individual models.

The second type of ensemble, ensemble by boosting, is based on the theory of probability

approximately correct (PAC) learning [119]. It uses many weak learners in cascade, where the

87

instances deemed difficult by the previous weak learner will have a higher chance to be trained

by the next weak learner. The final prediction is the linear combination of the outputs of these

weak learners.

The first practical boosting method in the literature is Adaptive Boosting, or AdaBoost for short

[120]. It is a method developed for binary classification. The steps in AdaBoost are as follows:

(1) sample a subset (with replacement) from the training data, according to the weights of the

data instances, (2) train with the subset, (3) test with the total training data set, and adjust the

strength of the weak learner and the weights of the data instances accordingly, and (4) repeat

the procedure for the next weak learner.

The strength 𝛼(𝑖) of the 𝑖-th weak learner in the aforementioned step (3) can be computed as

follows:

𝛼(𝑖) = ln
(1 − 𝜀)

𝜀

(2.73)

𝜀 is the weak learner’s weighted error rate for the total training data set. It is computed as shown

in Equation (2.74) below.

𝜀 =
𝑠𝑢𝑚 (𝒘(𝑖)⊙ 𝐼(𝒕⊙ 𝒚(𝑖) ∈ −1))

𝑠𝑢𝑚(𝒘(𝑖))

(2.74)

In Equation (2.74) above, 𝒕 (the target) and 𝒚(𝑖) (the prediction of the 𝑖-th weak learner) have

values of either 1 or -1 for each of the instances, and 𝐼(∙) is an indicator function that produces

a 1 if the prediction is wrong and 0 otherwise.

A weak learner with 𝜀 = 50% will have a strength of 0. The strength will be exponentially

positive if 𝜀 is lower than 50%, and exponentially negative if it is higher than 50%.

The weights 𝒘(𝑖+1) for the next weak learner, i.e. the 𝑖 + 1-th weak learner, can be computed

after the strength 𝛼(𝑖) is computed. This is shown in Equation (2.75) below:

88

𝒘(𝑖+1) = 𝒘(𝑖)⊙
𝑒𝛼

(𝑖)𝐼(𝒕⊙𝒚(𝑖)∈−1)

𝑍

(2.75)

The weights 𝒘(𝑖+1) is a vector where the vector element 𝑤𝑗
(𝑖+1)

 represents the probability for

the 𝑗-th data instance to be selected for the (𝑖 + 1)-th weak learner. To make it a distribution,

the weights 𝒘(𝑖+1) will have to be divided by 𝑍, the sum of all the vector elements in 𝒘(𝑖+1).

As seen in Equation (2.75) above, a wrong prediction will result in a larger weight value for the

data instance. The larger weight value will give the data instance a bigger chance of being used

by the next weak classifier.

The final prediction is the weighted combination of the outputs of the weak learners.

𝑦(𝒙) = 𝑠𝑖𝑔𝑛 (∑𝛼(𝑖)𝒚(𝑖)
𝑘

𝑖=1

)

(2.76)

The number of weak learners 𝑘 is a user-defined parameter in AdaBoost. The training error will

eventually reach zero if more and more weak learners are trained. The optimal generalization

performance will likely be reached before that, as overfitting will kick in with more weak

learners are added.

The gradient boosting machines (GBM) is a powerful ensemble technique that is built upon

AdaBoost. It minimizes the cost function by sequentially adding a weak learner (usually a

regression tree) in a gradient descent like procedure to reduce the cost [121].

A regression tree is a decision tree with a linear regression model at the terminal nodes (i.e.

leaves). A leaf acts as a small partition of the data space. A data instance 𝒙, starting from the

root node, will follow the splits along the tree and reach the leaf that it belongs. Each split is

dichotomous and is usually based on a single attribute.

The steps to train a GBM are: (1) train the first weak classifier with the original target class

labels, (2) choose the errors between the target class labels and the predicted values as the labels

89

for the next classifier, and (3) keep adding weak learners until the function reaches the

convergence.

The errors mentioned in the aforementioned step (2) are computed as shown in Equation (2.77)

below, where 𝒙 is the input, 𝒚(𝒙) is the predicted value, 𝒕 is the target class labels, and 𝒆 is the

error made by the weak learner.

𝒆 = 𝒕 − 𝒚(𝒙) (2.77)

If 𝒆(𝑖), the error produced by the 𝑖-th classifier, is used as the target label for the next weak

learner, then

𝒆(𝑖+1) = 𝒆(𝑖) − 𝒚(𝑖+1)(𝒙) (2.78)

In Equation (2.78) above, the error of the (𝑖 + 1)-th classifier 𝒆(𝑖+1) is the difference between

the error learned by 𝑖-th weak learner and the prediction of the current classifier.

As GBM is a greedy method, it can overfit the training data set quickly. To avoid this,

regularization methods, such as tree constraints and training with a random subset, should be

used for the training of the regression tree.

The third type of ensemble, ensemble by stacking, is also known as committee machine [122].

It is similar in concept to bagging, in that multiple trainings are done in parallel before their

outputs are combined. The main differences are (1) the data it combines are obtained from

multiple types of sub-models (the meta learners) instead of just a single type, and (2) the outputs

from the sub-models are subjected to a higher level classifier.

Stacking works best when the sub-models are skilful in classifying the input but in different

ways, such as algorithms that use very different internal representations. If the sub-models are

able to provide complementary views, then giving more weight to those views that are different

will enhance the informational content of the blended data. The sum of 𝑀 mixing coefficients,

where 𝑀 is the number of sub-models, must be 1, as shown in Equation (2.79) below.

90

∑𝛼𝑖 = 1

𝑀

𝑖=1

(2.79)

The difficulty in determining the mixing coefficients 𝛼𝑖 for the ensemble will be addressed by

the proposed method in this thesis.

2.4.3 Multiple Kernel Learning

Multiple kernel learning (MKL) [123] is class of algorithms that combines a set of kernels as a

unified kernel by either linear or non-linear combination. This is useful for multi-view learning,

as the kernels that are established for the data sources can be used without having to create a

common kernel for all of them (which can be difficult when there are different notions of

similarity in the multi-view data). The bias of the kernels can be reduced by mixing the kernels

optimally. A number of algorithms exists for doing so [124]. Figure 2.24 shows the topology

for multiple kernel learning.

Figure 2.24. Multi-kernel training

Multiple kernel learning is possible because the kernels are additive (by the theory of

reproducing kernels [125]). Thus, for a set of kernels 𝑲 = {𝑲𝟏, … ,𝑲𝑴}, the unified kernel can

be obtained by Equation (2.80) below if they are combined linearly.

𝐾′ =∑𝛼𝑖𝐾𝑖 = 1

𝑀

𝑖=1

(2.80)

https://en.wikipedia.org/wiki/Kernel_method

91

The kernel weights 𝜶𝒊 ∈ {𝟏,… ,𝑴} are learned by minimizing the cost function and the

regularizer shown in Equation (2.81) below, where 𝒀 is the training data.

min
𝜶
𝑐𝑜𝑠𝑡(𝒀, 𝐾′) + 𝑟𝑒𝑔(𝑲) (2.81)

2.4.4 Spectral Embedding

In multi-view learning, the individual views can be used as they are, or embedded in a new low-

dimensional feature space that preserves the pertinent information in the original view. The

dimensional reduction will reduce the time and space required for machine learning, and also

provide an alternative view of the data for processing, such as computing the complementarity

of the views. This is the idea that will be exploited by the proposed multi-view temporal

ensemble which will be described later in this thesis.

There are many types of dimensional reduction techniques. Those under the category of spectral

dimensionality reduction techniques may be categorized as: 1) linear dimensionality reduction

methods, for example, principle component analysis (PCA), and 2) manifold learning-based

algorithms, for example, Laplacian eigenmap (LE).

Manifold learning-based algorithms are often termed as spectral embedding, where the term

“embedding” simply means some sort of encoding. It is used for the dimensional reduction of

data points that are clustered in a non-linear manifold. In this method, data points of the same

cluster are mapped close to each other in the embedding.

In a non-linear manifold, the global distance between the data points is not a good indication of

their cluster-ness. This is because the data are distributed in a “curvy” style in the data space

(refer to Figure 2.25 below). Data points of different clusters, despite being associated with

different categories, may not be far away from each other in terms of distance. Therefore, only

the local data points that are very near to each other are significant in determining whether they

are of the same cluster or not.

92

Figure 2.25. Reduction of a non-linear manifold preserves the local proximity of the data

points. Reproduced from internet sources.

In Figure 2.25 above, the colours represent the target class labels. On the left hand side of the

figure, the change of colours in the manifold is smooth. On the right hand side of the figure, the

change of colours in the embedding is also smooth. This feat is achieved by preserving the

local proximity of the data points.

Notation wise, the problem can be stated as: given a set of 𝑁 data points 𝒙 = {𝒙1…𝒙𝑁} in some

manifold ℳ ∈ ℛ𝑑 , find a set of 𝑁 points 𝒚 = {𝒚1…𝒚𝑁} in ℛ𝑚 (𝑚 ≪ 𝑑) such that 𝒚𝑖

represents 𝒙𝑖.

In the problem above, the requirement is that the embedded vectors 𝒚𝑖 and 𝒚𝑗 must preserve

the local proximity of the data points 𝒙𝑖 and 𝒙𝑗. The objective to satisfy the requirement is as

follows: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒚𝑖, 𝒚𝑗) ≈ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙𝑖, 𝒙𝑗) if and only if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙𝑖, 𝒙𝑗) is small. This

objective can be expressed as the minimization of the cost function in Equation (2.82) below:

𝐽(𝒚) = min
𝑖,𝑗∈{1,…,𝑁}

∑(‖𝒚𝑖 − 𝒚𝑗‖
2
[𝑾]𝑖,𝑗)

𝑖,𝑗

(2.82)

In Equation (2.82) above, 𝑖 and 𝑗 are the general indices of a pair of data instances within the

set of 𝑁 data points. The weight [𝑾]𝑖,𝑗 is large only if the distance between (𝒙𝑖, 𝒙𝑗) is small.

This property of “large weight value at small local distance” can be achieved with the use of a

93

local kernel such as the radial basis function. It uses pairwise measurements to provide

information about the closeness of the data points.

In spectral embedding, the weight value is assigned to the radial basis function only if the node

pair is connected, and 0 otherwise. This is shown in Equation (2.83) below.

[𝑾]𝑖,𝑗 = {𝑒
−‖𝒙𝑖−𝒙𝑗‖

2
/𝜎2 𝑖𝑓 𝒙𝑖 𝑎𝑛𝑑 𝒙𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.83)

The radius of the local kernel is represented by the hyper-parameter 𝛾 =
1

𝜎2
. When 𝛾 = 0, i.e.

𝜎 = ∞, the weights will be simplified as 1 (connected) or 0 (not connected), as shown in

Equation (2.84) below.

𝑾𝑖,𝑗 = {
1 𝑖𝑓 𝒙𝑖 𝑎𝑛𝑑 𝒙𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.84)

To illustrate the representation of a set of 𝑛 data points with an undirected weighted graph and

the weight matrix, a set of edges connecting six nodes together is shown in Figure 2.26 below.

Figure 2.26: Simple graph, with node 1 connected to node 2, 3, 4, 5, and 6

In this case, using the simplified local kernel (𝜎 = ∞), the weight matrix of the graph in Figure

2.26 above will become what is also called the adjacency matrix 𝑨 as shown in Equation (2.85)

below.

94

𝑨 =

[

1 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0]

(2.85)

2.4.5 Laplacian Eigenmap

In subsection 2.3.2 on Distance-Based Methods, it was mentioned that Mizuhara et al. [75]

experimented with various embedded techniques and found that the Laplacian eigenmap-based

embedded method achieved a better performance than the 1-NN classifier with DTW. This

subsection will describe the detail of this spectral embedding technique, as it will be exploited

by the proposed multi-view temporal ensemble which will be described later in this thesis.

In Laplacian eigenmap (LE) [14], a Laplacian matrix 𝑳 is formed from the weight matrix 𝑾. 𝑳

is then subjected to eigen-decomposition. The collection of the eigenvectors 𝒀 forms the

eigenmap of the data. It represents the data in the reduced space and is regarded as the spectral

embedding of the data.

To illustrate the idea of the Laplacian 𝑳, consider the graph in Figure 2.26 again. Let 𝑫 be the

diagonal weight matrix of 𝑾, defined as [𝑫]𝑖,𝑖 = ∑ [𝑾]𝑖,𝑗
𝑁
𝑗=1 and let the Laplacian matrix 𝑳 be

𝑫−𝑾. In this case, the Laplacian matrix 𝑳 will be as shown in Equation (2.86) below. Note

that the diagonal entry [𝑳]𝑖,𝑖 is given by the degree of connection of node 𝑖. The off-diagonal

entries represent the edges such that [𝑳]𝑖,𝑗 = [𝑳]𝑗,𝑖 = −1 if there is an edge between

nodes 𝑖 and 𝑗, and [𝑳]𝑖,𝑗 = 0 otherwise.

𝑳 =

[

5 −1 −1 −1 −1 −1
−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
−1 0 0 0 1 0
−1 0 0 0 0 1]

(2.86)

The outline of the LE method is as follows:

95

1. Construct the adjacency matrix 𝑨 for a set of 𝑛 data points. Whether the node pair (𝑖, 𝑗) is

connected or not is based on any one of the following criteria:

- 𝜖-neighbourhoods: 𝑖 and 𝑗 are connected if ‖𝒙𝑖 − 𝒙𝑗‖2
2
< 𝜖

- 𝑘-nearest neighbours: 𝑖 and 𝑗 are connected if 𝒙𝑗 is among the 𝑘 nearest neighbours of

𝒙𝑖

- combination of the above: : 𝑖 and 𝑗 are connected if 𝒙𝑗 is among the 𝑘 nearest

neighbours of 𝒙𝑖, and ‖𝒙𝑖 − 𝒙𝑗‖2
2
< 𝜖

2. Based on 𝑨, set up the weight matrix 𝑾 ∈ℳ𝑁×𝑁(ℝ) according to the local kernel function,

where higher value implies closeness. There are two common kernels that can be used to

generate the weights:

- Radial basis kernel (with 𝜎2 as a parameter):

[𝑾]𝑖,𝑗 =

{

𝑒𝑥𝑝(−

‖𝒙𝑖 − 𝒙𝑗‖2
2

𝜎2
) 𝑖𝑓 𝒙𝑖 𝑎𝑛𝑑 𝒙𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.87)

- Simple-minded kernel (radial basis kernel with 𝜎 = ∞):

[𝑾]𝑖,𝑗 = {
1 𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.88)

3. Let 𝑫 be the diagonal weight matrix of 𝑾, and form the Laplacian matrix 𝑳 = 𝑫 −𝑾.

4. Solve the generalized eigenvector problem 𝑳𝒚 = 𝝀𝑫𝒚. This will yield the eigenvectors

𝒚0, 𝒚1, … , 𝒚𝑛−1, and the eigenvalues 𝜆0, 𝜆1, … , 𝜆𝑛−1.

5. Arrange the eigenvectors 𝒚0, 𝒚1, … , 𝒚𝑛−1 in increasing eigenvalue order, as shown in

Equation (2.89) below.

0 = 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝑛−1 (2.89)

6. Map 𝒙𝑖 to 𝒚𝑖 using the smallest 𝑚 eigenvectors other than 𝒚0 (since 𝒚0 may represent

noise) to embed 𝒙𝑖 in the most compact 𝑚-dimensional Euclidean space.

96

The above procedure describes the solution of LE as the eigendecomposition of 𝑳. It results in

the cost function min
𝑖,𝑗∈{1,…,𝑁}

∑ ‖𝒚𝑖 − 𝒚𝑗‖
2

𝑖,𝑗 [𝑾]𝑖,𝑗 as shown in Equation (2.82) previously to be

minimized.

The cost value is the real value of the cost function. It will decrease in value if the cost function

is being minimized. The lower the cost value, the better the preservation of the local proximity

in the spectral embedding.

In LE, it can be shown that the cost value is equivalent to the value of 𝒚𝑻𝑳𝒚. To derive that, it

is easier to first assume a 1-dimensional embedding, i.e. 𝒚𝑖 ∈ ℛ
1 for 𝑖 ∈ {1, … ,𝑁}, with 𝒚

being an 𝑁-row column vector and 𝑖 is the row index of the column vector. Noting that the

weight matrix 𝑾 is non-negative and symmetric (i.e. [𝑾]𝑖,𝑗 = [𝑾]𝑗,𝑖), the cost function can be

expanded and simplified as shown in Equation (2.90) below.

𝐽(𝒚) = ∑ ‖𝒚𝑖 − 𝒚𝑗‖
2
[𝑾]𝑖,𝑗

𝑖,𝑗∈{1,…,𝑁}

= ∑ (𝒚𝑖
2 + 𝒚𝑗

2 − 2𝒚𝑖𝒚𝑗)[𝑾]𝑖,𝑗
𝑖,𝑗∈{1,…,𝑁}

= 2 ∑ 𝒚𝑖
2 ∑ [𝑾]𝑖,𝑗
𝑗∈{1,…,𝑛}𝑖∈{1,…,𝑁}

− 2 ∑ 𝒚𝑖𝒚𝑗[𝑾]𝑖,𝑗
𝑖,𝑗∈{1,…,𝑁}

= 2 ∑ 𝒚𝑖
2[𝑫]𝑖,𝑖

𝑖∈{1,…,𝑁}

− 2 ∑ 𝒚𝑖𝒚𝑗[𝑾]𝑖,𝑗
𝑖,𝑗∈{1,…,𝑁}

= 2𝒚𝑇𝑫𝒚 − 2𝒚𝑇𝑾𝒚

= 2𝒚𝑇𝑳𝒚

(2.90)

Therefore, the minimization problem is reduced to

𝒚∗ = 𝑎𝑟𝑔 min
𝒚𝑇𝑫𝒚=1,𝒚𝑇𝑫1=0

𝒚𝑇𝑳𝒚 (2.91)

97

The additional condition 𝒚𝑇𝑫𝒚 = 1 is for normalization as it removes an arbitrary scaling

factor. The condition 𝒚𝑇𝑫𝟏 = 0 is to avoid trivial solution.

Importantly, finding 𝒚∗ = 𝑎𝑟𝑔 min
𝒚𝑇𝑫𝒚=1,𝒚𝑇𝑫𝟏=0

𝒚𝑇𝑳𝒚 is equivalent to finding the eigenvector

corresponding to the smallest eigenvalue for the generalized eigenvalue problem 𝑳𝒚 = 𝝀𝑫𝒚.

Now, instead of a 1-dimensional embedding as used above, consider an 𝑚 -dimensional

embedding, i.e. 𝒚𝑖 = ([𝒚𝑖]1, … , [𝒚𝑖]𝑚) ∈ ℛ
𝑚. The size of the matrix 𝒀, which is the collection

of all 𝒚𝑖 ’s, will be 𝑁 ×𝑚 , where 𝑁 is the number of data points and 𝑚 is the reduced

dimension of the encoding space. In this case, the cost function is the sum across the 𝑚

dimensions, as shown in Equation (2.92) below.

𝐽(𝒀) = ∑ ‖𝒚𝑖 − 𝒚𝑗‖
2
[𝑾]𝑖,𝑗

𝑖,𝑗∈{1,…,𝑁}

= ∑ ∑ ([𝒚𝑖]𝑘 − [𝒚𝑗]𝑘
)
2
[𝑾]𝑖,𝑗

𝑖,𝑗∈{1,…,𝑁}𝑘∈{1,…,𝑚}

= ∑ [𝒀]∙𝑘
𝑇
𝑳

𝑘∈{1,…,𝑚}

[𝒀]∙𝑘

= 𝑡𝑟(𝒀𝑇𝑳𝒀)

(2.92)

Therefore, the minimization problem reduces to

𝒀∗ = 𝑎𝑟𝑔 min
𝒀𝑇𝒀=𝟏

𝑡𝑟(𝒀𝑇𝑳𝒀) (2.93)

The solution 𝒀∗ of the above minimization problem is the set of eigenvectors that correspond

to the smallest 𝑚 eigenvalues of the generalized eigenvalue problem 𝑳𝒚 = 𝝀𝑫𝒚.

This concludes the derivation of 𝑡𝑟(𝒀𝑇𝑳𝒀) as the cost value of 𝑚 -dimensional spectral

embedding. The significance of 𝑡𝑟(𝒀𝑇𝑳𝒀) is that it represents how much the local proximity is

preserved in the spectral embedding 𝒀∗, or conversely, how much “spreading” there is in the

spectral embedding. This shows that not only can a view be encoded, how well it can be done

can be quantified too.

98

This concludes the review in this thesis on biosignals, deep learning, time series classification,

and multi-view learning. It has covered the topics necessary to understand the methods

proposed in this thesis. The next two chapters will describe the proposed methods, namely the

deep temporal convolution network and the multi-view temporal ensemble.

99

Chapter 3. Deep Temporal Convolution Network

This chapter describes the proposed deep temporal convolution network in detail.

A network that matches with a complex data function is likely to boost the classification

performance, as it is able to learn the useful aspect of the highly varying data. In this work, the

temporal context of the time series data is chosen as the useful aspect of the data that should be

passed through the network for learning.

The proposed deep learning network, called the deep temporal convolution network, exploits

the compositional locality of the time series data at each level of the network. The aim is to

match the network with the complex data function of a highly varying time series, so that shift-

invariant features can be extracted layer by layer at different time scales, thus boosting the

classification performance.

The proposed network makes use of data processing and the concatenation operation to

introduce the temporal context to the deeper layers. A matching learning algorithm for the

revised network, based on the idea of gradient routing in the backpropagation path, learns the

weight values from the training set.

The temporal context passes through the deeper layers of the network with temporally constant

abstraction at the higher levels. The non-stationary characteristics of the input will thus have

less effect on the output. As a result, the performance of the trained model of the proposed deep

temporal convolution network will be higher than a time delay neural network of the same

complexity (in terms of the number of adjustable parameters).

The framework proposed in this work comprises the following components: (1) the structure of

the network, (2) the necessary data preparation of the input data, and (3) the learning algorithm.

The proposed network is able to handle the prediction of multivariate signals with high temporal

resolution and is suitable for highly varying signals that require deep learning. Data experiment

with electroencephalogram signals shows that the proposed method can improve the

classification performance. It is able to attain better generalization without overfitting the

network to the data, as the weights can be pre-trained appropriately. It can be used end-to-end

100

with multivariate time series data in their raw form, without manual feature crafting or data

transformation.

The remainder of this chapter is organised in order of the framework components. The first

section shows the architecture of the proposed network and builds up the case for the proposed

architecture. The second section explains how to represent and distribute the temporal context

in multiple layers. The third section describes the proposed methodology on concatenating the

temporal context, preparing the data, and learning by backpropagation with gradient routing.

The last section concludes the chapter by providing a quick summary of the results of a data

experiment done on a multi-channel electroencephalogram data set.

3.1 Network with Temporal Context

The network structure of the deep temporal convolution network is a hybrid of the DBN-DNN

architecture and the additional concatenation sublayers, as shown in Figure 3.1 below. The

figure shows that the concatenation operation is repeated in the hidden layers. Starting from the

bottom of the figure, the time series data are first arranged in the time delay representation in

mini-batches, each consisting of a small number of data instances, for example 8 or 32. The

output of the hidden layer is re-arranged by the concatenation operation, resulting in a new

input for the next hidden layer. The network weights are located between the new input and the

next hidden layer. These weights are trained by pre-training [126] in the forward path, and then

by backpropagation [127] with gradient routing in the backward path.

101

Figure 3.1. Architecture of the proposed deep temporal convolution network

Overall, the structure comprises a feature detector at the lower layers and a classifier at the

upper layers. The arrowheads in Figure 3.1 above indicate the directions of the forward and

backward paths in learning. As can be seen from the diagram, the forward propagation passes

through the concatenation sublayers of the first two hidden layers before reaching the softmax

layer (the final classifier) at the top of the stack.

A concatenation sublayer is governed by the hyper-parameter, 𝑇𝑆. It is the number of time steps

used for the concatenation sublayer. Figure 3.2 below shows the use of 𝑇𝑆 = 3 for the

concatenation sublayer 𝐿1𝑐. Note that the time steps on the left hand side of Figure 3.2 must be

in their natural time order.

102

Figure 3.2. Time Steps and Concatenation

The above structure fits into a deep belief net – deep neural network (DBN-DNN) architecture

as described in Section 2.2.7 earlier on. This allows it to make use of the auto pre-learning

mechanism of DBN-DNN to initialize the network weights.

To pre-train the weights, each pair of layers (nominally called the visible and hidden layer) in

the deep temporal convolution network will come together to form a restricted Boltzmann

machine (RBM). This will result in a stack of RBMs. In the RBM stack, the hidden layer of the

prior RBM will be concatenated in the manner as shown in Figure 3.2 above. The concatenation

sublayer will then be used as the visible layer of the next RBM.

For the example shown in Figure 3.1 earlier on, the RBM stack consists of the following three

RBMs: (𝐿𝑖𝑛𝑝𝑢𝑡, 𝐿1), (𝐿1𝑐, 𝐿2), and (𝐿2𝑐, 𝐿3). Notice that even though the hidden layer for the

first RBM is layer 𝐿1, the visible layer for the second RBM is layer 𝐿1𝑐 and not layer 𝐿1.

The pre-training process, being greedy layer-wise, will leave the weights of the first RBM as

they are once they are trained and then proceed to the next RBM in the stack. This forward

process will continue until all the weights in the hidden layers are initialized. Thereafter, the

softmax layer will be trained by supervised learning. Finally, the weights of the entire deep

temporal convolution network will be fine-tuned by the proposed learning method that will be

described later.

The combination of weight initialization, classifier’s training and fine-tuning will ensure that

the proposed network structure will work well even if there are many hidden layers with their

own concatenation sublayers.

103

The proposed network addresses the following problems: (1) representation of temporal context,

(2) distribution of temporal context, and (3) learning with many layers. These are explained in

the next few sub-sections.

3.1.1 Representation of Temporal Context

For a signal to be classified by a neural network, it will have to be represented in what is called

the time delay representation [128]. This can be done easily for discrete time series with 𝑁 time

series elements, i.e. sample points, at constant sampling rates, 𝒙 = (𝒙1, … , 𝒙𝑁). Simply slide a

window of fixed length 𝑤 across the signal with stride 𝑠 , 𝑠 < 𝑤 . The result is a set of

overlapping segments. Each segment is a data vector containing 𝑤 samples.

The data vector, used at the input of the neural network, can be viewed as a tapped delay line

used for convolution, as shown in Figure 3.3 below. A neural network that treats its input in

this way is called the time-delay neural network (TDNN).

Figure 3.3. A tapped delay line at the input of a TDNN, 𝒘 = 𝟒, 𝒔 = 𝟏.

The sample points in the data vector are the lag observations of the signal. They contain the

time-dependent patterns that the algorithm can learn.

The amount of overlap between any two neighboring segments is shown in Equation (3.1)

below.

104

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 % =
𝑤 − 𝑠

w
× 100% (3.1)

The overlapping of the segments is important. It ensures that the non-stationary features are

represented at different time points. This makes the training of a shift-invariant model possible,

so that there is no need to provide the exact starting and ending points of the temporal features.

The sliding window method, used at the input to create the time delay representation, is

sufficient for good performance in time series classification. The problem with this approach is

the loss of temporal context in the hidden layers, and so the features learned are no longer time-

invariant in the hidden layers.

3.1.2 Distribution of Temporal Context

In Figure 3.3 shown earlier on, the data vector at the input of the neural network was a tapped

delay line. Likewise, to distribute the temporal context to the hidden layers, the data at the

hidden layers can be stored in tapped delay lines too. This is shown in Figure 3.4 below.

Figure 3.4. A distributed TDNN (left) and its equivalent network (right)

105

The left hand side of Figure 3.4 above shows the distributed TDNN with an input layer of 3

units (each unit with a 2-tap delay line), a hidden layer with 2 units (each unit with a 3-tap delay

line), and a final output layer with 2 units. The right hand side of Figure 3.4 shows the equivalent

network, which is a plain static neural network with no tapped delay line.

The number of unique weights for the distributed TDNN on the left hand side of Figure 3.4 and

the equivalent network on the right hand side of Figure 3.4 are the same, as can be seen by

comparing the two sides carefully. This is despite the equivalent network having more nodes

than the distributed TDNN. The reason for this is that the nodes in the equivalent network are

not fully connected. For nodes connected, many share their weights by downward shifting along

the tapped delay line.

The distributed TDNN is not amendable to pre-training because the tap-delay line architecture

does not fit into the stack form required for pre-training. It will suffer from the computational

issue of exploding and/or diminishing gradient when the number of hidden layers is increased

[36].

The distribution of temporal context and weight sharing manifest as concatenation in the deeper

layers of the proposed network. Unlike the distributed TDNN, the proposed network can be

pre-trained, thus alleviating the computational issue of exploding and/or diminishing gradient.

3.1.3 Learning with Many Layers

To overcome the computation problem, it is necessary to initialize the network weights to some

“good” values [129]. This is possible with pre-training in the Deep Belief Net - Deep Neural

Network (DBN-DNN) [126].

The DBN-DNN is a static network that comprises two parts: a stack of restricted Boltzmann

machines (RBMs) [130], collectively known as the DBN, and a final output classier (for

example, a softmax layer) on top of it.

As shown in Figure 2.16 earlier on, the training process of the DBN-DNN is divided into two

stages, comprising the pre-training stage and the fine-tuning stage. The pre-training stage

106

applies only to the DBN. It does not involve the softmax layer or the target labels. It is thus an

unsupervised training process. This is in contrast with the fine-tuning stage, which is a

supervised training process.

The pre-training is pair-wise and operates in the forward direction [131]. It starts at the bottom

of the DBN, where a pair of layers, nominally the visible layer and the hidden layer, forms the

RBM. The RBM runs unsupervised training by contrastive divergence [132]. Upon

convergence, the weights between the two layers will become fixed, and the same process

(unsupervised training by contrastive divergence) will be brought forward to the next pair of

layers. In moving forward, the output (hidden layer) of the previous RBM will become the input

(visible layer) of the current RBM.

After pre-training, the weights in the DBN are transferred to the DBN-DNN, where together

with the weights of the softmax layer, they are fine-tuned by backpropagation.

A DBN-DNN trained in this manner (pre-training in the forward path, followed by fine-tuning

in the backward path) will make the network relatively immune to overfitting.

The limitation of the DBN-DNN is that the temporal context is not distributed to the deeper

layers of the network. To do so, we propose using data processing based on the concatenation

operation in the DBN-DNN, and we provide the matching learning algorithm for the revised

network.

3.2 Data Preparation

As mentioned in the introductory chapter, a time series contains temporal patterns (i.e. time-

dependent features). An intuitive way of understanding the idea of temporal patterns is to use

the analogy of reading a text, where the word before and after the current word provide the

temporal context of the current word, serving the purpose of making the meaning of the current

word clear. This is illustrated in Figure 3.5 below.

107

Figure 3.5. Time-dependent feature

A neural network will not have any notion of temporal patterns if the time series data are used

singly, i.e. one time step at a time. This is because the neural network will treat each of the data

instances as independent. Some rearrangement or regrouping is necessary before the neural

network can extract the temporal patterns from the data.

In this work, the temporal context of the time series data is chosen as the useful aspect of the

data that is passed through the network [133]. The temporal context consist of neighbours that

are next to each other in time. To pass in the temporal context, the proposed deep temporal

convolution network will make use of the common data representation known as the time delay

representation. Several modifications to this representation will be described later. These

modifications are necessary for the data to be suitable for use with the proposed deep temporal

convolution network.

3.2.1 Concatenation of Temporal Context

In the time delay representation, multiple data instances in consecutive sampling time are placed

together, i.e. concatenated, as a single data instance. As an example, the time delay

representation of a multivariate data set with four attributes is shown in Figure 3.6 below.

108

Figure 3.6. Time delay representation of a multivariate data set

On the left hand side of Figure 3.6 above, each row vector is a sample in time. The first row is

the sample at the time step 𝑡1, the second row is the sample at the time step 𝑡2, and so on. Each

sample has four attribute values, 𝑎𝑡𝑡𝑟 1, 2, 3, and 4.

To rearrange the data, a fixed-size sliding window is moved vertically downward. After each

slide, the content of the window is vectorised and placed in a new row in the table on the right

hand side of Figure 3.6 above. The window used for the operation in this example has a width

(data dimension) of 4, a height (window length) of 2, and a stride (the amount of movement per

window slide) of 1.

Notice that the content of consecutive rows on the right hand side of Figure 3.6 above will

overlap with each other. The idea of overlap is critical for the deep temporal convolution

network. It ensures that the non-stationary features are represented by at least two different

versions. These versions are located at different time positions, making the training of a shift-

invariant model possible. With a shift-invariant model, there is no need to provide the exact

beginning and end points of the temporal features. As long as the window length is long enough

to cover the temporal features, the model will be able to learn them.

A few other observations can be made about the table content in Figure 3.6 above:

(1) On the left hand side, the rows are arranged in natural time order, i.e. not randomized.

(2) On the right hand side, the attributes of the sample are arranged horizontally with their time

delay versions.

(3) After concatenation, the number of rows 𝑁 will decrease, as shown in Equation (3.2) below.

109

𝑁 =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 − 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝑠𝑙𝑖𝑑𝑒
+ 1

(3.2)

A necessary step in neural network before training is to shuffle the data vectors on the right

hand side of Figure 3.6 above. Without shuffling, the target class labels in the data set will have

a simple output pattern, for example, 1,1,1,1,1,0,0,0,0,0,…. This pattern is incidental in the

training data. It is unlikely to recur in the test data. If the neural network overfits to the output

pattern in the training data set, the test result will be very bad despite the good training result.

Shuffling the data will break up the output pattern. This will make the data vectors independent

and identically distributed. This is what the machine learning algorithm expects of the training

data for good test result.

The structured format as described above is called the time-delay representation because each

row in the data table is similar to the tapped delay line of a finite impulse filter. In a finite

impulse filter, the multiplication of the row vector with the weights is the convolution. When

the row vector is time series data, this will be the temporal convolution.

Figure 3.7 below shows an example of the concatenation operation used in the proposed deep

temporal convolution network. It shows 5 data instances in the layer 𝐿𝑖 at time 𝑡1, 𝑡2, 𝑡3, 𝑡4,

and 𝑡5. They are combined to become the new data instances in the layer 𝐿𝑖𝑐, which is the

concatenation sublayer of the input in 𝐿𝑖.

Figure 3.7. Formation of concatenation sublayer, 𝑇𝑆 = 3.

110

The combination of the data instances is according to their natural time order. For example, in

Figure 3.7 above, the data instances at 𝑡1, 𝑡2 and 𝑡3 form a new data instance, while the data

instances at 𝑡2, 𝑡3 and 𝑡4 form another new data instance. As such, the new data instances in

𝐿𝑖𝑐 formed by the concatenation operation will have more temporal context than the individual

data instances in 𝐿𝑖. They will act as the new input for the next hidden layer at 𝑖 + 1.

In this work, the amount of concatenation will be described by a variable known as the time

steps, 𝑇𝑆. It is a hyper-parameter of the proposed network. In the example in Figure 3.7 above,

the value of 𝑇𝑆 is 3. This is because each concatenation consists of 3 data instances.

The 5 individual data instances in the above example form what is known as a mini-batch. It is

a term used to differentiate from the term “batch” as used in “batch gradient descend” where it

refers to the entire data set. All operations in the proposed network, including data preparation

and network learning, will be done in mini-batches rather than individual data instances.

3.2.2 Concatenation in the Deeper Layers

The proposed extension of the sliding window method to the deeper layers will extend the

benefits of shift-invariance and temporal context learning to the deeper layers. However, this is

not possible without making some modifications to the time delay representation.

The following reformatting will have to be done to the data in the proposed network so that the

shift-invariant temporal context can be learnt:

(1) Maintain short-term temporal order within a mini-batch

(2) Create mini-batches that overlap with the neighbouring mini-batches

(3) Randomize the order of the mini-batches

(4) Pool the count of the target labels through the deeper layers

The first two steps are used to prepare the time series data for use as the input of the network.

The third step is used to associate the training data with target labels that are valid.

Some of the considerations in making the modifications are:

111

(1) The temporal order of the data vectors must be maintained for the concatenation to be

meaningful, i.e. contain the temporal patterns.

(2) Duplicated features at different time positions must be available in the training data set for

the model to be time-invariant.

(3) The input data vectors must be independent and identifically distributed.

(4) Concatenation through the deeper layers will affect not just the data vectors but the target

class label also.

(5) Side effects may arise when handling the above issues, such as the progressive reduction in

size of the mini-batches and the unequal contribution of the input vectors to the training.

3.2.3 Short-Term Temporal Order

The maintenance of temporal order in the data set is a necessary requirement for the deep

temporal convolution network. However, this cannot be met by a shuffled data set, as the

randomized data instances in a shuffled data set are no longer time-dependent on each other.

The concatenation of such data instances will increase the irreducible error in the trained model.

This will lead to performance that is very poor for both the training and the test set. Thus,

without a method to resolve the dilemma of (1) the need to shuffle, and (2) the need to maintain

temporal order, the performance will degrade instead of being boosted.

To overcome the abovementioned dilemma, it is proposed that the short-term temporal order

be maintained within a mini-batch, with shuffling done for the mini-batches but not the data

within the mini-batches. In other words, the data instances in the mini-batches will keep their

natural time order, but the mini-batches will be shuffled to shatter the long-term time order.

Maintaining short-term temporal order clears up the following dilemma faced by the proposed

network.

112

On one hand, the concatenation of the data instances is only meaningful if the data instances

are in their natural time order, otherwise randomness will be injected into the concatenated data

and worsen the network performance.

On the other hand, each of the data instances must be a sample that is independent and

identically distributed, otherwise the simple output pattern in the time series data set will be

learnt by the network. As this pattern is incidental to the training data and unlikely to recur in

the test data, overfitting the network to it will produce poor test result in spite of the good

training result.

The use of short-term temporal order solves the aforementioned dilemma. In addition, it fits

into the practice of using mini-batches for computational efficiency. As the size of a mini-batch

is typically a small number from 2 to 32, it provides improved generalization performance with

a small memory footprint [134].

The proposed use of mini-batches to maintain short-term temporal order fits into the common

practice of using mini-batches over several training epochs in deep learning [135]. This practice

arises from the following benefits of doing so: (1) higher throughput due to computational

parallelism, (2) faster convergence as the noise is reduced, (3) a higher usable learning rate due

to better quality gradient.

The mini-batch size is a user-defined hyper-parameter. It is usually quite small (between 2 and

32). A small size provides improved generalization performance and allows a smaller memory

footprint. Thus, only short-term temporal order (instead of a longer temporal order) is proposed

for use in the deep temporal convolution network.

In deciding on the mini-batch size, consideration must also be given to the progressive

decrement in size when the concatenation is extended to the deeper layers. For example, for a

mini-batch of 8 data instances, only 6 data instances will be available after concatenation with

𝑇𝑆 = 3. When this is extended to the third layer, the mini-batch will be left with just 4 data

instances. Figure 3.8 below illustrates this effect.

113

Figure 3.8. Size reduction in a mini-batch

The mini-batch size can be determined by the formula as shown in Equation (3.3) below:

𝐵(𝑙−1) = 𝐵(𝑙) + (𝑇𝑆(𝑙−1)𝑐 − 1) (3.3)

Here, 𝐵(𝑙−1) is the mini-batch size at layer 𝐿𝑙−1, 𝐵(𝑙) is the mini-batch size at layer 𝐿𝑙 , and

𝑇𝑆(𝑙−1)𝑐 is the hyper-parameter for the time step of the concatenation sublayer 𝐿(𝑙−1)𝑐.

In order not to have too few instances in the mini-batch at the final output layer, it would be

expedient to increase the size of the mini-batch at the input layer 𝑙0. This can be done according

to Equation (3.4) below.

𝐵(𝐿0) = 𝐵(𝐿𝐿) + 𝐿 × (𝑇𝑆 − 1) (3.4)

In Equation (3.4) above, 𝐵(𝐿0) is the mini-batch size at layer 𝐿0, and 𝐵(𝐿𝐿) is the mini-batch size

at layer 𝐿𝐿. Here, it is assumed that there are 𝐿 hidden layers and that the same 𝑇𝑆 (time steps)

value is used for all the concatenation sublayers in the hidden layers.

Once there is short-term temporal order in the mini-batches at the input layer, the temporal

order will be maintained in the deeper layers. This is because the concatenation operation at the

deeper layers will not affect the temporal order. Thus, with short-term temporal order in the

mini-batches, the temporal context in the mini-batches can be passed to the deeper layers, and

at the same time ensure computational efficiency in training.

114

3.2.4 Mini-Batches that Overlap

The mini-batches should overlap with each other so that the network can be shift-invariant and

less dependent on the precise location of the temporal feature within the mini-batch. This is a

necessary step. It is a step in addition to the overlap of the samples in the time delay

representation. This is because there is temporal context within a mini-batch, and the temporal

context maintained by short-term temporal order in the mini-batch has to be learnt in a shift-

invariant manner.

It is proposed that instead of simply dividing the concatenated data set into blocks of mini-

batches, the sliding window method should be used to make the mini-batches. Figure 3.9 shows

the proposed two-stage sliding window method to create mini-batches that overlap with their

neighbours. First, slide a fixed-size window along the time series to create the time delay

representation. On the time delay representation thus created, slide another fixed-size window

to create the mini-batches that overlap with each other.

Figure 3.9. A two-stage sliding window to create mini-batches that overlap.

The aforementioned make process will result in mini-batches that overlap with their precedent

and consequent mini-batches. The first and last few data instances of a mini-batch re-appear in

the neighbouring mini-batches. Overlapping mini-batches will enhance the shift-invariant

property of the trained model. During training, it will coax the model to be time-invariant to the

short-term temporal patterns in the mini-batches.

115

Within each of the mini-batches, there is an unequal contribution of the data instances. For

example, in the first mini-batch in Figure 3.9 above, the data instance #1 appears once, whereas

the data instance #3 appears three times.

There is unequal contribution of data at the concatenation sublayers also. Figure 3.10 below

shows the concatenation with 𝑇𝑆 = 3 at the hidden layer. The data vector #5 contributes 3

times in mini-batch #1, while the data vector #3 and #4 contribute 5 times.

Figure 3.10. Unequal contribution at the deeper layer

The unequal contribution of data within the mini-batches will be largely eradicated when all

the overlapping mini-batches are considered as a whole. It will not affect the effective training

of the network, as it is well known that a model can be trained by a random sampling of the

data set rather than the whole data set. Nevertheless, to minimise the unequal contribution, the

amount of overlap of the mini-batches 𝑂𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ can be set as shown in Equation (3.5) below,

where 𝑇𝑆 is the amount of overlap in the time delay representation.

𝑂𝑚𝑖𝑛𝑖−𝑏𝑎𝑡𝑐ℎ = 𝑇𝑆 − 1 (3.5)

3.2.5 Randomization of the Mini-Batches

The mini-batches have to be shuffled in order before being used as input for the proposed

network. The independent and identically distributed order of the mini-batches ensures that the

deep temporal convolution network does not learn the simple output pattern. If the order of the

mini-batches is not shuffled, the deep temporal convolution network will fail miserably with

116

new and unseen data, as they are unlikely to have the same output pattern as the training data

set.

To enhance computation efficiency, a combo-batch consisting of more than 1 mini-batch may

be used during fine-tuning of the deep temporal convolution network. A combo-batch is formed

from a number of mini-batches that have been randomized in order. The catch here is that in a

combo-batch, there is no temporal continuity between the mini-batches. However, this is not a

practical issue. Not only is it not detrimental to the training, it is in fact desirable, as the artificial

arrangements constitute a form of regularization that will improve the generalization of the

trained model. Empirically, the rule of thumb is that about 25% random arrangement of the

total data is acceptable.

3.2.6 Pooling of Target Labels through Deeper Layers

As there are many samples in a single data vector, the target label in common for the samples

has to be decided by majority voting. Although this can be done at the input layer of the

proposed network, it is more expedient to delay it until the final classifier. This is because the

concatenation operation adds more data to the deeper layers, and so it is wise for the majority

voting to take into consideration the additional count of the target labels due to the

concatenation operation. An overly simplistic scheme that ignores the effect of concatentaion

will likely distort the actual class distribution at the final output layer.

For example, if there are three data vectors in a concatenation, two of them class 1 and one of

them class 2, then class 1, being the majority class, will be deemed by a simplistic scheme as

the target label. The distortion occurs because the target labels of the data vectors are themselves

the result of majority voting and have lost some of the information due to the summarization.

Figure 3.11 below shows a one-to-one annotated time series. For every observation, there is an

output class, which is either 1 or 0.

117

Figure 3.11. A time series (top) and its target class labels of 1 and 0 (bottom)

Consider the target class label 𝒚(𝑡) ∈ {0,1} of the time series shown in Figure 3.11 above. In

table form, 𝒚(𝑡) will look like Figure 3.12 below, where each row with 16 target class labels

corresponds to the 16 samples of a data vector in the time delay representation.

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 1

0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Figure 3.12. Target label class in time delay representation

Majority voting can be done row-wise on Figure 3.12 above with the elaborate use of one-hot

encoding format. After one-hot encoding, there will be one category per class, for example, one

category for Class 0 and another category for Class 1. Figure 3.12 above will then appear as

Figure 3.13 below.

118

Class

0

Class

1

1 0

1 0

1 0

1 0

1 0

0 1

Class

0

Class

1

1 0

1 0

1 0

0 1

0 1

0 1

⋯ Class

0

Class

1

1 0

0 1

0 1

1 0

0 1

1 0

Class

0

Class

1

1 0

0 1

0 1

0 1

0 1

1 0

Figure 3.13. Target class labels in one-hot encoding format

The class-wise summation of the 16 one-hot encodings, or pooling of the target labels, is as

shown in Figure 3.14 below.

Class 0 Class 1

14 2

9 7

3 13

9 7

2 14

4 12

Figure 3.14. Result of class-wise summation

Majority voting is used to decide on the target class label based on the pooled target labels. The

end result is shown in Figure 3.15 below.

119

Class 0 Class 1

1 0

1 0

0 1

1 0

0 1

0 1

Figure 3.15. Majority voting, input layer

The above simplistic scheme presents two problems when it is applied to the deep temporal

convolution network: (1) it is based on the input layer and has not considered the concatenation

effect at the deeper layers, (2) it will distort the actual target class if it is duplicated in the deeper

layers.

In the deep temporal convolution network, the concatenation does not stop at just the input

layer. It will carry on at the hidden layers. As such, there is no hurry to perform the majority

voting at the input layer. It should be done only at the final output stage where the error needs

to be computed.

Therefore, instead of majority voting at each concatenation sublayer, it is proposed that the

target class label of each observation in the many-to-one time series be accumulated through

the deeper layers and be subjected to majority voting only at the final output layer. This will

track the target class label not just at the input layer but all the way through the deeper layers

until the final output layer where majority vote need to be applied.

This can be done easily by first (before any concatenation) expressing the target class labels

𝒚(𝑡) in the one-hot encoding format, and then add up the values whenever their associated data

are involved in concatenation. This will result in the modified one-hot encoding format, where

the integer represents the pooled class count of a particular class.

120

Pooling the target labels through the deeper layers of the deep temporal convolution network

avoids the loss of information, thus enhancing the validity of the target labels. The proposed

pooling of the target labels through the deeper layers is shown in Figure 3.16 below.

Figure 3.16. Pooling of the class counts of newly concatenated data.

As an example, consider the modified one-hot encoding format shown in Figure 3.14 earlier

on. It is reproduced on the left hand side of Figure 3.17 below for ease of reference. Subjecting

it to a concatenation of 𝑇𝑆 = 3, the class counts of the concatenated data set is shown on the

right hand side of Figure 3.17 below.

Class 0 Class 1

14 2

9 7

3 13

9 7

2 14

4 12

Class

0

Class

1

Class

0

Class

1

Class

0

Class

1

14 2 9 7 3 13

9 7 3 13 9 7

3 13 9 7 1 15

9 7 2 14 4 12

2 14 4 12 ⋮ ⋮

4 12 ⋮ ⋮ ⋮ ⋮

Figure 3.17. Class counts of newly concatenated data set

121

Pooling is applied to the concatenation sublayer here. The pooled class count of the

concatenated data set is shown in Figure 3.18 below.

Class 0 Class 1

26 22

21 27

13 35

15 33

⋮ ⋮

⋮ ⋮

Figure 3.18. Pooled class count of target class labels, concatenation sublayer

If the next layer is the final output layer, majority voting will have to be carried out there. The

result is as shown in Figure 3.19 below.

Class 0 Class 1

1 0

0 1

0 1

0 1

⋮ ⋮

⋮ ⋮

Figure 3.19. Majority voting, final output layer

A minor problem encountered when implementing majority voting is the occurrence of ties, for

example, a data vector having a pooled class count of 24 for class 0 and 24 for class 1. To break

the tie, jittering both counts with a positive random value smaller than 1 will do.

122

3.3 Learning Algorithm

It is proposed that the deep temporal convolution network be trained in three phases: (1) pre-

training as a stack of RBMs, (2) training of the final classifier, and (3) fine-tuning of the entire

network by backpropagation with the proposed gradient routing method.

3.3.1 Pre-training

Pre-training of the MLP as a stack of RBMs was the breakthrough in 2006 by Hinton that started

the deep learning movement. It is proposed that the deep temporal convolution network be

likewise arranged as a stack of RBMs. The pre-training is by the same pair-wise unsupervised

training with contrastive divergence as the DBN-DNN. The difference is that now, the visible

layer of the RBM is the concatenation sublayer, not the hidden layer.

Figure 3.20 below illustrates the above idea with a pair of hidden layers, layer 𝐿1 and layer 𝐿2.

In a standard DBN-DNN, the RBM will be between 𝐿1 and 𝐿2 . However, in the proposed

network, the weights are located between the concatenated sublayer 𝐿1𝑐 and the next hidden

layer 𝐿2. Therefore, in the deep temporal convolution network, the RBM is formed between

𝐿1𝑐 and 𝐿2 instead.

Figure 3.20. RBM in the deep temporal convolution network

With this arrangement, the output of the current RBM can be used as the input of the next RBM,

albeit through the concatenation sublayer. By repeating this process, a stack of RBM can be

created. There is no backward computation down the stack during pre-training, since RBM

training by contrastive divergence is a greedy layer-wise process. Once an RBM is trained, it is

considered “fitted” and its weights are deemed as “good” enough for the deep temporal

convolution network.

123

3.3.2 Training of the Final Classifier

At the input side of the final classifier, deep learning by the hidden layers of the deep temporal

convolution network would have already extracted the temporal patterns as a set of stationary

features suitable for classification. As such, the final classifier need not be too complex. The

consideration in selecting the kind of classifier will be based on the classifier’s capability (e.g.

binary classifier or multi-class classifier) and its computational efficiency during deployment.

The softmax classifier is the simplest kind of multi-class classifier and is suggested for the deep

temporal convolution network. It was described in the review in Chapter 2 and will not be

repeated here.

3.3.3 Backpropagation

In general, the weights in a network can be updated by gradient descend, as shown in Equation

(3.6) below.

𝑾 ←𝑾− 𝛼
∂𝐽(𝑾)

∂𝑾

(3.6)

In Equation (3.6) above, 𝐽(𝑾) is the cost function. It is abbreviated hereafter as the error 𝐸.

To update the weights of a layer in a network with many layers, say the 𝑖 -th layer, the

contribution of the 𝑖-th layer to the error 𝐸 should be determined precisely. That contribution,

sometimes referred to as the delta or the sensitivity, is denoted as 𝛅(𝐿𝑖), where 𝐿𝑖 is the 𝑖-th layer.

It is by definition the derivative of the cost function 𝐸 with respect to the linear output 𝒚(𝐿𝑖),

and is shown in Equation (3.7) below.

𝛅(𝐿𝑖) ≜
∂𝐸

∂𝒚(𝐿i)

(3.7)

The determination of 𝛅(𝐿𝑖) should proceed layer by layer in the backward direction. It is a well-

known procedure, described in the review in Chapter 2. There is one catch, though. All the

sections in the backward path must be able to be linked together by the chain rule of derivative.

124

The proposed network does not satisfy the above condition. Thus, the standard backpropagation

procedure will not work for the temporal deep convolution network. This is because the

concatenation operation is not a smooth function, and so the backward path from the

concatenation sublayer to the pre-concatenation hidden layer is not differentiable. In Figure

3.21 below, the non-differentiable section is from 𝐿1𝑐 to 𝐿1.

Figure 3.21. Backward path from concatenation sublayer to the pre-concatenation hidden

layer

By the chain rule of derivative, the contribution of the 𝑖-th layer 𝜹(𝐿𝑖) can be factorized as the

product of four terms, as shown in Equation (3.8) below.

𝜹(𝐿𝑖) ≜
𝜕𝐸

𝜕𝒚(𝐿𝑖)
=

𝜕𝐸

𝜕𝒚(𝐿𝑖+1)
𝜕𝒚(𝐿𝑖+1)

𝜕𝒂(𝐿𝑖𝑐)
𝜕𝒂(𝐿𝑖𝑐)

𝜕𝒂(𝐿𝑖)
𝜕𝒂(𝐿𝑖)

𝜕𝒚(𝐿𝑖)

(3.8)

By tracing through the four terms in Equation (3.8) above, it can be seen that the delta passes

through the following parts of the network:

(1) 𝒚(𝐿𝑖+1), the linear output of the upper hidden layer 𝐿𝑖+1

(2) 𝒂(𝐿𝑖𝑐), the activation of the layer 𝐿𝑖𝑐, which is a concatenation sublayer

(3) 𝒂(𝐿𝑖), the activation of the layer 𝐿𝑖, which is the pre-concatenation hidden layer

(4) 𝒚(𝐿𝑖), the linear output of the layer 𝐿𝑖

The first two terms in Equation (3.8) above pose no problem for computation. The first term is,

by definition, the delta of the upper layer 𝜹(𝐿𝑖+1) , and so is available from the previous

125

calculation in backpropagation. The second term is, by the application of differentiation, the

weight 𝑾(𝐿𝑖+1) of the upper layer 𝐿𝑖+1, since 𝒚(𝐿𝑖+1) = 𝑾(𝐿𝑖+1)𝒂(𝐿𝑖𝑐) . With these two terms

available, their product, denoted as
𝜕𝐸

𝜕𝒂(𝐿𝑖𝑐)
 in Equation (3.9) below, can be computed directly by

multiplication according to the chain rule.

𝜕𝐸

𝜕𝒂(𝐿𝑖𝑐)
=

𝜕𝐸

𝜕𝒚(𝐿𝑖+1)
𝜕𝒚(𝐿𝑖+1)

𝜕𝒂(𝐿𝑖𝑐)
= 𝑾(𝐿𝑖+1)𝜹(𝐿𝑖+1)

(3.9)

The third term in Equation (3.8) above is problematic. It is over the concatenation operation,

which is non-differentiable. As a result, the product of the first three terms, denoted as
𝜕𝐸

𝜕𝒂(𝐿𝑖)
 in

Equation (3.10) below, cannot be computed directly by multiplication according to the chain

rule.

𝜕𝐸

𝜕𝒂(𝐿𝑖)
=

𝜕𝐸

𝜕𝒚(𝐿𝑖+1)
𝜕𝒚(𝐿𝑖+1)

𝜕𝒂(𝐿𝑖𝑐)
𝜕𝒂(𝐿𝑖𝑐)

𝜕𝒂(𝐿𝑖)

(3.10)

Although non-differentiable, concatenation is an invertible operation. The proposed solution is

to make use of gradient routing to unstack the concatenation, so as to change
𝜕𝐸

𝜕𝒂(𝐿𝑖𝑐)
 in Equation

(3.9) above to
𝜕𝐸

𝜕𝒂(𝐿𝑖)
 in Equation (3.10) above. The transformation that the gradient routing

intends to achieve is shown in Equation (3.11) below.

𝜕𝐸

𝜕𝒂(𝐿𝑖𝑐)
→

𝜕𝐸

𝜕𝒂(𝐿𝑖)

(3.11)

The very last term in Equation (3.8) above, i.e.
𝜕𝒂(𝐿𝑖)

𝜕𝒚(𝐿𝑖)
, is the derivative of the activation function.

The derivative is well known for activation functions that are common, such as sigmoid or

ReLU [136]. It can be computed and then multiplied with the result of gradient routing in an

element-wise manner. The result is the delta 𝜹(𝐿𝑖) that was shown earlier on in Equation (3.8)

above.

126

This completes the backpropagation with gradient routing for the 𝑖-th layer. With delta 𝜹(𝐿𝑖)

available, it can used to compute the error gradient, which is then used to update the weights.

3.3.4 Gradient Routing

What gradient routing does is to redistribute the error contribution from the concatenation

sublayer to the actual hidden layer. In other words, the amount of “delta” that the actual hidden

layer receives is exactly the same as the “delta” passed to it from the concatenation sublayer.

Another important point to note is that there is no learning involved in gradient routing, as there

is no adjustable parameters to be learnt.

The proposed “split-slide-add” method implements the gradient routing in the deep temporal

convolution network. First, the error attributed to the concatenation sublayer is split into its pre-

concatenation parts. Then, the pre-concatenation parts are aligned in time by sliding. Finally,

the aligned parts are summed together.

To illustrate the “split-slide-add” method, consider the error contribution from the

concatenation sublayer 𝐿𝑖𝑐, i.e.
𝜕𝐸

𝜕𝒂(𝐿𝑖𝑐)
 in Equation (3.9) above. Figure 3.22 below shows a table

with 16 rows. Each of the rows in the table is the contribution of a particular concatenated

vector in 𝐿𝑖𝑐 to the error. There are 16 concatenated vectors in 𝐿𝑖𝑐 in this example, as it is

assumed here that the mini-batch size is 18 and that the concatenation is done with the time

steps 𝑇𝑆 set to 3.

127

Figure 3.22. The three steps of the “split-slide-add” method for gradient routing

The first operation is to split the table into separate columns. Each of the columns is the

contribution of the data before concatenation. The second operation, that of sliding the columns,

aligns the pre-concatenation parts according to their natural temporal order. This enables the

summation in the third step to be meaningful. In summation, the values in the columns, now

aligned in time, are added together. In consequence,
𝜕𝐸

𝜕𝒂(𝐿𝑖𝑐)
 is transformed to

𝜕𝐸

𝜕𝒂(𝐿𝑖)
.

Gradient routing redistributes the error contribution from the concatenation sublayer 𝐿𝑖𝑐 to the

pre-concatenation hidden layer 𝐿𝑖. It does not involve any learning of the weight values. In

other words, the amount of delta that the pre-concatenation hidden layer receives is exactly the

same as the delta passed to it from the concatenation sublayer.

With gradient routing done with the “split-slide-add” method, the proposed network will be

able to learn about the temporal context passed through the network by the concatenation

operation, even though it is a non-differentiable operation.

Once the error at the concatenation sublayer is re-distributed properly by gradient routing, the

backward distribution of error to the other layers can proceed as usual through the use of

backpropagation. Any gradient descend method can be used in the backpropagation procedure,

128

for example the conjugate gradient method. The entire backpropagation with gradient routing

procedure should be repeated over multiple epochs.

The trained model thus obtained is now ready for test. An optional step could be taken before

that. The softmax layer could be replaced by the extreme learning machine (ELM). The output

of the penultimate layer of the deep temporal convolution network is passed to the ELM for

training. The use of ELM as the final classifier (instead of the softmax layer) could give the

system performance a lift.

The proposed methodology is different from the other convolutional neural networks used for

time series classification. In those networks, the up-sampling function used in the pooling layer

for backward propagation of error is done based on the individual data instances. In contrast, in

the deep temporal convolution network, the gradient routing in the backward path are done in

mini-batches. These mini-batches keep the short-term temporal order of the data instances

within them, and so the learning algorithm is able to learn the temporal context in the deeper

layers of the network.

3.4 Summary of Deep Temporal Convolution Network

A number of issues in implementing the deep temporal convolution network are addressed in

this chapter, covering the network structure, the data preparation and the learning algorithm.

As an example of the performance improvement by the deep temporal convolution network,

Table 3.1 below shows the classification accuracies (in percentage) of the 10-fold validation on

the 14-channel EEG Eye State data set. Different values of 𝑇𝑆 (time steps) are used for the deep

temporal convoltuion network.

Table 3.1. 10-fold cross-validation of DTCN, eye state

𝑇𝑆 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

1 93.11 95.54 95.00 94.86 91.62 86.49 96.22 94.19 91.49 82.57

2 93.51 97.97 99.46 99.32 98.92 98.78 92.97 97.97 97.97 98.11

5 99.01 98.92 100 98.92 99.73 100 99.59 99.01 99.59 99.73

129

The mean of the 10-fold cross-validation is the figure of merit used for comparing the effect of

𝑇𝑆 (time steps). This is shown in Table 3.2 below.

Table 3.2. Mean of 10-fold cross-validation of DTCN, eye state

𝑇𝑆 Mean Std Dev

1 92.11 10.27

2 97.5 5.42

5 99.46 1.01

As can be seen from Table 3.2 above, the accuracy improves from 92.11% when there is no

concatenation to 97.50% when 𝑇𝑆 = 2. It further improves to 99.46% when 𝑇𝑆 = 5.

In general, for the deep temporal convolution network, the number of nodes required for the

input and hidden layers is reduced, as more temporal context is available in the deeper layers.

On the other hand, more epochs are required for training, as there is more temporal context to

be learnt. Overall, there is an improvement in generalization performance over the equivalent

time delay neural network. This validates the assumption that it is useful to pass the temporal

context of the time series data through a network for deep learning.

.

130

Chapter 4. Multi-view Temporal Ensemble

This chapter describes the novel method of data fusion by multi-view temporal ensemble. It is

applicable to the classification of non-stationary time series data such as sounds, where it is

often tedious and expensive to get a training set that is representative of the target concept. This

method alleviates the problem by treating the outputs of deep learning sub-models as the views

of the same target concept, which are then linearly combined according to their

complementarity. The complementarity of the data mixes the outputs of the deep learning sub-

models optimally. This results in the final classifier having a better performance than the

individual sub-models.

The view’s complementarity is the contribution of the view to the global view. In this work, the

Laplacian eigenmap of the combined data is the global view. The method uses alternate

optimization to compute the complementarity. It involves the cost function of the Laplacian

eigenmap and the weights of the linear combination of the views. By blending the views in this

way, a more complete view of the underlying phenomenon can be made available to the final

classifier. Better generalization is obtained, as the consensus between the views reduces the

variance while the increase in the discriminatory information reduces the bias.

This method, which is an intermediate data fusion technique, consists of the following steps:

(1) train with deep learning sub-models such as the deep temporal convolution network or the

CNN-LSTM model, (2) determine the complementarity of the outputs of the sub-models by

multi-view spectral embedding, and (3) make use of the complementarity as the mixing

coefficients of the linear mixture.

Although there have been previous work on multi-view spectral embedding (MSE) [137] for

clustering, classification, and dimensionality reduction, there is no work on it for the ensemble

mixing of temporal signals. The proposed method is also different from multi-kernel training

as the sub-models used are deep learning models, not the SVM kernels. The interpretation of

the mixing coefficient (obtained by the two-step method that will be described later) is new and

provides the basis for the weighted combination of the sub-models. The multi-view temporal

ensemble is thus a novel framework for the classification of temporal signals, whether they are

multivariate, heterogeneous or multimodal. Data experiment with the artificial views of

131

environment sounds formed by deep learning structures of different configurations shows that

the proposed method can improve the classification performance.

4.1 Overview

In this work, deep learning creates the artificial views of the time series data, which are then

used in multi-view learning for classification. The framework makes use of (1) the linear

relationship of the deep learning sub-models, where the output of each sub-model is seen as a

view, (2) the computation of the complementarity of the views, and (3) the formation of the

time-frequency view by the sub-models.

Figure 4.1 shows the architecture of the proposed network. The time series data are first

decomposed in the time-frequency domain to expose the spectral aspect of the time series to

the deep learning sub-models. The features extracted by the sub-models form the views. These

views are redundant in information, but they are not quite similar to each other as they are

produced by deep learners of different configurations. These views can be combined according

to their complementarity. The combined data, being more representative of the target concept,

will result in better performance in the final classifier.

132

Figure 4.1. Architecture of the proposed multi-view temporal ensemble.

The proposed framework addresses the problem of the strong dependency of the performance

of a trained model on the representativeness of the data. As is well known, it is tedious and

expensive to construct a representative training set, due to the extensive manual curation and

annotation that are needed. This is particularly true for time series data, as clear segmentation

is not readily available. By treating the outputs of the deep learning sub-models as the views of

the same target concept, the dependency on any one of the views could be weakened through

the appropriate use of the views’ complementarity. This helps reduce the need for clear

segmentation and improve the generalization performance of the classifier.

133

4.1.1 Construction of Views

In a traditional single-view classifier, the training set consists of a single feature set 𝑽. By

contrast, in the multi-view setting, there are 𝑴 views, denoted as 𝑽(𝒊), 𝒊 ∈ {𝟏,… ,𝑴}. Each of

these views is sufficient for the learning of the target concept. However, in this work, the

alternative approach, that of fusing the 𝑴 views according to their complementarity, is

proposed. This results in a common feature set that is more representative of the target concept

compared to the individual views.

The proposed method to construct the views is to subject each of the input data segments, 𝒙 ∈

ℝ𝒅 of length 𝒅, to a number of deep learning sub-models that are configured differently in terms

of the number of hidden nodes. With different configurations, it is tantamount to a random split

of the input data that results in views that are distinct from each other.

The view to be retrieved from the sub-model is the penultimate layer of the sub-model, rather

than the final softmax layer. The penultimate layer can be thought of as the feature set that is

extracted by deep learning from the input data. Notation wise, it can be represented as the

approximate function 𝒇(𝒙) of the input data 𝒙 . As there are 𝑴 different sub-models,

represented as 𝒇(𝟏)(∙), 𝒇(𝟐)(∙), …, 𝒇(𝑴)(∙), so 𝑴 views will be available, i.e. 𝒇(𝟏)(𝒙), 𝒇(𝟐)(𝒙),

…, 𝒇(𝑴)(𝒙).

According to the Representer theorem [138], the approximate function of a machine learning

model is the linear combination of the basis functions. Thus, assuming that each of the views is

a basis function, the views can be combined linearly, with appropriate weights assigned to the

linear combination, as shown in Equation (4.1) below.

𝑽𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =∑𝛼(𝑖)𝑽(𝑖)
𝑀

𝑖=1

(4.1)

The weights 𝜶(𝒊), 𝒊 ∈ {𝟏,… ,𝑴}, are the mixing coefficients of the ensemble. The restriction on

𝜶(𝒊) is according to the linear sum as shown in Equation (4.2) below.

134

∑𝛼(𝑖)
𝑀

𝑖=1

= 1, 𝛼(𝑖) > 0
(4.2)

The value of 𝜶(𝒊) is the complementarity of the 𝒊-th view. It is the probability of the 𝒊-th view

being compatible with the common target concept. An example of the construction of three

different views by deep learning is shown in Fig. 3 below.

Figure 4.2. Architecture of the proposed multi-view temporal ensemble.

The view 𝑓(𝑖)(𝒙) is probabilistic in nature. It can be expressed as the density function

𝑝(𝑓(𝑖)(𝒙)|𝒙, 𝜽(𝑖)), where 𝜽(𝑖) is the parameters of the 𝑖-th model 𝑓(𝑖)(∙). The linear mixture of

the 𝑀 views is also probabilistic, as shown in Equation (4.3) below.

𝑝(𝑓(𝒙)|𝚯) =∑𝛼(𝑖)𝑝(𝑖)(𝑓(𝑖)(𝒙)|𝒙, 𝜽(𝑖))

𝑀

𝑖=1

)
(4.3)

In Equation (4.3) above, 𝚯 = (𝛼(1), … , 𝛼(𝑀), 𝜽(1), … , 𝜽(𝑀)) is the parameter set of the multi-

view temporal ensemble.

These views, i.e. 𝑓(1)(𝒙), 𝑓(2)(𝒙), …, 𝑓(𝑀)(𝒙), are not independent. They bear some similarity

with the rest of the views, and at the same time, something unique to themselves. Ideally, the

weighted sum of these views, i.e. the global view, should contain the most discriminative

information. It should retain features that are similar across the views and enhance features that

135

are unique in the individual views. The key to achieve this is the determination of the optimal

mixing coefficient (𝛼(1), … , 𝛼(𝑀)).

4.1.2 Complementarity

Intuitively, views that are independent and supplemental will contribute equally to the global

view of the combined data. The weight of each of these views is the average weight 1/𝑀. This

will result in a less noisy combined output. When the combined output is used as the input of

the final classifier, the overall system performance will have a lower variance [139].

On the other hand, if a view contains complementary information, it will contribute more to the

global view, and its weight will be higher than 1/𝑀. This is at the expense of the view that

contains less complementary information.

So, instead of using the average weight 1/𝑀 for 𝛼(𝑖) , it is proposed in this work that the

complementarity of the views be used as the weights. The purpose is for the combined output

to have a higher probability of a lower generalization error. Thus, the larger the contribution of

the view to the global view, the more complementary it is, and the higher the weight should be.

However, the global view of a linear mixture is actually latent, given the individual views. In

other words, although the global view can be obtained from the weighted sum of the individual

views, it begs the question of what the weight values should be for the linear combination.

The candidate method to solve the minimization problem with two unknowns (the weights and

the global view) is alternate optimization. An example of alternate optimization is the

expectation maximization (EM) method used in the Gaussian mixture [140].

The multi-view temporal ensemble uses a similar approach. The cost function, which has to be

defined in alternate optimization, is based on that of Laplacian eigenmap [74], a non-linear data

reduction technique. This work modifies it for use in the multi-view setting. This will be

described later when the computation method for complementarity is explained.

136

4.1.3 Time-Frequency Features

Time-frequency decomposition exposes the spectral changes in the time series data to the sub-

model 𝑓(∙) and is useful for the analysis of signals that are non-stationary. While there are many

time-frequency analysis techniques (for example, Wigner-Ville decomposition [141], empirical

mode decomposition [142], wavelet transform etc.), the most common practice, particularly for

multivariate signals, is still the short time analysis method, such as the spectrogram and the

Mel-frequency cepstrum [143], where the signal is split into overlapping segments and

transformed to their time-frequency representation.

The sub-models in the ensemble can be a generalized linear model, decision tree, k nearest

neighbour, or neural network. In the past decade, deep learning, which is the composition of

layers of models, has been found to be effective in the classification of raw signals.

Deep learning, as a feature extractor, has a smooth output in the feature space that can be

classified easily by the final classifier. Not only can it approximate the function with an

exponentially lower number of training parameters compared to a shallow network, it is also

more immune to overfitting [5].

The workhorses of deep learning are deep belief net [11], convolutional neural network (CNN)

[37] and long short-term memory (LSTM) recurrent neural network [40]. These models form

practical models for signal classification in various combinations.

In this work, the CNN-LSTM model is proposed for use in the multi-view temporal ensemble.

The reason for using the CNN-LSTM model is to extract the temporal and spectral patterns

from the time-frequency aspect of the time series. The lower CNN layer receives the input data

in two-dimension, while the LSTM works on the subsequently flattened layer in one-dimension.

In the CNN-LSTM model, the fully-connected layer just before the final softmax layer is the

penultimate layer. It contains the features that form the view of the sub-model. By linearly

combining the penultimate layers of the CNN-LSTM sub-models, a new input can be formed

for the final classifier. This qualifies the proposed multi-view temporal ensemble as an

intermediate data fusion technique, rather than a late data fusion technique. This is because the

137

penultimate layer represents the feature extracted by the sub-model, not the decision made by

the sub-model.

4.2 Equality of Target Concept

The purpose of computing complementarity is to produce data that are more representative of

the target concept. For the computation to be valid, the data points across the views must be

descriptive of the same target concept. Careless implementation, such as ad hoc randomization

of the data instances, will destroy the equality of target concept across the views.

For time series data, the equality of target concept across the views translates to the following

rules:

(1) The data points across the views must be aligned in time, i.e. co-occurring.

(2) The data points must belong to the same class, i.e. class-specific.

The proposed solutions to satisfy the two requirements (co-occurrence and class-specificity)

are:

(1) Use the same data vectors for the inputs of all the sub-models. With this, the data vectors

will be co-occurring at the outputs of the sub-models. It will be so as long as there is no

randomization of the data vectors within the sub-models.

(2) Re-arrange the outputs of the sub-models by class without disrupting the time order. Then

compute the complementariness based on the class-specific data. After that, recombine the

data from the classes and shuffle the data for the final classifier.

4.2.1 Co-occurrence

Co-occurrence does not preclude the shuffling of data points in the individual views, which is

often a necessary operation to achieve independent and identical distribution of the input data

for model training. The rule of co-occurrence merely states that the same shuffled order must

be used across the views so that the data points across the views will occur at the same time

point and thus describe the same target concept.

138

To ensure co-occurrence at the penultimate layers of the deep learning sub-models, the same

data set (shuffled and so random in order) will have to be used as the inputs for all the sub-

models. As long as there is no randomization of the data vectors in the sub-models, the outputs

at the penultimate layers of the sub-models will be co-occurring. These outputs, which are co-

occurring, can then be used as the views for multi-view learning.

Figure 4.3 below illustrates this idea by showing a set of 𝑁 = 6 data vectors for each of the

three views. As can be seen from the figure, the time order in any single view is random, but it

is co-occurring across the views.

Figure 4.3. Co-occurrence

The rule of co-occurrence has to be enforced during both the training and the testing process. It

means that the algorithm must not randomize the order of data vectors within itself.

4.2.2 Class-specificity

The rule of class-specificity applies to multi-view learning because complementarity can only

be determined among data of the same class. It cannot be used for classes that are different.

The cats and dogs analogy illustrates this idea. For a set of dog images and a set of cat images,

it is meaningful to define the complementarity of the images within the sets (either the cats or

the dogs) but not across the sets. This is because complementarity is ill defined for a combined

data set that has different concepts.

The proposed solution to satisfy the requirement of class-specificity is to re-arrange the outputs

of the sub-models by class, yet without disturbing the time order necessary for co-occurrence.

139

Complementarity is then computed on the class-specific data, which is then combined across

the views.

This process, when carried out separately for the classes, will result in linearly combined data

that are class-specific. The data of these classes will have to be stacked together as one single

feature set and then shuffled so that they can be used as the input by the final classifier.

The rule of class-specificity seems to contradict the testing requirement in machine learning,

where the class in the test set is assumed unknown. Class-specific data seems impossible when

the class information is not available in the test set.

Actually, this is not a problem in the proposed multi-view temporal ensemble. This is because

the sub-models can predict the class during testing. The predicted class, instead of the actual

class, can be used to re-arrange the outputs of the sub-models. The linearly combined data,

based on the predicted classes, are then used by the final classifier for the final prediction.

4.3 Implementation

This section first provides the overview of how to compute complementarity and is followed

by the details in the sub-sections.

The input, output, and initial weight values for the computation are as shown below:

Input: A set of 𝑀 data matrices, each with 𝑁 data points of length 𝑑, 𝑿 = {𝑿(𝑖) ∈ ℝ𝑁×𝑑}
𝑖=1

𝑀

Output: A set of 𝑀 mixing coefficients, 𝛂 = {𝛼(𝑖)}
𝑖=1

𝑀

Initialize 𝛂 = [
1

𝑀
, … ,

1

𝑀
]

𝑿(𝑖) represents a group of 𝑁 co-occurring data vectors of the same class in the 𝑖-th view. 𝑁 is

typically a small number less than 32. For a given data set, the complementarity will be

computed in many such mini-batches across the views.

140

A summary of the terms used in this section are shown below:

𝑾 – Weighted adjacency matrix of a view, 𝑾 ∈ ℝ𝑁×𝑁

𝑳 – Laplacian matrix of a view, 𝑳 ∈ ℝ𝑁×𝑁

𝒀 – Spectral embedding of a view, 𝒀 ∈ ℝ𝑁×𝑚, 𝑚 < 𝑁

𝑾(𝑖) – Weighted adjacency matrix of the 𝑖-th view

𝑳(𝑖) – Laplacian matrix of the 𝑖-th view

𝒀(𝑖) – Spectral embedding of the 𝑖-th view

𝑳(𝐺) – Laplacian matrix of the global view

𝒀(𝐺) – Spectral embedding of the global view

𝛼(𝑖) – Complementarity (i.e. the mixing coefficient, or weight) of the 𝑖-th view

To compute complementarity, a set of 𝑁 data points in the 𝑖-th view are first represented as an

adjacency matrix 𝑾(𝑖) [144]. This matrix describes the distances between pairs of data points.

It can be seen as the local proximity information of the data points in the data manifold.

From the adjacency matrix 𝑾(𝑖) of the 𝑖-th view, the Laplacian matrix 𝑳(𝑖) of the 𝑖-th view can

be computed quite easily. The individual views 𝑳(𝑖), 𝑖 ∈ {1, … ,𝑀} are then linearly combined

to form the global view 𝑳(𝐺) with the initial weight values. Once the global view 𝑳(𝐺) is

obtained by linear combination, its spectral encoding 𝒀(𝐺) can be computed directly by eigen-

decomposition [14].

The global spectral embedding 𝒀(𝐺), in turn, can be used with the Laplacian matrices 𝑳(𝑖), 𝑖 ∈

{1,… ,𝑀}, to compute the weights 𝛼(𝑖). These weights are used to update the global view 𝑳(𝐺).

141

In this way, through the alternate updates of the global view 𝑳(𝐺) and the weights 𝛼(𝑖), the

global spectral embedding 𝒀(𝐺) will converge to 𝒀(𝐺)∗. At this point in time, the weights 𝛼(𝑖)

will represent the complementarity of the 𝑖-th view, relative to the other views. Figure 4.4 below

illustrates this process.

Figure 4.4. Alternate optimization of 𝑳(𝐺) and 𝛼(𝑖)

The iterative process in Figure 4.4 can be summarized as follows:

(1) Obtain 𝑳(𝑖) from a set of 𝑁 co-occurring data vectors of the same class from the 𝑖-th view

(2) Align the individual 𝑳(𝑖) to the global spectral embedding in 2 steps:

a. obtain 𝑳(𝐺) from 𝑳(𝑖) by linear combination, according to the weights 𝛼(𝑖)

b. obtain 𝒀(𝐺) from 𝑳(𝐺) by eigen-decomposition, formed by the 𝑚 eigen-vectors that

correspond to the 𝑚 smallest eigenvalues other than 𝜆0 , where 0 = 𝜆0 ≤ 𝜆1 ≤

⋯𝜆1 ≤ ⋯ ≤ 𝜆𝑁 −1, and 𝑚 < 𝑁

(3) Update the values of 𝛼(𝑖), which is the inverse of the trace of 𝒀(𝐺)
𝑇
𝑳(𝑖)𝒀(𝐺)

Iterate through (2) if the norm of the change in 𝜶 is bigger than a user-defined threshold.

After the complementarity 𝛼(𝑖) of the mini-batches across the views are determined, they can

be blended in a linear mixture as shown in Figure 4.5 below. Then shuffle the blended data for

use as the input of the final classifier.

142

Figure 4.5. Linear combination in small batches of 𝑁 co-occurring vectors of the same class

4.3.1 Laplacian Matrix of Individual View

For a set of 𝑁 data points {𝒙𝑖 ∈ ℝ
𝒅}
𝑖=1

𝑁
 of an individual view, the weighted adjacency matrix

𝑾 is a square symmetric matrix of size 𝑁 × 𝑁. The (𝑖, 𝑗)-th entry of 𝑾 can be computed

according to Equation (4.4) below.

[𝑾]𝑖,𝑗

=

{

𝑒𝑥𝑝(−

‖𝒙𝑖 − 𝒙𝑗‖2
2

𝜎2
) 𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑎𝑠 𝑘 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.4)

According to Equation (4.4) above, the entry [𝑾]𝑖,𝑗 is cleared to 0 if the data points 𝒙𝑖 and 𝒙𝑗,

𝑖, 𝑗 ∈ {1, … ,𝑁}, are not connected. Whether 𝒙𝑖 is connected to 𝒙𝑗 depends on whether 𝒙𝑗 is in

the 𝑘-nearest neighbourhood of 𝒙𝑖, where 𝑘 < 𝑁 is a user-defined hyper-parameter. The value

of [𝑾]𝑖,𝑗 represents the proximity between 𝒙𝑖 and 𝒙𝑗 in the data manifold formed by the set of

𝑁 data points. The closer the points, the higher the value of the proximity.

4.3.2 Spectral Embedding of Data Manifold

The spectral embedding 𝒀∗ of 𝑁 data points in a single view can be obtained by a method called

Laplacian eigenmap [13]. Laplacian embedding is a data reduction technique that projects the

data points onto the alternative spectral view while preserving the local proximity of the data

points in the new view. Conceptually, this preservation is achieved by the minimization of the

cost function 𝐽(𝒀) as shown in Equation (4.5) below:

143

𝐽(𝒀) = ∑ ‖𝒚𝑖 − 𝒚𝑗‖
2
[𝑾]𝑖,𝑗

𝑖,𝑗∈{1,…,𝑁}

 (4.5)

As seen from Equation (4.5) above, the cost function 𝐽(𝒀) is the total amount of differences

between two embedded vectors (𝒚𝑖 and 𝒚𝑗, 𝑖, 𝑗 ∈ {1, … ,𝑁}), modulated by [𝑾]𝑖,𝑗. When the

data points 𝒙𝑖 and 𝒙𝑗 are in close proximity in the data manifold, the value of the adjacency

matrix [𝑾]𝑖,𝑗 will be large, thus contributing more to the cost function. This helps to promote

the preservation of the local proximity in the resultant spectral embedding.

The solution 𝒀∗ of the above minimization problem [14] can be shown to reduce to

𝒀∗ = 𝑎𝑟𝑔 min
𝒀𝑇𝑫𝒀=1,𝒀𝑇𝑫1=0

𝑡𝑟(𝒀𝑇𝑳𝒀) (4.6)

In Equation (4.6) above, 𝑳 is the Laplacian matrix that can be computed as 𝑳 = 𝑫 −𝑾, where

the diagonal matrix 𝑫 is the degree of connectedness in the data manifold, i.e. [𝑫]𝑖,𝑖 =

∑ [𝑾]𝑖,𝑗
𝑁
𝑗=1 .

Importantly, finding 𝒀∗ = 𝑎𝑟𝑔 min
𝒀𝑇𝑫𝒀=1,𝒀𝑇𝑫𝟏=0

𝑡𝑟(𝒀𝑇𝑳𝒀) is equivalent to finding the

eigenvectors 𝒀∗ of the generalized eigenvalue problem 𝑳𝒀∗ = 𝝀𝑫𝒀∗. Thus, given the Laplacian

matrix 𝑳, the spectral embedding 𝒀∗ can be found easily. The spectral embedding 𝒀∗ can be

computed directly by the eigen-decomposition of 𝑳, even though it is a minimization problem

that comes with a cost function.

With 𝑳 and 𝒀∗ known, the cost value 𝑡𝑟(𝒀∗𝑇𝑳𝒀∗) can be computed. The lower the cost value,

the closer it is to reach the objective of preserving the local proximity of the data points in the

spectral embedding.

The Laplacian eigenmap as described above is for single view only. It will have to be modified

for use in the multi-view setting. This will be described in the next subsection.

144

4.3.3 Global View Problem

With multiple views, say 𝑀 views, the solution of the minimization problem of a single view

in Equation (4.6) becomes not useful at all. Not only is the global view 𝑳(𝐺) unknown, the

weights that are needed to form 𝑳(𝐺) are also unknown.

The global view problem mentioned above can be framed as one with two sets of unknowns,

the global view itself, and the weights that are needed to form the global view. The candidate

method to solve a minimization problem with two sets of unknowns is alternate optimization.

An example of alternate optimization is the expectation maximization (EM) method used in the

Gaussian mixture [140]. Over there, the Gaussian parameters and the class distribution are both

unknown initially. With one set of unknowns initialized and fixed, the other set of unknowns

can be determined. This will continue iteratively by switching between the two sets of unknown,

one fixed and the other one to be determined. The two-step process will continue until the

unknown values converge, or until the pre-determined number of iterations is reached.

Theoretically, this process is equivalent to the maximum likelihood estimation of the unknowns.

Following the method of patch alignment with multi-view spectral embedding for image and

video [137], it is proposed that the global view 𝑳(𝐺) be formed as the linearly combination of

the individual views 𝑳(𝑖), 𝑖 ∈ {1, … ,𝑀}, based on the weights 𝛼(𝑖) (initialized as 1/𝑀).

𝑳(𝐺) =∑(𝛼(𝑖))
𝑟
𝑳(𝑖)

𝑀

𝑖=1

, 𝑟 > 1

(4.7)

The minimization problem of a single view in Equation (4.6) will then become Equation (4.8)

below:

𝒀(𝐺)∗ = 𝑎𝑟𝑔 min
𝒀(𝐺)

𝑇
𝒀(𝐺)=𝟏

∑(𝛼(𝑖))
𝑟
𝑡𝑟(𝒀(𝐺)

𝑻
𝑳(𝑖)𝒀(𝐺))

𝑀

𝑖=1

(4.8)

In Equation (4.8) above, the Laplacian matrix 𝑳(𝑖) is the 𝑖-th individual view. The Laplacian

eigenmap 𝒀(𝐺) is the spectral embedding of the global view 𝑳(𝐺).

145

The hyper-parameter 𝑟 has been introduced in Equation (4.7) above. Its value should be 𝑟 > 1.

It is a trick to induce each view to contribute unequally to the global spectral embedding 𝒀(𝐺)∗.

If 𝑟 = 1 , the alternate optimization will end up with only the best view instead of the

complementary views [145].

𝒀(𝐺)∗ in Equation (4.8) above can be computed directly from the global Laplacian matrix 𝑳(𝑮).

It is the set of eigenvectors of 𝑳(𝑮) that correspond to the 𝑚 smallest eigenvalues other than

𝜆0 = 0.

The eigenvectors are arranged in order of the eigenvalue, from the smallest eigenvalue to the

largest value, up to the specified dimension 𝑚 < 𝑁, where 𝑁 is the dimension of the Laplacian

matrix.

The eigenvectors with the smallest eigenvalues are selected because a compact representation

in the projection space is desired. However, since the eigenvector associated with the smallest

eigenvalue is likely to represent the noise, it will have to be discarded. Thus, only column

vectors 𝒀∙𝑗 , 𝑗 ∈ {2,⋯𝑚 + 1} are used. The shape of 𝒀 is (𝑁 × 𝑚), where 𝑁 is the number of

data points in the mini-batch and 𝑚 is the user-defined hyper-parameter value for the number

of selected eigenvectors.

The initial weights in the cell array 𝜶 is based on non-informative assumption. For example,

for a 3-view problem, the initial weights are 1 3⁄ , 1 3⁄ , and 1 3⁄ . With these initial weight

values, it is possible to obtain 𝑳(𝐺) from 𝑳(𝑖) and thus kick start the alternate optimization

process.

4.3.4 Complementarity

The minimization problem shown in Equation (4.8) in the previous subsection has two sets of

unknowns. The first set of unknowns are the weights 𝜶. Although they have some initial values,

they cannot stay put at those values and must be updated to the values that represent

complementarity. The second set of unknowns are the global Laplacian 𝑳(𝐺), without which the

spectral embedding 𝒀(𝐺) required for the update of the weights 𝜶 will not be available.

146

In this work, it is proposed that given 𝑳(𝐺) and thus 𝒀(𝐺), the weight 𝛼(𝑖) in 𝜶 can be computed

as shown in Equation (4.9) below. It is the inverse of the cost value of the 𝑖-th view, normalized

across the 𝑀 views.

𝛼(𝑖) = (1/𝑡𝑟(𝒀(𝐺)
𝑻
𝑳(𝑖)𝒀(𝐺)∗))

1
𝑟−1

/∑ (1/𝑡𝑟(𝒀(𝐺)
𝑻
𝑳(𝑖)𝒀(𝐺)∗))

1
𝑟−1𝑀

𝑖=1

(4.9)

With the values of 𝜶 computed as shown in Equation (4.9) above, it will then be possible to

compute 𝑳(𝐺) from the linear combination of the individual views 𝑳(𝑖) according to Equation

(4.7).

The aforementioned two-step iteration will continue until a stopping criterion is met. The 𝐿2

norm in Equation (4.10) below can be used as the criterion for the convergence of the alternate

optimization.

√∑ (𝛼𝑘
(𝑖) − 𝛼𝑘−1

(𝑖))
2𝑀

𝑖=1
< 𝜀

(4.10)

In Equation (4.10) above, 𝛼𝑘
(𝑖)

 is the weight at the 𝑘-th iteration and 𝛼𝑘−1
(𝑖)

 is the weight at the

(𝑘 − 1)-th iteration. 𝜀 is a user-defined threshold that is set to a value much smaller than 1. The

iteration continues until the change in the norm of 𝜶 in successive iterations is smaller than 𝜀.

At convergence, 𝛼(𝑖) will have a value that is different from 1/𝑀. A value larger than 1/𝑀

means that the view is more complementary and contributes more to the global spectral

embedding (compared to the other views). Conversely, a value smaller than 1/𝑀 means that

the view is less complementary and contributes less to the global spectral embedding compared

to the other views.

4.4 CNN-LSTM Sub-Model

The multi-view temporal ensemble, when applied to time series data, entails some

considerations as shown below:

147

(1) In general, it is a good idea to decompose the time series into the time-frequency

representation to expose the spectral features to the learner.

(2) A sub-model based on a good learner will be able to produce data that are smooth with

respect to their target class labels, thus making the criterion of local proximity in spectral

embedding achievable.

(3) Sub-models of the same type can be configured differently to generate artificial views from

the same data set.

The use of CNN as the front end has been verified to be an effective method for time series data

in previous works [146]. Thus, instead of using the raw data of a time series as the input, it is

proposed that the data be transformed into its time-frequency domain for the multi-view

temporal ensemble. The CNN will accept the data in the time-frequency domain in the tensor

format of channel × height × width, where height is the time steps and width is the frequency

bins.

With the two-dimensional CNN as the front end, a one-dimensional CNN can be added on top

of it to extract the temporal features across the feature maps. This is then followed by an LSTM

to extract the remaining high-level temporal features. Different configurations of such CNN-

LSTM models can be used as the sub-models of the multi-view temporal ensemble to produce

the views that are needed by multi-view learning.

4.4.1 Time-Frequency Representation

Time-frequency decomposition exposes the spectral changes in the signals and is useful for the

analysis of signals that are non-stationary. Instead of using the raw data of a time series segment

as input, it is first transformed into a set of time-frequency features by one of the many time

frequency analysis techniques. For biosignals such as heart sounds, the mel scaled spectrogram

will work better than the linear one because it provides higher frequency resolution in the lower

frequency regions where the audible information for auscultation lies.

Figure 4.6 below illustrates this idea for a particular time series segment. The time series

segment is split into 21 overlapping frames. Each frame is then transformed to a 60-bin Mel

cepstrum. The resulting time-frequency features are arranged in a 2-D table as shown in Figure

148

4.6 below, where the time steps are in the vertical axis and the frequency bins are in the

horizontal axis.

Figure 4.6. Time-frequency data format of a segment

A CNN will accept as its input the tensor format of 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × ℎ𝑒𝑖𝑔ℎ𝑡 × 𝑤𝑖𝑑𝑡ℎ. The height

and width of the tensor format corresponds to the time steps and the frequency bins of the time-

frequency representation. As for the channel of the tensor format, it corresponds to the number

of input variables of a multi-channel signal. For a univariate temporal signal such as heart sound,

that will be 1.

4.4.2 CNN-LSTM

It is proposed that the two-dimensional CNN model be used as the feature extractor of the two-

dimensional time-frequency data objects. The data format allows both the time-invariant and

the frequency-invariant features to be extracted. The use of the two-dimensional CNN as the

front end has been verified to be an effective method for time series in previous works [146].

With the two-dimensional CNN at the front end, it is proposed that a one-dimensional CNN be

added on top of it to extract the temporal features across the feature maps. This is then followed

by an LSTM to extract the remaining high-level temporal features. The proposed CNN-LSTM

sub-model for the multi-view temporal ensemble is shown in Figure 4.7 below.

149

Figure 4.7. Architecture of the CNN-LSTM sub-model for the multi-view temporal ensemble

To extract more complex features, more than one layer should be used in the network. A good

starting point is to have two groups of layers for the two-dimensional CNN front end. Each

group of two-dimensional CNN consists of the following: (1) a two-dimensional convolutional

layer (for detecting features), (3) a pooling layer (for generalization across the channels), and

(3) a dropout layer (for further regularization).

Due to the pooling, the number of time steps and features will drop in size at the deeper layers.

For example, say the shape of a time series segment is (21 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠, 60 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑖𝑛𝑠).

If a pooling region of (2,2) is used at the pooling layer, then the shape of the feature map will

be reduced by the pooling layer to (10 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠, 30 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). The smaller data size at the

deeper layers is often accompanied by higher number of channels. For example, suppose 32

kernels are used. This will increase the number of channels from 1 to 32, resulting in 32 feature

maps, each of (10 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠, 30 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) in shape.

The tensor output of the two-dimensional CNN front end can be reshaped to the shape required

by one-dimensional CNN and LSTM. In reshaping for these layers, the time-step (i.e. height)

dimension in the tensor is retained, but the channel and the feature (i.e. width) are combined

into a single dimension.

150

There are many hyper-parameters that can be tuned in the CNN-LSTM sub-model. Some of the

hyper-parameters are: (1) the number and types of layers, (2) the size and stride of the kernels,

(3) the pooling region size and the pooling stride, and (3) the number of units in the fully-

connected layer.

The final classifier in the LSTM-CNN sub-model consists of one or more fully connected layer

and a softmax layer. The penultimate layer of the final classifier is the view of the sub-model.

The complementarity of multiple such views can be computed in the multi-view temporal

ensemble.

4.5 Summary of Multi-view Temporal Ensemble

The proposed multi-view temporal ensemble provides a way to combine multiple views. To do

so, the views are mapped to a global spectral encoding. The contribution of each view to the

global spectral encoding is computed. The score, or complementarity, is used as the weight in

the linear combination of the views.

The views are the penultimate output of deep learning models, such as the CNN-LSTM model

or the deep temporal convolution network.

As an example of the performance improvement by the multi-view temporal ensemble, Table

4.1 below shows the classification accuracies (in percentage) of the 10-fold validation on the

14-channel EEG Eye State data set. Different configurations of the deep temporal convolution

network are used for the sub-models in View 1, 2, and 3.

Table 4.1. 10-fold cross-validation of individual views and MTE, eye state

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 93.11 93.24 92.03 95.68 91.35 92.57 89.19 82.84 89.59 90.95

View 2 95.41 96.76 89.46 94.59 98.78 88.38 91.76 97.03 91.08 92.70

View 3 89.32 93.11 91.89 99.19 92.43 90.00 94.05 89.86 93.92 92.03

MTE 95.75 95.89 95.75 98.49 98.63 93.42 97.12 96.71 93.42 94.52

151

The mean of the 10-fold cross-validation is the figure of merit used for comparing the effect of

the models. This is shown in Table 4.2 below.

Table 4.2. Mean of 10-fold cross-validation of individual views and MTE, eye state

 Mean Std Dev

View 1 91.05% 3.44%

View 2 93.59% 3.46%

View 3 92.58% 2.85%

MTE 95.97% 1.84%

As can be seen from Table 4.2 above, the accuracy for the individual models (91.05% for View

1, 93.59% for View 2, and 92.58% for View 3) improves to 95.97% when the views are

combined in the multi-view temporal ensemble.

The multi-view temporal ensemble lifts the performance of time series classification at the

expense of more training time. This is justified when a more robust performance is required,

especially when the time series data set are not well segmented and high variation is expected

of the new and unseen test data.

152

Chapter 5. Data Experiments and Results

This chapter will first describe the data analysis of a typical biosignal data set, the EEG Eye

State data set. The objective is to provide the data understanding that is necessary for the data

experiments that follow. After that, the following data experiments and their results will be

presented.

(1) Deep temporal convolution network (with multi-view temporal ensemble)

a. EEG Eye State [2]

b. EEG Epileptic Seizure [15]

c. Human Activity Recognition [16]

d. Freezing of Gait during Walking [17]

e. EMG Lower Limb Analysis [18]

(2) Multi-view temporal ensemble with CNN-LSTM sub-models

a. Environmental Sound [19]

b. Heart Sound [20]

The above data experiments will each consist of three parts: (1) spot-checking to provide the

benchmark against the proposed method, (2) 10-fold validation of the proposed method, and

(3) comparison with an equivalent method and other existing works.

All the codes were run on Matlab 2018a and Python 3.6.5 (with scikit-learn version 0.19.1 and

Keras version 2.2.2). The machine used was a HP ProBook 440 G3 laptop with Intel i7-6500U

CPU @ 2.5 GHz and Windows 10 Pro.

5.1 Data Analysis of the EEG Eye State Data Set

The EEG Eye State data set is a multivariate numeric time series data set collected by Oliver &

Suendermann (2013). It was downloaded from the UCI Machine Learning Repository [147]. It

is a relatively simple data set, with a single time series recorded from a single subject. The time

series has 14,980 samples in it. Each sample has 14 readings, corresponding to the fourteen

electrodes (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) of a commercial EEG

headset. The data was acquired at 128 sample per second and is 117-second long.

153

The subject was relaxed but alert during data collection, and so the EEG rhythm is likely to be

the alpha waves. He was asked to deliberately open and close his eyes for the data collection. As

a result, the EEG signal has two eye states, namely eye-open (class 0) and eye-closed (class 1).

The annotation was done manually by comparing the EEG against the video recording of the

subject.

5.1.1 Data Exploration

From the line plot of the eye state in Figure 5.1 below, it can be seen that the eye state stays for

a few hundred samples (a few seconds) in a state before changing.

Figure 5.1. Target class labels of an electrode - 0 for eye-open and 1 for eye-closed

At the start of the data experiment, some data cleaning was done to remove the obvious

measurement artefacts that may affect model training. This is done by viewing the line plots of

the 14 electrodes individually. From the individal line plots, it was found that 4 of the samples

contain amplitude that are not in line with the expected alpha wave. They are either too large

(> 5000 𝑛𝑉) or too small (< 3500 𝑛𝑉).

After the removal of the 4 outliers, the data set is left with 14,976 samples. It is a balanced data

set, with 8,254 eye-open samples (55.12%) and 6,722 eye-closed samples (44.88%). A zero-

rule algorithm that always predicts the majority class will yield an accuracy of 55.12% for this

data set.

154

The summary statistics of the electrode signals are shown in Table 5.1 below. Not much can be

gleaned about the eye state from the data, other than that the outliers have been removed.

Table 5.1. Summary statistic of the 14 electrodes by class

Eye State open (class 0) closed (class 1)

 min mean max min mean max

AF3 4198 4298 4504 4199 4305 4445

F7 3924 4013 4157 3906 4005 4139

F3 4197 4263 4386 4212 4266 4367

FC5 4073 4123 4250 4058 4121 4214

T7 4304 4342 4464 4310 4342 4435

P7 4566 4621 4757 4575 4619 4709

O1 4027 4072 4178 4026 4074 4167

O2 4567 4615 4732 4568 4617 4696

P8 4152 4200 4464 4148 4203 4435

T8 4153 4229 4363 4174 4233 4323

FC6 4027 4200 4178 4026 4205 4167

F4 4201 4277 4398 4226 4282 4369

F8 4443 4602 4834 4510 4611 4811

AF4 4206 4357 4573 4246 4367 4553

The line plots of the cleaned-up signals are shown in Figure 5.2 below. The line plots exhibit

the typcial non-stationary, non-linear and noisy look of a biosignal.

155

Figure 5.2. Top left to bottom right: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,

AF4

It is known that the most prominent EEG rhythm in a relaxed subject with the eyes closed is the

alpha wave. It is also known that the alpha wave will be suppressed when the eyes are open.

However, Figure 5.3 below shows that the expected effect is quite illegible even when the

electrode signals are placed on top of the annotated eye state for easier cross-reference with the

annotation.

Figure 5.3. AF3 (top left) and F7 (top right), with their corresponding eye state (bottom)

When the electrode signals are arranged in a stack, as shown in Figure 5.4 below, the

characteristic of the alpha waves becomes more discernible. It can be seen from Figure 5.4 that

156

whenever there is a state change from eye-open to eye-closed, the electrode signals will have a

spike. Conversely, whenever there is a state change from eye-closed to eye-open, the electrode

signals will dip. The general agreement among the electrode signals implies that the electrodes

are complementary and will reinforce each other in the classification of the eye state.

Figure 5.4. Stack of line plots of all the 14 electrodes on top of the eye state

5.1.2 Non-Stationarity

It is known that the EEG signal is non-stationary. This means that the mean and the variance of

the signals will change with time. This can be seen in Figure 5.5 below, where the mean and the

variance change randomly with time. They do not seem to provide any indication of the eye

state.

157

Figure 5.5. AF3 (left) and F7 (right): moving average (top) and moving variance (bottom)

Since the signals are non-stationary, they cannot be Gaussian in distribution. Figure 5.6 below

shows the distributions of the 14 electrodes by their amplitude values.

158

Figure 5.6. Distribution of the 14 electrode signals by amplitude values

The distributions in Figure 5.6 may, at first look, appear Gaussian-like. However, from their QQ

plots (graph of the quantiles of the signal against the quantile of the standard normal

distribution), it is obvious that there are deviations from the normal distribution. In Figure 5.7,

the QQ plots of the signals for class 0 (eye-open) are not Gaussian, as they all have a large

positive skew. Similarly, in Figure 5.8, the QQ plots of the signals for class 1 (eye-closed) have

a large positive skew too.

Figure 5.7. QQ plots of the 14 electrode signals, class 0 (eye open)

159

Figure 5.8. QQ plots of the 14 electrode signals, class 1 (eye closed)

The non-stationarity of the electrode signals is confirmed by dividing each of them into a number

of short time segments and then perform the Augmented Dickey-Fuller test (a type of statistical

test called the unit root test). The null hypothesis of the test is that the signal is non-stationary.

A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis.

After conducting the Augmented Dickey-Fuller test on the electrode signals, it was found that

the p-values range from 0.5988 to 0.6579. There is thus no evidence to reject the null hypothesis

that the signal is non-stationary.

5.1.3 Time Dependency

Although the electrode signals are non-stationary, they do contain temporal patterns that can be

learnt by machine learning algorithm. Figure 5.9 below shows the typical autocorrelation and

cross-correlation of the electrode signals. As they are not zero in value, the signals cannot be

white noise.

160

Figure 5.9. Autocorrelation of AF3 (left), and cross-correlation of AF3 and F7 (right)

Another observation of Figure 5.9 above is that the autocorrelation and cross-correlation do not

decay exponentially. Instead, they decay in a somewhat linear manner. This is the evidence that

the electrode signals have long-term memory to keep the temporal patterns.

From Table 5.2 below, it can be seen that many of the electrodes are positively correlated (>0.3)

to one another. They are not independent of each other. This suggests that there is

complementary information in the electrode signals. This is not surprising, since they are brain

waves (largely alpha waves) that are collected from the same scalp at different locataions.

161

Table 5.2. Correlation between the electrode signals

AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

AF3 1 0.59 0.76 0.61 0.35 0.23 0.32 0.22 0.32 0.50 0.65 0.80 0.76 0.94

F7 0.59 1 0.57 0.75 0.49 0.33 0.26 0.11 0.14 0.18 0.25 0.38 0.25 0.41

F3 0.76 0.57 1 0.77 0.64 0.60 0.49 0.55 0.56 0.64 0.67 0.83 0.62 0.71

FC5 0.61 0.75 0.77 1 0.68 0.54 0.40 0.36 0.37 0.40 0.41 0.56 0.36 0.47

T7 0.35 0.49 0.64 0.68 1 0.83 0.66 0.66 0.64 0.63 0.53 0.53 0.36 0.30

P7 0.23 0.33 0.60 0.54 0.83 1 0.66 0.72 0.71 0.65 0.50 0.51 0.31 0.21

O1 0.32 0.26 0.49 0.40 0.66 0.66 1 0.64 0.67 0.57 0.51 0.58 0.39 0.33

O2 0.22 0.11 0.56 0.36 0.66 0.72 0.64 1 0.87 0.72 0.59 0.59 0.41 0.29

P8 0.32 0.14 0.56 0.37 0.64 0.71 0.67 0.87 1 0.83 0.68 0.67 0.54 0.39

T8 0.50 0.18 0.64 0.40 0.63 0.65 0.57 0.72 0.83 1 0.80 0.76 0.71 0.59

FC6 0.65 0.25 0.67 0.41 0.53 0.50 0.51 0.59 0.68 0.80 1 0.84 0.84 0.74

F4 0.80 0.38 0.83 0.56 0.53 0.51 0.58 0.59 0.67 0.76 0.84 1 0.82 0.84

F8 0.76 0.25 0.62 0.36 0.36 0.31 0.39 0.41 0.54 0.71 0.84 0.82 1 0.86

AF4 0.94 0.41 0.71 0.47 0.30 0.21 0.33 0.29 0.39 0.59 0.74 0.84 0.86 1

The heat map of the correlation is shown in Figure 5.10 below:

Figure 5.10. Heat map of the correlation of the electrode signals

162

The cross-correlation shows that the values of the electrodes tend to move together. They are co-

integrated, meaning that they share a common stochastic drift in the long run. The test for co-

integration using the Engle-Granger Test produces a p-value of 0.001 with the full set of 14,976

samples, thus rejecting the null hypothesis that there is no co-integration.

From the autocorrelation plot in Figure 5.11 below, it can be seen that there is significant

autocorrelation over a large range of lags (more than a few thousands samples). The alternation

between positive and negative correlation reflects the changing pattern of the eye state.

Figure 5.11. Top-left to bottom-right: auto-correlation plots of 14 electrodes (AF3, F7, F3,

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4)

Despite the autocorrelation, the signals look random. Each of the values are built from the

previous value with an aditional amount of white noise. This suggests a Markov process

(random walk) where the values are autocorrelated, but the direction of change are random. For

163

such a signal, the direction cannot be reasonably predicted. The best prediction is persistence,

which is to say that the value at the previous time step is the best predictor for the next time

step.

A short run of a random walk signal can be converted to a stationary signal by taking the first

difference of the samples. Figure 5.12 shows the autocorrelation and cross-correlation of the first

differences, showing clearly that the signal is now stationary. The p-value of the Augmented

Dickey-Fuller test is now 0.001.

Figure 5.12. (Left) Autocorrelation of first difference of AF3. (Right) Cross-correlation of the

first difference of AF3 and F3

When the first difference is split according to the eye states (eye-open or eye-closed), the QQ

plots appears nonlinear for eye-open but linear for eye-closed (except for some odd samples).

Figure 5.13. Quantile-to-quantile plot of AF3’s first difference, class 0 (left) & class 1 (right)

164

The difference in the distributions by eye state is also evident from the kernel density estimation

of the first difference by class, as shown in Figure 5.14 below.

Figure 5.14. Kernel density estimation of AF’s first difference, class 0 (left) & class 1 (right)

The difference in the EEG signal by eye states provides the discriminative information for the

signals to be classified. However, as the difference is too complex to be described by a general

form, deep learning should be used to fit the data to an approximate function that represents the

underlying function.

5.1.4 Effect of the Sliding Window

Short runs of a random walk signal can be created from the time series by the sliding window

method. Each of these segments is a row in the resulting table. Due to the sliding window that

breaks the time series into jagged segments, the columnar data in the resulting table will not

correlate to each other and so there is no issue of multi-collinearity there.

As shown in Figure 5.15 below, due to the sliding window, the data of a single column in the

table do not autocorrelate anymore. The data of two different columns in the table do not cross-

correlate also.

165

Figure 5.15. Autocorrelation of column 1 (left), and cross-correlation of column 1 & 2 (right)

With row shuffling, the data instances in the table will become independent and identically

distributed. This is the kind of distribution expected by a typical machine learning algorithm.

Machine learning may now proceed, now that the time series is put in the structured format as

expected by the algorithm.

5.2 EEG Eye State

This section will describe the data experiment done on the EEG Eye State data set [2] from the

UCI Machine Learning Repository [147]. The purpose is to validate the performance of the

deep temporal convolution network and the multi-view temporal ensemble on the data set.

The work is presented in five parts: (1) spot-checking to get the general benchmark, (2) the 10-

fold validation of the deep temporal convolution network with 𝑇𝑆 (time steps) value of 1, 2,

and 5, (3) the comparison with a DBN-DNN of equal complexity, (4) the comparison of the

individual views with the multi-view temporal ensemble, and (5) comparison with exsiting

works.

5.2.1 Spot Checking

With the EEG Eye State data set, 10-fold cross-validation was done in Python with five different

algorithms, namely (1) logistic regression, (2) K nearest neighbour, (3) CART decision tree,

(4) MLP neural network, and (5) ensemble by voting. All the algorithms were run in their

default configurations. The data attributes were standardized in each of the folds during cross-

validation.

166

Two different data formats were used for the 10-fold validations. This is shown in Table 5.3

below as “without windowing” and “with windowing” (window length as 16, slide as 8). In

both cases, the data were in their natural time order, i.e. no shuffling was done. Both data

formats yield rather poor classification accuracy scores and standard deviation (in brackets), as

shown in Table 5.3 below.

Table 5.3. Classification accuracy without shuffling (eye state)

 without windowing with windowing p-value

LR 37.76% (19.38%) 36.44% (15.87%) 0.563

KNN 51.03% (13.33%) 53.81% (16.29%) 0.204

CART 50.67% (8.90%) 52.05% (8.48%) 0.516

MLP 50.38% (14.36%) 53.78% (17.48%) 0.453

Ensemble by Voting 50.84% (18.39%) 51.24% (19.89%) 0.817

As seen from Table 5.3 above, the accuracy is close to the random chance of 55.12%. There

was no effective learning. The high p-value of the Student’s paired t-test (between the 10-fold

validation results of the windowed and non-windowed data) shows that there is no benefit in

using the time delay representation if the data was not shuffled before training.

The reason for the poor performance is not the lack of temporal patterns in the input. It is the

overfitting of the classifier to the output pattern (eye state) in the training set. This results in

poor generalization in the test set. Figure 5.16 shows the box plot of the test results of the five

algorithms for the windowed data.

167

Figure 5.16. Boxplot of algorithm comparison without shuffling (eye state)

With the importance of shuffling confirmed, the spot checking is done again, this time with

shuffling. The performance, as shown in Table 5.4 below, is now significantly better. In

particular, the MLP in the default configuration (115 nodes in the hidden layer) achieved a

classification accuracy of 95.2% without windowing and 97.4% with windowing.

Table 5.4. Classification accuracy with shuffling (eye state)

 Without Windowing With Windowing p-value

LR 64.102% (0.771) 62.202% (2.141) 0.058

KNN 96.347% (0.413) 95.803% (1.023) 0.148

CART 83.927% (1.034) 75.675% (2.597) 0.000

MLP 95.199% (0.503) 97.433% (1.117) 0.001

Ensemble by Voting 92.208% (0.707) 90.189% (2.108) 0.022

The low p-values in Table 5.4 above shows that the time delay representation does affect the

performance of the classifiers. The box plot in Figure 5.17 provides a visual comparison of the

performances of the classifiers.

168

Figure 5.17. Boxplot of algorithm comparison with shuffling (eye state)

To confirm the results obtained so far, the data set (with and without windowing, both with

shuffling) was used with the WEKA toolkit based on the default setting for the classifiers. The

10-fold cross-validation results are shown in Table 5.5 below.

Table 5.5. WEKA classification accuracy with shuffling (eye state)

 Without Windowing With Windowing

LR 64.1% 61.1%

KNN 97.3% 96.0%

CART 83.2% 74.4%

MLP 85.1% 96.3%

KStar 96.7% 55.2%

The difference in the performance score in Table 5.4 and Table 5.5 is attributed to the

differences in (1) the default setting and (2) the implementation of the algorithms in Python and

WEKA. By and large, it confirms that shuffling is necessary. In the case of MLP, windowing

will improve the performance score.

169

5.2.2 10-Fold Validation, TS = 1, 2, 5

In this data experiment, three different configurations of the deep temporal convolution network

were used. They are shown in Table 5.6 below as View 1, View 2, and View 3. These are the

sub-models of the multi-view temporal ensemble.

Table 5.6. Configurations of the deep temporal convolution network

 View 1 View 2 View 3

Input layer 224 224 224

First hidden layer 20 20 20

Second hidden layer 20 50 35

Third hidden layer 20 20 20

Softmax layer 2 2 2

The three configurations were based on a network structure that consists of one input layer,

three hidden layers and the final softmax layer. Their differences lie in the number of nodes in

the second hidden layer (20 for View 1, 50 for View 2, and 35 for View 3).

The data was rearranged in the time delay representation by the sliding window method. The

window length was 16-sample long (125 millisecond), and the slide was 8-sample long.

The hyper-parameter 𝑇𝑆 (time steps) was set initially to 1. 𝑇𝑆 = 1 implies that there is no

concatenation in the concatenation sublayer. It is equivalent to the usual DBN-DNN. The

performance based on this value is thus used as the benchmark for the other time step values.

Table 5.7 below shows the classification accuracy for the three configurations of the deep

temporal convolution network at 𝑇𝑆 = 1, as well as the classficiation accuracy of the multi-

view temporal ensemble based on the three views. The results are arranged in 10 folds so that

the fluctuation across the folds can be seen.

170

Table 5.7. Cross-validation results (accuracies in percentage) of DTCN at TS=1 (eye state)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 93.11 93.24 92.03 95.68 91.35 92.57 89.19 82.84 89.59 90.95

View 2 95.41 96.76 89.46 94.59 98.78 88.38 91.76 97.03 91.08 92.70

View 3 89.32 93.11 91.89 99.19 92.43 90.00 94.05 89.86 93.92 92.03

MTE 95.75 95.89 95.75 98.49 98.63 93.42 97.12 96.71 93.42 94.52

The 10-fold results in Table 5.7 above is summarized in Table 5.8 below. It shows the means

and standard deviations of the 10-fold results for each of the three views, as well as the

combined view provided by the multi-view temporal ensemble.

Table 5.8. Means and standard deviations of the 10-fold results of DTCN at TS=1 (eye state)

 Mean Std Dev

View1 91.05% 3.44%

View2 93.59% 3.46%

View3 92.58% 2.85%

MTE 95.97% 1.84%

To show the improvement due to the deep temporal convolution network, the hyper-parameter

value was then set to 𝑇𝑆 = 2. The cross-validation results are shown in Table 5.9 below, and

the summarized results in Table 5.10 further below that.

Table 5.9. Cross-validation results (accuracies in percentage) for DTCN at TS=2 (eye state)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold8 Fold

9

Fold

10

View 1 93.51 95.81 99.46 99.86 98.92 91.08 94.73 94.32 90.54 92.03

View 2 98.78 98.24 99.86 97.97 98.51 99.46 99.46 97.84 95.41 97.97

View 3 91.89 98.11 96.76 100.0 98.78 89.73 100.0 97.97 97.57 98.2

MTE 96.99 97.81 99.32 99.45 99.04 97.53 99.73 98.22 96.30 97.26

171

Table 5.10. Means and standard deviations of the 10-fold results of DTCN at TS=2 (eye state)

 Mean Std Dev

View 1 95.03% 3.44%

View 2 98.35% 1.26%

View 3 96.91% 3.40%

MTE 98.16% 1.17%

As Table 5.10 above shows, there is a lift in the classification accuracies for all the three

configurations of the deep temporal convolution network, as well as the multi-view temporal

ensemble. For example, the classification accuracy of View 1 has improved from 91.05% at

𝑇𝑆 = 1 to 95.03% at 𝑇𝑆 = 2. This imporvement is attributed to the use of more temporal

context in the deep temporal convolution network.

Since there is an imporvement in performance by increasing the 𝑇𝑆 value from 1 to 2, why not

take it further to 𝑇𝑆 = 5? The cross-validation results for this case is shown in Table 5.11

below.

Table 5.11. Cross-validation results (accuracies in percentage) of DTCN at TS=5 (eye state)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 99.05 98.92 100.0 99.86 99.46 98.92 98.51 99.86 99.19 98.92

View 2 98.92 98.51 100.0 99.86 100.0 100.0 97.16 98.24 98.78 99.73

View 3 100.0 99.46 100.0 98.51 99.46 99.73 99.73 99.46 99.73 100.0

MTE 99.04 98.36 99.86 99.04 99.73 99.86 99.59 99.59 99.04 99.59

The 10-fold results in Table 5.11 above is summarized in Table 5.12 below.

172

Table 5.12. Means and standard deviations of 10-fold results of DTCN at TS=5 (eye state)

 Mean Std Dev

View 1 99.27% 0.50%

View 2 99.12% 0.96%

View 3 99.61% 0.44%

MTE 99.37% 0.48%

Table 5.12 above shows that there is indeed a lift in performance when the 𝑇𝑆 value is increased

from 2 to 5. For example, the classification accuracy of View 1 was 91.05% at 𝑇𝑆 = 1, 95.03%

at 𝑇𝑆 = 2, and 99.27% at 𝑇𝑆 = 5.

The results in Table 5.10 and Table 5.12 confirm the hypothesis that the concatenation of

features at the deeper layers will provide the temporal context that helps with the extraction of

time-invariant features for better discrimination by the final classifier. The implementation of

the necessary modification (for example, short-term temporal order, shuffled mini-batches,

gradient routing, etc.) in the deep temporal convolution network is proven effective with the

EEG Eye State data set. These results are visualized in Figure 5.18 below.

Figure 5.18. Classification accuracy over 10 folds, DTCN, View 1, 𝑇𝑆 = 1,2 and 5 (eye state)

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10

Accuracy (%) over 10 Folds

TS=1 TS=2 TS=5

173

Two observations can be made about Figure 5.18 above: (1) the curve for 𝑇𝑆 = 5 is higher,

compared to the other two curves, and (2) there is less fluctuation in the curve for 𝑇𝑆 = 5,

compared to the other two curves. This means that the bias is reduced (i.e. the classification

accuracy has improved) and the variance is reduced (less overfitting to the noise in the data). It

can thus be concluded that there is an improvement in the generalization performance of the

deep temporal convolution network.

5.2.3 Comparing with Equivalent DBN-DNN

To confirm the improvement of the proposed deep temporal convolution network over a DBN-

DNN, the equivalent DBN-DNN (in terms of complexity) will be used for the comparison. Here,

complexity refers to the number of adjustable parameters in the network.

Two sets of comparisons are made, one at 𝑇𝑆 = 2 and another one at 𝑇𝑆 = 5:

(1) Compare the deep temporal convolution network at 𝑇𝑆 = 2 in three different

configurations, View 1, View 2, and View 3, with the equivalent DBN-DNNs.

(2) Compare the deep temporal convolution network at 𝑇𝑆 = 5 in three different

configurations, View 1, View 2, and View 3, with the equivalent DBN-DNNs.

The three configurations, View 1, View 2, and View 3, are the same as those shown in Table

5.6 earlier on. The number of adjustable parameters for these three configurations, at 𝑇𝑆 = 1,

2, and 5, are as shown in Table 5.13 below.

Table 5.13. No. of adjustable parameters, DTCN, View 1, 2, and 3, at TS=1, 2, and 3

 View 1 View 2 View 3

𝑇𝑆 = 1 5,320 6,520 5,920

𝑇𝑆 = 2 6,120 8,520 7,320

𝑇𝑆 = 5 8,520 14,520 11,520

Many DBN-DNNs would have about the same number of adjustable parameters as Table 5.13

above. For the sake of comparison, the configurations in Table 5.14 below were used as the

equivalent of View 1, View 2, and View 3 at 𝑇𝑆 = 2.

174

Table 5.14. Equivalent DBN-DNN of View 1, View 2, and View 3 at TS=2 (eye state)

 View 1 View 2 View 3

Input layer 224 224 224

First hidden layer 23 31 27

Second hidden layer 23 31 27

Third hidden layer 20 20 20

Softmax layer 2 2 2

Total No. of Parameters 6,181 8,565 7,357

In a similar vein, the configurations in Table 5.15 below were used as the equivalent of View

1, View 2, and View 3 at 𝑇𝑆 = 5.

Table 5.15. Equivalent DBN-DNN of View 1, View 2, and View 3 at TS=5 (eye state)

 View 1 View 2 View 3

Input layer 224 224 224

First hidden layer 31 50 40

Second hidden layer 31 50 40

Third hidden layer 20 20 20

Softmax layer 2 2 2

Total No. of Parameters 8,565 14,740 11,400

Using the equivalent configurations of 𝑇𝑆 = 2 in Table 5.14 shown earlier on, the 10-fold

validation results were obtained and are shown in Table 5.16 below. The statistics of the 10-

fold validation results are shown in Table 5.17 further below that.

175

Table 5.16. Cross-validation results (accuracies in percentage) of equivalent DBN-DNN at

TS=2 (eye state)

Equi

TS=2

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 94.46 92.84 96.49 92.70 88.78 88.24 95.95 88.65 94.32 83.92

View 2 99.32 97.84 89.59 94.19 95.0 98.11 93.51 90.95 90.54 72.84

View 3 89.73 96.35 96.77 93.78 91.35 88.65 89.86 88.24 95.14 95.14

MTE 98.49 97.81 98.22 95.07 95.62 97.81 96.71 92.60 95.62 95.34

Table 5.17. Means and standard deviations of 10-fold results of equivalent DBN-DNN at

TS=2 (eye state)

 Mean Std Dev

View 1 91.64% 4.06%

View 2 92.19% 7.58%

View 3 92.50% 3.29%

MTE 96.33% 1.83%

By comparing Table 5.16 (equivalent DBN-DNN at 𝑇𝑆 = 2) with Table 5.9 (deep temporal

convolution network at 𝑇𝑆 = 2) and then plotting the mean results as a bar chart in Figure 5.19

below, it can be seen that the deep temporal convolution network exhibits higher classification

accuracies than its DBN-DNN equivalent across all the three views. The fluctuation across the

folds (the variance) is smaller in the case of the deep temporal convolution network also.

176

Figure 5.19. Performance of DTCN vs equivalent DBN-DNN, 𝑇𝑆 = 2 (eye state)

Using the equivalent configurations of 𝑇𝑆 = 5 in Table 5.15 shown earlier on, the 10-fold

validation results were obtained and are shown in Table 5.18 below. The statistics of the 10-

fold validation results are shown in Table 5.19 further below that.

Table 5.18. Cross-validation results (accuracies in percentage) of equivalent DBN-DNN at

TS=5 (eye state)

Equi

TS=5

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 99.32 88.65 92.84 99.46 94.32 83.65 73.78 95.68 98.78 97.30

View 2 97.02 97.16 99.73 95.54 98.65 89.19 99.46 98.51 98.92 96.49

View 3 90 97.03 95.95 98.65 94.73 98.11 99.0 94.86 97.30 97.84

MTE 97.67 96.44 99.59 99.04 98.36 94.93 98.90 96.58 98.22 97.26

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

View 1 View 2 View 3 MTE

Accuracy of DTCN vs Equivalent DBN-DNN, TS=2

Equivalent DBN-DNN DTCN

177

Table 5.19. Means and standard deviations of 10-fold results of equivalent DBN-DNN at

TS=5 (eye state)

 Mean Std Dev

View 1 92.38% 8.26%

View 2 97.07% 3.08%

View 3 96.35% 2.68%

MTE 97.70% 1.42%

By comparing Table 5.18 (equivalent DBN-DNN at 𝑇𝑆 = 5) with Table 5.11 (deep temporal

convolution network at 𝑇𝑆 = 5) and then plotting the mean results as a bar chart as shown in

Figure 5.20 below, it can be seen that deep temporal convolution exhibits higher classification

accuracies than its DBN-DNN equivalent across all the three views. The fluctuation across the

folds (the variance) is smaller in the case of the deep temporal convolution network also.

Figure 5.20. Performance of DTCN vs equivalent DBN-DNN, 𝑇𝑆 = 5 (eye state)

5.2.4 Performance Improvement with Ensemble

Two ensembles are used for the comparison here, namely the proposed multi-view temporal

ensemble and the ensemble average of the individual views. Figure 5.21 below shows the the

classification accuracies over 10 folds for the three different views (all at 𝑇𝑆 = 1). It is found

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

View 1 View 2 View 3 MTE

Accuracy of DTCN vs Equivalent DBN-DNN, TS=5

Equivalent DBN-DNN DTCN

178

that not only is the ensemble’s accuracy higher than the individual views, it is higher than the

ensemble by averging also. Also, the variance is reduced by the multi-view temporal ensemble.

Figure 5.21. Validation result for View 1, View 2, View 3 and their ensembles at 𝑇𝑆 = 1 (eye

state)

The same improvement in bias and variance can be seen in the multi-view temporal ensemble

at 𝑇𝑆 = 2 and 5 also. These were shown in the bar charts in Figure 5.19 and Figure 5.20 earlier

on.

In summary, this data experiment has shown that the proposed deep temporal convolution

network is able to produce better generalization performance than its equivalent DBN-DNN. It

has also shown that the multi-view temporal ensemble is able to give a lift to the individual

views and is better than ensembling by averaging.

5.2.5 Comparison with Existing Works

Oliver et al. [2] achieved an accuracy of 97.0% on the ECG Eye State data set using the

instance-based learner KStar [148]. As an instance-based classifier, KStar classifies an instance

by comparing the distance of the instance from all the instances in the training set. As a result,

it has a long runtime during actual deployment. It utilised only the spatial information in the

multichannel EEG data and not the temporal context in the signals.

80

85

90

95

100

105

1 2 3 4 5 6 7 8 9 10

Accuracy (%), MTE vs Individual Views

View 1 View 2 View 3 AVE MTE

179

Wang et al. [149] used incremental attribute learning (IAL) on time series data and then

train them using neural network. Feature extraction and feature ordering are carried out

before training. The features are based on twelve EEG samples, or 93.75 milliseconds.

The features are then imported, one by one, into the network for training. A classification

accuracy of 72.61% was reported. This is an improvement over conventional batch-

training method using the neural network, which produces a classification accuracy of

69.37%.

For the EEG signals, given that temporal context can provide much more information,

the deep learning approach proposed in this thesis is a better approach. Each of the data

instances used by the deep temporal convolution is 16 EEG samples, or 125 milliseconds. This

is only slightly longer than the 12 samples used by Wang et al. in the aforementioned work. At

𝑇𝑆 = 2, the deep temporal convolution network has a classification accuracy of 96.76%, which

is quite comparable to the classification accuracy of 97.0% achieved by the KStar method. The

classification accuracy is generally above 99.0% when at 𝑇𝑆 = 5. This performance is achieved

without the drawback of long runtime during deployment of the KStar method.

5.3 EEG Epileptic

This section will describe the data experiment done on the EEG Epileptic data set [15] from

University Hospital Bonn, Germany and made available at the UCI Machine Learning

Repository [147]. The purpose is to validate the performance of the deep temporal convoltion

network and multi-view temporal ensemble on the data set.

The work is presented in six parts: (1) description of the data set, (2) spot-checking to get the

general benchmark, (3) 10-fold validation of the deep temporal convolution network with 𝑇𝑆

(time steps) value of 1, 2, and 5, (4) comparison with a DBN-DNN of equal complexity, (5)

comparison of the individual views with the multi-view temporal ensemble, and (6) comparison

with existing works.

5.3.1 Data Set

180

The EEG Epileptic data set is a univariate numeric time series data set. There are five sets of

EEG files in the data set. Each set corresponds to a target class and has 100 files in it. Each file

belongs to a particular subject. Each subject has five files, one for each target class. In total,

there are 500 files from 100 subjects.

In each file, there are 4,097 samples (23.6 seconds). They are divided into 23 chunks, arranged

in natural time order one after another. Each chunk has 178 samples (1 second) in it.

In total, the data set has 23 × 500 = 11,500 chunks. They are arranged in a tensor with the

following shape: (𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 = 178, 𝑐ℎ𝑢𝑛𝑘𝑠 = 23, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 100, 𝑠𝑒𝑡𝑠 = 5) . The first

178 × 23 × 100 readings belong to class 5, the next 178 × 23 × 100 readings belongs to class

4, and so on. Each of the file is associated with a target class 𝑦 ∈ {1,2,⋯ ,5}. The description

of these classes is in Table 5.20 below.

Table 5.20. Description of the 5 classes, EEG epileptic seizure

Class

Category

Description

1 Epilepsy patient during seizure

2 Epilepsy patient during seizure free interval from the tumour region

3 Epilepsy patient during seizure free interval from the healthy brain area

4 Healthy subject with eyes closed

5 Healthy subject with eyes open

Unlike the EEG Eye State data set, which is the signal of a single subject, multiple subjects

exist in the EEG Epileptic data set. In this data experiment, they exist as latent modes and are

not distinguished in the target class labels.

All subjects in classes 2, 3, 4, and 5 did not have epileptic seizure. Only subjects in class 1 have

epileptic seizure. Although there are 5 classes in the data set, most researchers did only binary

classification, namely class 1 (epileptic seizure) against the rest.

181

Figure 5.22. An example of EEG signals of all the 5 classes, 1 second long

Previous detection systems had achieved classification accuracy from 84% to 96% for the data

set [15].

5.3.2 Spot Checking

For spot checking, the EEG Epileptic data set was pre-processed with the very common method

of rearranging every 4,097 data points into 23 chunks and then shuffling the chunks, each with

178 samples and a target class label. This resulted in a single table with 11,500 rows in random

order. The purpose is to test the performance of existing algorithms with the time series in time

delay representation without the additional measures in the proposed deep temporal convolution

network, such as the maintenance of short term tempoal order within the mini-batches, the

overlap of the mini-batches, and the shuffling of the order of the mini-batches.

10-fold cross-validation was done in Python with five different algorithms, namely (1) logistic

regression, (2) K nearest neighbour, (3) CART decision tree, (4) MLP neural network, and (5)

ensemble by voting. All the algorithms were run in their default configurations. The data

attributes were standardized in each of the folds during cross-validation. The data vectors in the

data table are shuffled before they are used for training.

Two different data formats were used for the 10-fold validations. This is shown in Table 5.21

below as “without windowing” and “with windowing” (window length is 3 chunks, which is

182

534 samples, and slide length is 1 chunk, which is 178 samples). Both data formats yield rather

poor classification accuracy scores (in percentage) and standard deviations (in brackets), as

shown in Table 5.21 below.

Table 5.21. Classification accuracy with shuffling (epileptic)

 without windowing with windowing p-value

LR 25.16% (1.40%) 26.14% (1.45%) 0.128

KNN 47.56% (1.74%) 42.43% (1.47%) 0.000

CART 47.50% (1.18%) 47.20% (1.13%) 0.536

MLP 67.26% (1.09%) 69.77% (0.83%) 0.000

Ensemble by Voting 57.89% (1.55%) 57.85% (1.07%) 0.924

From Table 5.21 above, it can be seen that with the MLP in the default configuration, a

classification accuracy of 67.26% is achieved without windowing and 69.77% with windowing.

The box plot of the performances of the classifiers are as shown in Figure 5.23 below.

Figure 5.23. Boxplot of algorithm comparison (epileptic)

183

The poor performance, despite the time delay representation and shuffling before training,

could be attributed to the lack of some of the features in the proposed deep temporal convolution

network, such as the maintenance of short-term temporal order within the mini-batches, the

overlap of mini-batches, and their randomization before training. As a result, the shift-invariant

capability of the trained model is poor.

5.3.3 10-Fold Validation, TS = 1, 2, 5

The classification accuracy improves markedly from the dismal 69.77% by MLP to above 96%

in the deep temporal network convolution. 10-fold cross-validations yields classification

accuracies of 97.65%, 97.46%, and 97.45% for the three configurations, View 1, View 2, and

View 3, as shown in Table 5.22 below.

Table 5.22. Configuration of DTCN, View 1, View 2 and View 3 (epileptic)

 View 1 View 2 View 3

Input layer 534 534 534

First hidden layer 200 200 200

Second hidden layer 200 500 350

Third hidden layer 200 200 200

Softmax layer 5 5 5

Table 5.23 and Table 5.24 below shows that classification accuracies of the deep temporal

convolution network at 𝑇𝑆 = 1.

Table 5.23. Cross-validation result for DTCN at TS=1 (epileptic)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 97.83 97.97 97.5 98.96 97.45 97.59 96.79 97.59 97.97 96.84

View 2 97.92 97.41 97.64 98.25 97.17 97.17 96.51 97.59 97.74 97.22

View 3 97.78 97.64 97.88 98.16 97.50 97.59 96.98 96.51 97.36 97.08

MTE 98.02 98.16 97.36 99.06 97.78 97.64 97.22 97.39 98.02 96.99

184

Table 5.24. Means and standard deviations of cross-validation results for DTCN at TS=1

(epileptic)

 Mean Std Dev

View 1 97.65% 0.62%

View 2 97.46% 0.48%

View 3 97.45% 0.48%

MTE 97.36% 1.31%

The results in Table 5.23 and Table 5.24 above are based on deep temporal convolution network

at 𝑇𝑆 = 1, which means that there is still the potential to lift the performance by passing the

temporal context to the deeper layers. The accuracies can be lifted further by increasing the

concatenation in the deeper layers from 𝑇𝑆 = 1 to 𝑇𝑆 = 2. Table 5.25 and Table 5.26 below

show the results of the 10-fold validations with 𝑇𝑆 = 2.

Table 5.25. Cross-validation result for DTCN at TS=2 (epileptic)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 98.76 99.00 98.61 99.43 99.04 98.95 97.75 98.56 97.89 97.89

View 2 98.80 98.80 99.33 98.56 98.66 97.99 98.37 98.76 98.76 97.99

View 3 98.80 98.90 98.04 98.33 98.37 98.28 98.42 98.18 97.99 98.47

MTE 99.23 99.19 98.66 99.28 98.66 98.23 98.23 98.66 98.76 98.23

It can be seen from Table 5.26 below that the accuracies for the three views have improved to

98.59%, 98.60%, and 98.38%, as compared to 97.65%, 97.46%, and 97.45% for 𝑇𝑆 = 1.

185

Table 5.26. Mean of cross-validation result for DTCN at TS=2 (epileptic)

 Mean Std Dev

View 1 98.59% 0.57%

View 2 98.60% 0.40%

View 3 98.38% 0.29%

MTE 98.71% 0.41%

If the 𝑇𝑆 value is increased to 5, the classification accuracies will further improve to 99.89%,

99.87%, and 99.90%. The 10-folds results are shown in Table 5.27 below. The means and

standard deviations of the 10-fold results are shown in Table 5.28 below it.

Table 5.27. Cross-validation result for DTCN at TS=5 (epileptic)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 99.62 100.0 99.95 100.0 99.90 99.90 100.0 100.0 99.90 99.62

View 2 99.71 99.71 99.90 99.90 99.62 100.0 100.0 100.0 100.0 99.81

View 3 100.0 99.71 100.0 99.86 99.90 100.0 99.90 100.0 99.81 99.81

MTE 99.95 98.95 99.71 100.0 99.71 100.0 99.95 99.81 100.0 99.90

Table 5.28. Mean and std dev of cross-validation result for DTCN at TS=5 (epileptic)

 Mean Std Dev

View 1 99.89% 0.15%

View 2 99.87% 0.14%

View 3 99.90% 0.10%

MTE 99.80% 0.32%

Figure 5.24 below shows the performance of the deep temporal convolution network at 𝑇𝑆 =

1,2, and 5. It can be seen the classification accuracies increase while the fluctuation decrease

when there is more temporal context passed into the deeper layers.

186

Figure 5.24. Classification accuracy over 10 folds, DTCN, View 1, 𝑇𝑆 = 1,2 and 5 (epileptic)

From the data experiment on the EEG Epileptic data set, it is concluded that deep temporal

convolution network leads to better generalization when the temporal context is passed into the

deeper layers. The data preparation methods, such as the maintenance of short term temporal

order within the mini-batches, the overlapping of the mini-batches, and the shuffling of the

overlapping mini-batches, ensure that the time-invariant features are learnt by the network.

5.3.4 Comparing with Equivalent DBN-DNN

To confirm the improvement of the proposed deep temporal convolution network over a DBN-

DNN, the equivalent DBN-DNN (in terms of complexity) will be used for the comparison. Here,

complexity refers to the number of adjustable parameters in the network.

Two sets of comparisons are made, one at 𝑇𝑆 = 2 and another one at 𝑇𝑆 = 5:

(1) Compare the deep temporal convolution network at 𝑇𝑆 = 2 in three different

configurations, View 1, View 2, and View 3, with the equivalent DBN-DNNs.

(2) Compare the deep temporal convolution network at 𝑇𝑆 = 5 in three different

configurations, View 1, View 2, and View 3, with the equivalent DBN-DNNs.

The three configurations, View 1, View 2, and View 3, are the same as those shown in Table

5.22 earlier on. The number of adjustable parameters for these configurations at 𝑇𝑆 = 1, 2, and

95

96

97

98

99

100

101

1 2 3 4 5 6 7 8 9 10

Accuracy (%) over 10 Folds

TS=1 TS=2 TS=5

187

5 are shown in Table 5.29 below. As can be seen, the number of adjustable parameters for this

data experiment is tens of times larger than the data experiment on the EEG Eye State data set.

Table 5.29. No. of adjustable parameters, DTCN, at TS=1, 2, 5

 View 1 View 2 View 3

𝑇𝑆 = 1 187,800 307,800 247,800

𝑇𝑆 = 2 267,800 507,800 387,800

𝑇𝑆 = 5 507,800 1,107,800 807,800

Many DBN-DNNs have about the same number of adjustable parameters as Table 5.29. For the

sake of comparison, the configurations in Table 5.30 below shall be used as the equivalent of

View 1, View 2, and View 3 at 𝑇𝑆 = 2.

Table 5.30. Equivalent DBN-DNN for TS=2, epileptic

 View 1 View 2 View 3

Input layer 534 534 534

First hidden layer 266 434 355

Second hidden layer 266 434 355

Third hidden layer 200 200 200

Softmax layer 5 5 5

Total No. of Parameters 267,000 507,912 387,595

Using the equivalent configurations of 𝑇𝑆 = 2 in Table 5.30 above, the 10-fold validation

results as shown in Table 5.31 and Table 5.32 below were obtained.

188

Table 5.31. Cross-validation result for equivalent DBN-DNN at TS=2 (epileptic)

Equi

TD=2

Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 94.46 92.84 96.49 92.70 88.78 88.24 95.95 88.65 94.32 83.92

View 2 99.32 97.84 89.59 94.18 95.0 98.11 93.51 90.95 90.54 72.84

View 3 89.73 96.35 96.77 93.78 91.35 88.65 89.86 88.24 95.14 95.14

MTE 98.49 97.81 98.22 95.07 95.62 97.81 96.71 92.60 95.62 95.34

Table 5.32. Mean and standard deviation cross-validation result for equivalent DBN-DNN at

TS=2 (epileptic)

 Mean Std Dev

View 1 91.64% 4.06%

View 2 92.19% 7.58%

View 3 92.50% 3.29%

MTE 96.33% 1.83%

By comparing Table 5.31 (equivalent DBN-DNN at 𝑇𝑆 = 2) with Table 5.25 (deep temporal

convolution network at 𝑇𝑆 = 2) and plotting the mean results as a bar chart as shown in Figure

5.25 below, it can be seen that the deep temporal convolution network has higher classification

accuracy than its DBN-DNN equivalent. The fluctuation across the folds (the variance) is

smaller in the case of the deep temporal convolution network also.

189

Figure 5.25. Performance of DTCN vs equivalent DBN, 𝑇𝑆 = 2 (epileptic)

5.3.5 Performance Improvement with Ensemble

Two ensembles are used for the comparison here, namely the proposed multi-view temporal

ensemble and the ensemble by averaging. Figure 5.26 shows the the classification accuracies

over 10 fold over three different views (all at 𝑇𝑆 = 1). It is found that not only is the ensemble’s

accuracy is generally higher than the individual views, it is higher than the ensemble by

averging also.

Figure 5.26. Validation result for View 1, 2, 3 and their ensembles at 𝑇𝑆 = 1 (epileptic)

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

View 1 View 2 View 3 MTE

Accuracy of DTCN vs Equivalent DBN-DNN, TS=2

Equivalent DBN-DNN DTCN

95

96

97

98

99

100

1 2 3 4 5 6 7 8 9 10

Accuracy (%), MTE vs Individual Views

View 1 View 2 View 3 AVE MTE

190

5.3.6 Comparison with Existing Works

The EEG Epileptic data set is a common data set used by many researchers for the study of

epileptic. The following are some of the works done with this data set.

Nigam et al. [57] used a multistage nonlinear pre-processing filter in combination with a neural

network to achieved an overall accuracy of 97.2% for the EEG Epileptic data set. Both time

and frequency features were used in the work.

Güler [150] used entropy measures [25] and adaptive neuro-fuzzy inference system (ANFIS)

classifier [151] to distinguish electrical status epilepticus and normal EEG signals, achieving a

classification accuracy of about 89%.

Srinivasan et al. [152] used a special type of recurrent neural network known as Elman network.

It is a two-layered recurrent neural network with a feedback connection from the output of the

hidden layer to its input. The data experiments were carried out with five different attributes in

the time and frequency domain, resulting in a classification accuracy that is as high as 99.6%.

Wang et al. [153] used a combination of multi-domain feature extraction (time domain,

frequency domain, and time-frequency domain) and nonlinear analysis of EEG signals to

extract the features. The dimension of the original feature space is then reduced by using

principal component analysis. These features are used with classical classifiers such as k-NN,

naïve Bayes, logistic regression and SVM, resulting in accuracies that range from 94.03% to

96.58%.

The performance of the proposed deep temporal convolution network, at 98.53% with 𝑇𝑆 = 5,

is comparable to the abovementioned state-of-the-art performance in epileptic detection. In

addition, it has the advantage of not needing feature engineering.

5.4 Human Activity Recognition

This section will describe the data experiment done on the Human Activity Recognition (HAR)

data set [16] from the UCI Machine Learning Repository [147]. The purpose is to validate the

performance of the deep temporal convolution network on the data set.

191

Hereogenous signals (signals from the accelerometer and the gyroscope) are present in this data

set. The views from the acceleraometer and the gyroscope are combined at the data level and

so can be considered to be a kind of early data fusion.

The work is presented in four parts: (1) the description of the data set, (2) the spot-checking to

get the general benchmark of the data set, (3) the 10-fold validation of the deep temporal

convolution network with 𝑇𝑆 (time steps) value of 1, 2, and 5, and (4) comparison with existing

works.

5.4.1 Data Set

The HAR data set is a multivariate numeric time series data set. It is a motion sensor data set

based on the recordings of 30 subjects performing activities of daily living. The signals were

annotated by comparing the signals with the video recording of the subjects.

The six activities are: (1) walking, (2) walking upstairs, (3) walking downstairs, (4) sitting, (5)

standing, and (6) laying down. An additional six transitional activities are also described in the

data set, as shown in Table 5.33 below.

Table 5.33. Description of the 12 classes in the HAR data set

 Class Description

Basic

Activity

1 Walking

2 Walking Upstairs

3 Walking Downstairs

4 Sitting

5 Standing

6 Laying

Transitional

Activity

7 Stand to Sit

8 Sit to Stand

9 Sit to Lie

10 Lie to Sit

11 Stand to Lie

12 Lie to Stand

192

The subject was made to carry a waist-mounted Samsung Galaxy smartphone and go through

a set routine twice. The sensors in the smartphone acquired the linear acceleration and the

angular velocity of the subject in three dimensions at a constant sampling rate of 50 Hz. As a

result, there are six channels in the data set, namely:

• acceleration, x-axis

• acceleration, y-axis

• acceleration, z-axis

• gyroscope, x-axis

• gyroscope, y-axis

• gyroscope, z-axis

The unit for acceleration is in 𝑔 and that for gyroscope is 𝑟𝑎𝑑/𝑠𝑒𝑐.

The sensor signals were pre-processed by applying a low-pass filter with a cut-off frequency of

20 Hz. This is because 99% of motion signal energy is below 15 Hz [154].

The sensor acceleration signal has a low frequency component (gravitation) and a high

frequency component (body motion). They could be separated by a Butterworth low-pass filter

with a cut-off frequency of 0.3 Hz.

A data table was created from the data set by the sliding window method. The length of the

fixed-width sliding window was 128 samples (2.56 second). The slide was 64 samples (50%

overlap). The data table thus created has 10,299 rows of data vectors in it. As all the six

attributes of the sample were placed in a row, each data vector contains 768 values.

In each fold of the 10-fold validation, 3 subjects were picked for testing and the remaining 27

subjects were used for training. The data vectors of each subject are in their natural time order.

The number of data vectors in the folds are unequal, as shown in Table 5.34 below.

193

Table 5.34. Number of data vectors in each of the 10 folds

Fold Number No. of Instances

1 1303

2 1170

3 1355

4 1252

5 1293

6 1378

7 1168

8 1317

9 1195

10 1222

For convenience in storing the data as a tensor, the number of data vectors will have to be the

same for all the 10 folds. Thus, only the first 1,168 data vectors of each subject were used in

training and/or test, with the rest discarded.

5.4.2 Spot Checking

With the HAR data set, 10-fold cross-validation was done in Python with five different

algorithms, namely (1) logistic regression, (2) K nearest neighbour, (3) CART decision tree,

(4) MLP neural network, and (5) ensemble by voting. All the algorithms were run in their

default configurations. The data attributes were standardized in each of the folds during cross-

validation. The data vectors in the data table are shuffled before they are used for training.

The data were rearranged (using the sliding window method, with window length as 128

sample, which has 768 values, and the slide as 64 samples) as overlapping segments.

The 10-fold validated results are as shown in Table 5.35 below.

194

Table 5.35. Classification accuracy with shuffling (HAR)

Algorithm Accuracy (in percentage), 10-fold validated

Logistic Regression 64.822 (1.309)

K Nearest Neighbour 77.009 (1.035)

CART 72.836 (1.465)

MLP 87.868 (0.870)

Ensemble 85.29 (0.95)

From Table 5.35 above, it can be seen that with the MLP in the default configuration, a

classification accuracy of 87.87% was achieved. The box plot of the performances of the

classifiers are as shown in Figure 5.27 below.

Figure 5.27. Boxplot of algorithm comparison (HAR)

There is certainly room for improvement in the performance, as it is likely that the temporal

context in related data vectors was not utilised for learning. That could be done with the deep

temporal convolution network.

195

5.4.3 10-Fold Validation, TS = 1, 2, 5

The three configurations, View 1, View 2, and View 3, used for the cross-validations are as

shown in Table 5.36 below. All the three views are based on deep temporal convolution network

at 𝑇𝑆 = 1.

Table 5.36. Configuration of DTCN, View 1, 2 and 3 (HAR)

 View 1 View 2 View 3

Input layer 768 768 768

First hidden layer 200 200 200

Second hidden layer 200 500 350

Third hidden layer 200 200 200

Softmax layer 12 12 12

Table 5.37 and Table 5.38 below shows that classification accuracies of the deep temporal

convolution network at 𝑇𝑆 = 1.

Table 5.37. Cross-validation accuracies (%) for DTCN at TS=1 (HAR)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 99.87 99.87 99.87 98.96 97.45 97.59 96.79 97.59 97.97 96.84

View 2 97.92 97.41 97.64 98.25 97.17 97.17 96.51 97.59 97.74 97.22

View 3 97.78 97.64 97.88 98.16 97.50 97.59 96.98 96.51 97.36 97.08

MTE 98.02 98.16 97.36 99.06 97.78 97.64 97.22 94.39 98.02 95.99

196

Table 5.38. Means and standard deviation deviations of cross-validation result for DTCN at

TS=1 (HAR)

Mean Std Dev

97.65% 0.62%

97.46% 0.48%

97.45% 0.48%

97.36% 1.31%

The accuracies can be lifted further by increasing the concatenation in the deeper layers from

𝑇𝑆 = 1 to 𝑇𝑆 = 2. Table 5.39 and Table 5.40 below shows the results of the 10-fold validations

with 𝑇𝑆 = 2.

Table 5.39. Cross-validation accuracies (%) for DTCN at TS=2 (HAR)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 99.83 99.78 99.87 99.74 99.82 99.91 99.87 99.87 99.87 99.83

View 2 99.83 99.87 99.87 99.87 99.96 99.83 99.87 99.78 99.78 99.91

View 3 99.83 99.96 99.91 99.91 99.96 99.83 99.91 99.83 99.87 99.87

MTE 99.70 99.96 99.48 99.78 99.91 99.66 99.87 99.87 99.87 99.91

Table 5.40. Means and standard deviations of cross-validation result for DTCN at TS=2,

HAR

Mean Std Dev

99.84% 0.05%

98.84% 0.04%

99.89% 0.05%

99.80% 0.15%

The accuracies for the three views are 99.84%, 99.84%, and 99.89% at 𝑇𝑆 = 2 (Table 5.39), as

compared to 97.65%, 97.46%, and 97.45% at 𝑇𝑆 = 1 (Table 5.38).

197

However, there is a limit to how much lift there is to the performance of deep temporal

convolution network. When 𝑇𝑆 = 5 was used in the cross-validations, the classification

accuracies actually decreased slightly to 98.95%, 99.32%, and 99.40%.

Table 5.41. Cross-validation accuracies (%) for DTCN at TS=5, HAR

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 99.66 98.88 99.66 99.57 98.53 99.48 94.61 99.83 99.91 99.40

View 2 99.66 99.48 99.66 99.91 100.0 100.0 99.57 97.84 99.74 97.41

View 3 99.40 97.84 99.74 99.82 98.97 99.90 99.97 99.55 99.37 99.48

MTE 99.87 99.71 99.69 99.90 99.55 99.24 99.72 99.70 99.89 99.86

Table 5.42. Means and standard deviations of cross-validation result for DTCN at TS=5, HAR

 Mean Std Dev

View 1 98.95% 1.58%

View 2 99.32% 0.92%

View 3 99.40% 0.62%

MTE 99.71% 0.20%

Since 𝑇𝑆 = 5 incurs longer computation time without improving the performance, its use is a

sign of diminishing return of passing temporal context to the deeper layers.

5.4.4 Comparison with Existing Works

Anguita et al. [155] adapted the standard multi-class SVM with computational cost reduction

in mind. This was done by using fixed-point arithmetic in the computation. A classification

accuracy of 88.97% was obtained for the human activity recognition data set.

Romera-Paredes [156] used an ensemble of linear SVMs each trained to discriminate a single

motion activity against another single motion activity. A majority voting rule is used to

198

determine the final outcome. The one-versus-one ensemble achieved a classification accuracy

of 96.4%.

Almaslukh et al. [157] used the stacked autoencoder (SAE) in deep learning to improve on the

classification and at the same time reduce the time resolution for recognition. The classification

accuracy was 97.5%, which is significantly better than the traditional SVM method.

Based on the above, it can be seen the performance of the deep temporal convolution with 𝑇𝑆 =

1, at 97.51%, is able to match the state of the art performance for the data set. When it is used

with 𝑇𝑆 = 2, the performance increased to about 99.80%. This shows that it is useful to pass

the temporal context to the deeper layers of the proposed network.

5.5 Freezing of Gait during Walking

Freezing of Gait (FOG) is a sudden and transient inability to walk. It is a common symtom in

Parkinson’s Disease patients, particularly in those severely affected by the disease [158]. It

often casues falls, interferes with daily activities, and impairs the quality of life [159]. Subtypes

of FoG include start hesitation, turn hesitation, hesitation in tight quarters, destination

hesitation, and open space hesitation [160]. Although Parkinson’s Disease is neurological in

etiology and is treated with Levodopa [161], it is often resistent to pharmacologic treatement

[162]. Non-pharmacologic treatment, such as rhythmic auditory stimulation [163],

physiotherapy and assisted technology, can help improve the quality of life of the patients.

The work on the FoG data set is presented in three parts: (1) description of the data set, (2) the

10-fold validation of the deep temporal convolution network with 𝑇𝑆 (time steps) value of 1, 2,

and 5, and (3) comparison with existing works.

5.5.1 Data Set

The FoG dataset [17] is obtained from the UCI Machine Learning Repository [147]. It consists

of the annotated readings of three accelerometers placed at the ankle, upper leg, and trunk of

Parkinson's disease patients. The dataset was recorded in the lab from 10 subjects. Each subject

performed movements such as walking in a staright line or with turns, and also other activities

of daily living, e.g. going to different rooms, fetching items, opening doors, etc. A professional

199

physiotherapist reviewed the video recording of the subjects and determined the start and end

time of FoG. The whole time series were classified as irrelevant, normal, and FoG, as shown

below:

Class 0: irrelevant part of the experiment, e.g. preparation or debriefing (discarded during data

experiment)

Class 1: no freeze while standing, walking or turning

Class 2: freezing of gait

There were 237 FoG events as determined by the professional physiotherapist over a total of 8

hours and 20 minutes of recorded data. They came from eight out of the ten subjects, as two

subjects did not experience any FoG. The length of the FoG events range from 0.5 second to

40.5 second.

Each file has multiple lines, with each line corresponding to a sample at 64 Hz, i.e. the time

interval is 15.625 millisecond. The first column of each line has a time stamp in millisecond.

The next nine columns correspond to nine channels of accelerometer readings. The last column

is the target class label (0, 1 or 2). The nine channels are as follows:

Ankle (shank) acceleration - horizontal forward acceleration [mg]

Ankle (shank) acceleration - vertical [mg]

Ankle (shank) acceleration – horizontal lateral [mg]

Upper leg (thigh) acceleration - horizontal forward acceleration [mg]

Upper leg (thigh) acceleration - vertical [mg]

Upper leg (thigh) acceleration - horizontal lateral [mg]

Trunk acceleration - horizontal forward acceleration [mg]

Trunk acceleration - vertical [mg]

Trunk acceleration - horizontal lateral [mg]

200

5.5.2 10-Fold Validation, TS = 1, 2, 5

A window length of 16, corresponding to 250 ms, is used. Since this is a 9-channel data set,

each window has 144 numeric values. For validation purpose, each of the folds gets equal

chunks of contiguous data from all the subjects.

The three configurations used for the cross-validations, namely View 1, View 2, and View 3,

are shown in Table 5.43 below. All the three views are based on deep temporal convolution

network at 𝑇𝑆 = 1.

Table 5.43. Configuration of DTCN, View 1, 2 and 3 (FoG)

 View 1 View 2 View 3

Input layer 144 144 144

First hidden layer 100 100 100

Second hidden layer 100 250 175

Third hidden layer 100 100 100

Softmax layer 2 2 2

In this data experiment, the class specific accuracies, i.e. sensitivity and specificity, are

computed, instead of the overall classification accuracy. This is for convenient comparison with

the reported results of other works in the literature. Sensitivity is the classification accuracy of

Class 2 (FoG), and specificity is the classification accuracy of Class 1 (non-FoG).

Table 5.44 and Table 5.45 below show the sensitivities and specificities of the deep temporal

convolution network at 𝑇𝑆 = 1.

Table 5.44. Cross-validation accuracies (%) for DTCN at TS=1 (FoG)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View

1

Se 96.37 97.51 96.84 97.24 91.59 96.97 97.38 96.57 95.49 97.58

Sp 99.77 99.71 99.66 99.70 99.82 99.85 99.62 99.72 99.74 99.74

201

View

2

Se 97.92 94.55 97.04 96.97 97.71 97.65 97.85 97.98 95.49 96.37

Sp 99.72 99.80 99.78 99.75 99.62 99.70 99.65 99.62 99.85 99.77

View

3

Se 97.65 98.18 95.76 96.23 97.24 97.58 96.91 96.91 97.31 96.37

Sp 99.68 99.76 99.75 99.78 99.73 99.72 99.80 99.74 99.78 99.77

MTE

Se 98.59 98.72 98.82 98.82 99.79 99.79 98.22 98.05 98.62 98.71

Sp 99.82 99.86 99.78 99.80 99.75 99.79 99.80 99.86 99.81 99.81

Table 5.45. Means and standard deviation deviations of cross-validation result for DTCN at

TS=1 (FoG)

 Se Sp

 Mean Std Dev Mean Std Dev

View 1 96.36 1.79 99.73 0.07

View 2 96.95 1.16 99.72 0.08

View 3 97.01 0.73 99.75 0.04

MTE 98.71 0.46 99.81 0.03

The accuracies shown in Table 5.45 seem good enough, but they can be lifted further by

increasing the concatenation in the deeper layers from 𝑇𝑆 = 1 to 𝑇𝑆 = 2. Table 5.46 and Table

5.47 below shows the results of the 10-fold validations with 𝑇𝑆 = 2.

202

Table 5.46. Cross-validation accuracies (%) for DTCN at TS=2 (FoG)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View

1

Se 99.33 95.83 98.65 98.86 98.39 98.39 99.26 98.79 98.79 98.45

Sp 99.71 99.94 99.92 99.91 99.86 99.86 99.69 99.54 99.85 99.85

View

2

Se 99.06 98.72 98.92 99.19 99.19 94.95 98.92 99.19 97.24 99.13

Sp 99.81 99.84 99.82 99.91 99.75 99.91 99.91 99.89 99.94 99.66

View

3

Se 99.78 98.39 98.92 99.53 98.86 99.13 99.39 99.13 98.39 99.06

SP 99.94 99.97 99.93 99.94 99.91 99.90 99.94 99.80 99.89 99.84

MTE

Se 99.46 99.50 99.76 99.36 98.86 99.50 99.56 99.70 99.50 99.96

Sp 99.97 99.90 99.91 99.96 99.92 99.97 99.91 99.92 99.96 99.93

Table 5.47. Means and standard deviations of cross-validation result for DTCN at TS=2, FoG

 Se Sp

 Mean Std Dev Mean Std Dev

View 1 98.47 0.98 99.81 0.13

View 2 98.45 1.36 99.84 0.09

View 3 98.86 0.53 99.90 0.05

MTE 99.41 0.29 99.94 0.03

It can be seen that the sensitivities (accuracies of detecting FoG) for the three views have

improved to 98.47%, 98.45% and 98.86%, as compared to 96.36%, 96.95% and 97.01% at

𝑇𝑆 = 1 (in Table 5.45 above). These results are further improved to 99.41% when they are

fused together by multi-view temporal ensemble.

However, there is a limit to how much lift there is to the performance by deep temporal

convolution network. When 𝑇𝑆 = 5 was used in the cross-validations, the sensitivities actually

decreased slightly to 97.89%, 95.40%, and 97.20%. Since 𝑇𝑆 = 5 incurs longer computation

203

time without improving the performance, its use is a sign of diminishing return. Nevertheless,

there is still an improvement in performance when the three views are blended by the multi-

view temporal ensemble, as shown by the 99.29% sensitivity when this was done.

Table 5.48. Cross-validation accuracies (%) for DTCN at TS=5, FoG

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View

1

Se 99.06 99.39 98.52 99.19 98.79 95.49 99.60 89.85 99.06 99.95

Sp 99.74 99.56 99.83 99.86 99.87 99.93 99.95 99.69 99.93 99.95

View

2

Se 99.73 70.21 98.18 94.35 96.30 99.39 99.39 97.65 98.79 100

Sp 99.97 99.48 99.92 99.50 99.34 99.98 99.97 99.77 99.39 99.39

View

3

Se 98.99 97.78 93.14 92.87 98.72 99.73 93.88 99.53 98.45 98.85

SP 99.98 99.95 99.70 99.93 99.65 99.95 99.82 97.93 99.58 99.66

MTE

Se 99.46 99.02 99.60 99.70 98.62 99.43 99.09 99.66 99.56 98.72

Sp 99.92 99.90 99.94 99.90 99.74 99.91 99.91 99.94 99.93 99.76

Table 5.49. Means and standard deviations of cross-validation result for DTCN at TS=5, FoG

 Se Sp

 Mean Std Dev Mean Std Dev

View 1 97.89 3.08 99.83 0.13

View 2 95.40 9.02 99.67 0.27

View 3 97.20 2.75 99.61 0.61

MTE 99.29 0.39 99.89 0.07

5.5.3 Comparison with Existing Works

The original paper on the FoG data set by Bächlin et al. [17] mentioned about an algorithm

[164] that ran on an wearable device that had a sensitivity of 73.1% and a specificity of 81.6%,

based on 0.5-second frames. They extracted frequency components from the signals and

computed a freeze index (FI) [165], defined as the power in the “freeze” band (0.5 to 3 Hz)

204

divided by the power in the “locomotor” band (3 to 8 Hz). Two threshold values were then used

to classify the FoGs. The distribution in sensitivities and specificities among the 10 subjects

was substantial. This shows that the algorithm is subject specific and prone to uncontrolled

extraneous factors, such as the walking styles of the subjects. After using subject-specific

thresholds, the sensitivity and specificity improved to 85.9% sensitivity and 90.9% specificity.

Mazilu et al [166] made use of multiple machine learning techniques on the FoG data set. The

test was done with 1-second frames. The results are as shown in Table 5.50 below.

Table 5.50. Classification accuracy with shuffling (FoG)

Algorithm Sensitivity (%) Specificity (%)

Random Forest 97.76 99.75%

C4.5 93.47% 99.38%

Naïve Bayes 48.06% 98.66%

MLP 77.46% 97.29%

Ensemble (AdaBoost) 98.35% 99.72%

Due to the use of more powerful machine learning techniques and the increased window length

(from 0.5-second to 1-second), the performances in Table 5.35 above are generally better than

the algorithm used in the original experiment. The classification of the non-FOG signals seems

reliable, as most of the specificities in Table 5.50 above are near or above 99%.

Nevertheless, it can be seen from Table 5.50 above that the MLP is quite weak in sensitivity,

even though is specificity is close to that of the other methods. By using the proposed deep

temporal convolution network, the sensitivity is significantly higher. When 𝑇𝑆 = 2 , the

sensitivity is 98.45%, which is almost the same as the best score of 98.35% based on the

adaboost ensemble, even though the window length is only 0.25-second long. This shows that

the temporal context in the mini-batch is able to provide useful information to the model, while

keeping the instances in the mini-batch short. With the lift provided by the multi-view temporal

ensemble, the sensitivity is further improved to 99.41%.

205

5.6 EMG Lower Limb Analysis

Knee dystonia is an involuntary muscle contraction that results in abnormal posture or twisting

of the body. In this data experiment, five channels of time series comprising four EMG

electrode signals and one goniometric reading are used with the deep temporal convlution

network to classify abonrmal knee movements.

The work is presented in three parts: (1) description of the data set, (2) 10-fold validation of the

deep temporal convolution network with 𝑇𝑆 (time steps) value of 1, 2, and 5, and (3)

comparison with existing works.

5.6.1 Data Set

The EMG Lower Limb dataset [167] is from the UCI Machine Learning Repository [147]. This

database contains samples from 11 subjects with knee disorder and 11 normal subjects. All the

subjects were asked to undergo three movements to analyze the behavior associated with the

knee muscle, namely walking gait, leg extension from a sitting position, and flexion of the leg

up. The dataset contains six classes, three corresponding to normal leg movements, and three

corresponding to abnormal leg movements. The use of this dataset is to predict if a person has

abnormal knee or not, and in which of the three movements.

These data were collected with an instrument for electromyography and goniometry. Four EMG

electrodes were placed on the leg of the subject (rectus femoris RF, biceps femoris BF, vastus

medialis VM, semitendinosus ST), while the goniometer was placed on the flexion of the knee

(FX). Each reading thus has five attributes. The sampling rate was 1,000 samples per second.

The EMG values are in millivolt, while the FX values are in degrees. Each movement of a

subject is about 15 seconds.

5.6.2 10-Fold Validation, TS = 1, 2, 5

The three configurations, View 1, View 2, and View 3, used for the cross-validations are as

shown in Table 5.51 below. All the three views are based on the proposed network at 𝑇𝑆 = 1.

206

Table 5.51. Configuration of DTCN, View 1, View 2 and View 3 (EMG Lower Limb)

 View 1 View 2 View 3

Input layer 80 80 80

First hidden layer 100 100 100

Second hidden layer 100 250 175

Third hidden layer 100 100 100

Softmax layer 6 6 6

Table 5.52 and Table 5.53 below shows that classification accuracies of the deep temporal

convolution network at 𝑇𝑆 = 1.

Table 5.52. Cross-validation accuracies (%) for DTCN at TS=1 (EMG Lower Limb)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 87.11 94.31 93.27 90.65 96.04 92.27 90.19 91.46 96.46 93.54

View 2 89.04 93.81 93.58 91.19 93.65 93.65 91.50 91.65 96.85 94.69

View 3 90.04 94.23 95.00 92.23 95.23 92.12 91.04 92.27 96.19 94.69

MTE 94.77 96.42 97.38 98.27 98.65 97.23 96.69 97.15 98.85 96.12

Table 5.53. Means and standard deviation deviations of cross-validation result for DTCN at

TS=1 (EMG Lower Limb)

 Mean Std Dev

View 1 92.53% 2.83%

View 92.96% 2.17%

View 3 93.30% 2.03%

MTE 97.15% 1.24%

The accuracies can be lifted further by increasing the concatenation in the deeper layers from

𝑇𝑆 = 1 to 𝑇𝑆 = 2. Table 5.54 and Table 5.55 below show the results of the 10-fold validations

with 𝑇𝑆 = 2.

207

Table 5.54. Cross-validation accuracies (%) for DTCN at TS=2 (EMG Lower Limb)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 92.92 96.15 95.31 94.30 97.54 95.81 94.27 94.19 98.00 95.96

View 2 94.58 97.11 96.12 97.77 96.58 96.58 95.27 95.38 97.73 97.04

View 3 92.65 97.38 96.85 96.38 98.23 97.15 95.00 95.53 98.62 97.08

MTE 96.88 97.62 98.65 98.69 99.58 98.08 96.88 96.38 99.12 96.92

Table 5.55. Means and standard deviations of cross-validation result for DTCN at TS=2

(EMG Lower Limb)

 Mean Std Dev

View 1 95.45% 1.58%

View 2 96.42% 1.07%

View 3 96.49% 1.74%

MTE 97.88% 1.10%

It can be seen that the accuracies for the three views have improved to 95.45%, 96.42%, 96.49%

and 97.88% from 92.53%, 92.96%, 93.30% and 97.15% at 𝑇𝑆 = 1 (Table 5.53).

However, there is a limit to how much lift there is to the performance by deep temporal

convolution network. When 𝑇𝑆 = 5 was used in the cross-validations, the classification

accuracies actually decreased slightly to 97.65%, 97.46%, and 97.45%.

Table 5.56. Cross-validation accuracies (%) for DTCN at TS=5 (EMG Lower Limb)

 Fold

1

Fold

2

Fold

3

Fold

4

Fold

5

Fold

6

Fold

7

Fold

8

Fold

9

Fold

10

View 1 87.12 96.15 95.27 96.04 97.77 95.58 93.77 96.38 94.31 96.69

View 2 93.73 97.04 93.31 95.23 93.69 93.69 95.81 86.96 95.31 96.69

View 3 91.27 96.77 94.35 94.00 97.46 96.15 96.88 95.69 92.50 95.08

MTE 96.69 97.88 95.31 97.62 97.15 95.96 97.62 93.58 95.88 97.42

208

Table 5.57. Means and standard deviations of cross-validation result for DTCN at TS=5

(EMG Lower Limb)

 Mean Std Dev

View 1 94.91% 2.97%

View 2 94.15% 2.85%

View 3 95.02% 2.00%

MTE 96.51% 1.35%

Since 𝑇𝑆 = 5 incurs longer computation time without improving the performance, its use is a

sign of diminishing return. Sensitivity analysis such as this is used to determine the value of the

𝑇𝑆 hyper-parameter.

5.6.3 Comparison with Existing Works

Table 5.58 below shows the performances of some previous works. C.D. Joshi et al. [168] made

use of Bayesian Information Criteria (BIC), feature extraction and linear discriminant analysis

to classify the knee patterns, achieving a classification accuracy of 92.72%. Zhang et al. [169]

extracted time and frequency domain features and subject them to five-level wavelet

decomposition, which are then classified with the support vector machine. The scheme

achieved 91.85% of classification accuracy. Balasubramanyam et al. [167] used wavelet

transformation to convert the time series to the time-scale domain and then extract a multitude

of features such as Renyi entropy, peak-magnitude to root mean square ratio (PMRS) etc. The

features are then classified by a k-nearest neighbour classifier. This scheme achieved 93.5%

accuracy.

Table 5.58. Comparative analysis

 Classification Method Accuracy (%)

C.D. Joshi, U. Lahiri, and N.V. Thakor

[168]

Linear discriminant analysis 92.72

P. Li, X. Zhu, S.W. Su, Q. Guo, P. Xu,

and D. Yao [169]

Support vector machine 91.85

V. Balasubramanyam et al. [167] K Nearest Neighbour 93.5%

209

The proposed deep temporal convolution network was able to achieve a classification accuracy

of 96.45%. With the lift provided by multi-view temporal ensemble, it can be further improved

to 97.88%. This is higher in performance then the feature extraction methods listed in Table

5.58 above.

5.7 Environment Sound

This section will describe the data experiment done on the Environment Sound (ESC-50) data

set [19]. The purpose is to validate the performance of the multi-view temporal ensemble with

the CNN-LSTM sub-models on the data set.

The work is presented in five parts: (1) description of the data set, (2) spot-checking to get the

general benchmark of the data set, (3) performance evaluation of the individual views, each of

which is a CNN-LSTM model configured in a particular way, (4) performance evaluation of

the fusion of these CNN-LSTM sub-models using multi-view temporal ensemble, and (5)

comparison with existing works.

5.7.1 Data Set

The ESC-50 data set is a univariate numeric time series data set with 2,000 audio recordings

constructed from the sound clips in the Freesound project. There are 50 classes in the ESC-50

data set, as shown in Table 5.59 below. Out of these 50 classes, 22 are sounds of animals and

humans, and the rest are natural or mechanical sounds.

210

Table 5.59. Target class labels of the environment sound data set

Animals Human Natural sounds Interior sounds Exterior

sounds

Dog Crying baby Rain Door knock Helicopter

Rooster Sneezing Sea waves Mouse click Chainsaw

Pig Clapping Crackling fire Keyboard typing Siren

Cow Breathing Crickets Door, wood

creaks

Car horn

Frog Coughing Chirping birds Can opening Engine

Cat Footsteps Water drops Washing machine Train

Hen Laughing Wind Vacuum cleaner Church bells

Insects

(Flying)

Brushing teeth Pouring water Clock alarm Airplane

Sheep Snoring Toilet flush Clock tick Fireworks

Crow Drinking,

sipping

Thunderstorm Glass breaking Hand saw

Each of the 50 classes has 40 recordings. Each recording is a 5 second long .wav file (110,250

samples at 22,050 Hz). They can be decoded and processed with Python packages, namely

avconv and LibROSA.

The ESC-50 data set is chosen for this work because the signals are non-stationary and have no

obvious time-dependent structure. In this data experiment, the following techniques are used in

combination: (1) use the time-frequency representation of the signal as the input, and (2) use

deep learning to extract the features from the time-frequency representation and then do

classification.

For this data set, there is hardly enough training instances per class for deep learning. This is

because there are only 40 recordings per class. To overcome this problem, each of the 5-second

audio clips is split into 9 overlapping segments, with 20,992 samples per segment (0.952

seconds).

211

Within each segment, there are 41 time-consecutive frames. Each frame has 512 samples. Each

frame is subjected to Fourier transform and converted to the energy values of a 60-bin Mel

cepstrum.

As a result, each segment is a two-dimensional matrix with 41 time steps and 60 coefficients.

The two-dimensional matrix has a total of 2,460 coefficients in it. Each of these matrices is

associated with the class. There are 360 sets of such matrices for each of classes.

5.7.2 Spot Checking

Before evaluating the performance of the CNN-LSTM model, it is interesting to note that not

all deep learning will yield good result on the ESC-50 data set. To show this, two LSTM layers

with a softmax layer, as shown in Figure 5.28 below, was used on the time-frequency

representation of the ESC-50 data set.

Figure 5.28. Deep learning with two layers of LSTM, ESC-50

The result in Table 5.60 shows that the two LSTM layer configuration is no better than the two

CNN layer configuration as reported by Piczak [19]. The result (60.9% accuracy) is less than

212

appealing despite the use of dropout as regularization. This is likely due to the spectral features

not being extracted by the LSTMs as well as the CNNs.

Table 5.60. Classification accuracy of ESC-50 based on different topologies

Topology Accuracy

2 layers of 2D-CNNs [19] 64.5%

2 layers of LSTMs 60.9%

5.7.3 Performance of the Individual Views

To evaluate the performance of the multi-view temporal ensemble, three configurations of the

CNN-LSTM sub-model will first be created. The multi-view temporal ensemble will then blend

the penultimate output of the views to give a lift to the system performance.

10-fold validation in deep learning is often too time-consuming. Thus, in this data experiment,

the validation is done by 66/33 training/test splitting instead of 10-fold validation.

As the data set is a balanced data set, the classification accuracy is used as the performance

metrics in this data experiment.

The CNN-LSTM model is a sequence of layers, consisting of two groups of two-dimensional

convolution layers, one group of one-dimensional convolution layer, one group of LSTM layer,

a fully connected dense layer, and a softmax layer. For View 1, it is configured as shown in

Table 5.61 below.

213

Table 5.61. CNN-LSTM Topology, View 1 (ESC-50)

Type of Layer Output Shape Number of Parameters

Two-dimensional convolution (32, 41, 60) 832

Max pooling (32, 20, 30) 0

Dropout (32, 20, 30) 0

Two-dimensional convolution (64, 20, 30) 51,264

Max pooling (64, 10, 15) 0

Dropout (64, 10, 15) 0

Permute (10, 64, 15) 0

Reshape (10, 960) 0

One-dimensional convolution (10, 192) 553,152

Max pooling (5, 192) 0

Dropout (5, 192) 0

LSTM (360) 796,320

Dropout (360) 0

Dense (128) 46,208

Activation, ReLU (128) 0

Dropout (128) 0

Dense, Softmax (50) 6,450

The input to the CNN-LSTM model is a tensor of size (1,41,60). The number of channels is 1,

the number of time steps is 41, and the number of attributes is 60.

As can be seen from Table 5.63 above, the tensor output of the first CNN layer is of size

(32,41,60). There are 32 feature maps in the tensor output. After max pooling by a 2 × 2 region,

the tensor size is reduced to (32,20,30). The CNN layer and the max pooling layer, together

with the dropout layer, form a group of layers.

The group of layers is repeated one more time. Together, these two groups of layers serve to

capture the invariant features across the time-frequency structure of the audio segment.

214

The output of the two convolution groups is a tensor of size (64,10,15). It will be re-organized

as a matrix of 10 time-steps of 960 features. This will be used as the input for the next layer,

which is the one-dimensional convolution layer. For the one-dimensional convolution layer, the

kernel size is 3 time steps by 960 features. It will slide over the time steps, giving off 192

outputs at each of the slide positions.

The output from the one-dimensional convolution layer is fed to an LSTM layer to extract the

remaining high-level features. Thereafter, a fully connected layer with ReLU activation is used

with a softmax layer to implement the multi-class classification.

Table 5.62 below shows the View 1 result (classification accuracies) over 20 epochs when the

above topology is used with the ESC-50 data set. The result, at 83.94%, is close to the reported

top scores for this data set.

Table 5.62. Classification accuracies (%) over 20 epochs, View 1 (ESC-50)

19.27 35.90 45.18 51.73 60.45 64.44 67.61 70.65 72.32 74.16

75.09 77.62 78.99 79.89 81.19 82.17 82.23 82.98 83.94 83.94

The topology of View 2 of the CNN-LSTM model is shown in Table 5.63 below. The difference

between View 2 and View 1 is that there are fewer feature maps (8 and 16, compared to 32 and

64) at the two-dimensional convolution layers in View 2.

215

Table 5.63. CNN-LSTM Topology, View 2 (ESC-50)

Type of Layer Output Shape Number of Parameters

Two-dimensional convolution (8, 41, 60) 208

Max pooling (8, 20, 30) 0

Dropout (8, 20, 30) 0

Two-dimensional convolution (16, 20, 30) 3,216

Max pooling (16, 10, 15) 0

Dropout (16, 10, 15) 0

Permute (10, 16, 15) 0

Reshape (10, 240) 0

One-dimensional convolution (10, 192) 138,432

Max pooling (5, 192) 0

Dropout (5, 192) 0

LSTM (360) 796,320

Dropout (360) 0

Dense (128) 46,208

Activation, ReLU (128) 0

Dropout (128) 0

Dense, Softmax (50) 6,450

The View 2 results produced by the topology are shown in Table 5.64 below. At 82.64%, it is

close to the reported top scores for this data set.

Table 5.64. Classification accuracies (%) over 20 epochs, View 2 (ESC-50)

21.00 35.48 47.56 54.30 60.91 64.94 67.84 69.27 72.03 72.55

75.49 75.36 76.85 78.45 79.50 79.62 79.72 81.64 81.58 82.64

The topology of View 3 of the CNN-LSTM model is shown in Table 5.65 below. The difference

between View 3 with the earlier two views is again in the number of feature maps at the two-

dimensional convolution layers (16 and 32, compared to 32, 16 and 8, 16 in View 1 and 2).

216

Table 5.65. CNN-LSTM Topology, View 3 (ESC-50)

Type of Layer Output Shape Number of Parameters

Two-dimensional convolution (16, 41, 60) 416

Max pooling (16, 20, 30) 0

Dropout (16, 20, 30) 0

Two-dimensional convolution (32, 20, 30) 12,832

Max pooling (32, 10, 15) 0

Dropout (32, 10, 15) 0

Permute (10, 32, 15) 0

Reshape (10, 480) 0

One-dimensional convolution (10, 192) 276,672

Max pooling (5, 192) 0

Dropout (5, 192) 0

LSTM (360) 796,320

Dropout (360) 0

Dense (128) 46,208

Activation, ReLU (128) 0

Dropout (128) 0

Dense, Softmax (50) 6,450

The View 3 results produced by the topology are as shown in Table 5.66 below. At 83.06%, it

is close to the reported top scores for this data set.

Table 5.66. Classification accuracies (%) over 20 epochs, View 3 (ESC-50)

18.21 35.21 43.62 52.57 57.24 62.24 65.69 68.48 70.98 73.68

73.51 76.82 78.37 78.39 79.47 79.39 80.64 81.71 82.31 83.06

The results in Table 5.62, Table 5.64 and Table 5.66 show that the time-frequency

representation of the ESC-50 data set can be classified with state-of-the-art performance. This

is because invariant features in both the time and frequency domains were extracted by the two-

217

dimensional convolution layers, and the remaining high-level temporal features were extracted

the one-dimensional convolution layer and the LSTM layer.

5.7.4 Performance Improvement with Multi-view Temporal Ensemble

The penultimate output of View 1, View 2 and View 3 were sent to the multi-view temporal

ensemble for blending. It was found that the accuracy of the blended result improved to 85.5%.

Figure 5.29 below shows the performance of the multi-view temporal ensemble versus those of

the individual views on the ESC-50 data set. It shows that the complementary data boosts the

system performance.

Figure 5.29. Comparison of MTE vs individual view (ESC-50)

5.7.5 Comparison with Existing Works

According to the research done by Piczak [19], the human capabilities in recognizing the sounds

in the data set is estimated to be 81.3%. The performance varies across the sounds, with a low

of 34.1% for the washing machine noise and almost 100% for crying babies. He postulated that

trained and attentive listeners could reach 90% accuracy for the data set.

81.00%

82.00%

83.00%

84.00%

85.00%

86.00%

View 1 View 2 View 3 MTE

Accuracy of MTE vs Individual Views

218

Previous work by Piczak shows that using a deep learning approach with two convolutional

layers with max-pooling and followed by two fully connected layers can produce a

classification accuracy of 64.5%.

Since then, better results have been reported in the published papers. Some of the top scores are

listed in Table 5.67 below.

Table 5.67. State of the art performance on the ESC-50 data set

Title Technique Accuracy

Unsupervised Filterbank Learning Using

Convolutional Restricted Boltzmann

Machine for Environmental Sound

Classification [170]

CNN with filterbanks learned

using convolutional RBM +

fusion with GTSC and mel

energies

86.50%

Learning from Between-class Examples for

Deep Sound Recognition [171]

EnvNet-v2 + data augmentation +

Between-Class Learning

84.90%

Novel Phase Encoded Mel Filterbank

Energies for Environmental Sound

Classification [172]

CNN working with phase

encoded mel filterbank energies

(PEFBEs), fusion with Mel

energies

84.15%

Knowledge Transfer from Weakly Labeled

Audio using Convolutional Neural Network

for Sound Events and Scenes [173]

CNN pre-trained on AudioSet 83.50%

The performance of the individual views, at 83.94%, 82.64% and 83.06% are close to the values

in Table 5.67 above. The use of multi-view temporal ensemble was shown to be able to lift the

performance to 85.5% and bring the performance even nearer to the best result (86.50%) in

Table 5.67 above.

219

5.8 Heart Sounds

This section will describe the data experiment done on the Heart Sounds data set [20] The

purpose is to validate the performance of the multi-view temporal ensemble with the CNN-

LSTM sub-models on the data set.

The work is presented in five parts: (1) description of the data set, (2) data preparation done on

the data set, (3) performance evaluation of the individual views, each of which is a CNN-LSTM

model configured in a certain way, (4) performance evaluation of the multi-view temporal

ensemble based on the penultimate outputs of the CNN-LSTM sub-models, and (5) comparison

with existing works.

5.8.1 Data Set

The Heart Sounds data set is a univariate numeric time series data set. It is the training and

validation set used in the 2016 PhysioNet/CinC Challenge [174]. There are two classes in this

data set, namely normal and abnormal. Each of these two classes are further labelled as clean

or noisy. In this data experiment, only the two classes, normal and abnormal, are used for

classification. The signal quality is not taken into consideration.

There are altogether 5 collections (A through E) in the data set, as shown in Table 5.68 below.

Table 5.68. Collection A, B, C, D, and E of normal and abnormal heart sound recordings

 Normal Abnormal

Collection A 117 292

Collection B 386 104

Collection C 7 24

Collection D 27 28

Collection E 1,958 183

Total 2,495 631

As can be seen from Table 5.68 above, the data set is unbalanced. There are more normal

recordings (2,495) than the abnormal recordings (631).

220

The recordings were done in clinical as well as non-clinical (for example, in-home visits)

settings. Most of the recordings are clean, but some are corrupted by noise such as talking,

stethoscope motion, breathing and intestinal sounds etc. Of all these collections, Collection E

is a particularly clean set of recordings.

Each subject contributed between one and six heart sound recordings. Each recording contains

only one lead. The length of each recording is 5 to 120 seconds. Sampling was done at 2,000

Hz. The data are stored in the .wav format.

5.8.2 Data Preparation

As the recordings are unequal in length (5 seconds to 120 seconds), it is pertinent that only the

actual heart sounds (and not the end-of-file silence) be used for the data experiment. After

processing the data, those segments that fall below the average decibel of -70dB are removed.

The data processing will normalize the data by the maximum value of each recording. Then,

overlapping segments will be created from the normalized data. Each of the overlapping

segments will have 5,120 samples (2.56 seconds).

A 512-point frame is slide across the segment, from which 60-bin Mel cepstral features will be

computed. Thus, each segment will have 1,260 Mel coefficients (i.e. 21 frames × 60 bins). The

segment has a tensor structure of the shape (𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 1, 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠 = 21, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 60),

meeting the expected format of the CNN-LSTM model.

5.8.3 Performance of the Individual Views

To evaluate the performance of the multi-view temporal ensemble, three configurations of the

CNN-LSTM model are created. In addition, a different subset of the data set is used for each of

the configurations. This produced three different views, with three sets of performances.

Performing 10-fold validation in deep learning is very time-consuming, and so in this data

experiment, the validation is done by 66/33 training/test splitting instead of 10-fold validation.

221

As the data set is unbalanced, sensitivity and specificity will be used as the performance metrics

in this data experiment.

The CNN-LSTM model is a sequence of layers, consisting of two groups of two-dimensional

convolution layers, one group of one-dimensional convolution layers, one group of LSTM

layers, a fully connected dense layer, and a softmax layer. For View 1, it is configured as shown

in Table 5.69 below.

Table 5.69. CNN-LSTM Topology, View 1 (heart sounds)

Type of Layer Output Shape Number of Parameters

Two-dimensional convolution (32, 21, 60) 832

Max pooling (32, 10, 30) 0

Dropout (32, 10, 30) 0

Two-dimensional convolution (64, 10, 30) 51,264

Max pooling (64, 5, 15) 0

Dropout (64, 5, 15) 0

Permute (5, 64, 15) 0

Reshape (5, 960) 0

One-dimensional convolution (5, 192) 553,152

Max pooling (2, 192) 0

Dropout (2, 192) 0

LSTM (360) 796,320

Dropout (360) 0

Dense (128) 46,208

Activation, ReLU (128) 0

Dropout (128) 0

Dense, Softmax (2) 258

The input to the CNN-LSTM model is a tensor of size (1,21,60). The number of channels is 1,

the number of time steps is 20, and the number of attributes is 60.

222

As can be seen from Table 5.69 above, the tensor output of the first two-dimensional

convolutional layer is of the size (32,21,60). There are 32 feature maps in the tensor output.

After max pooling by a 2 × 2 region, the tensor size is reduced to (32,10,30). The two-

dimensional convolution layer and the max pooling layer, together with the dropout layer, form

a group of layers. This group of layers is repeated one more time, and together, the two groups

of layers serve to capture the invariant features across the time-frequency structure of the audio

segment.

The output of the two convolution groups is a tensor of size (64,5,15). It is re-organized as a

matrix of 5 time-steps of 960 features. This is used as the input of the next layer, which is the

one-dimensional convolution layer. For the one-dimensional convolution layer, the kernel size

is 3 time steps by 960 features. It is slide over the time steps, giving 192 outputs at each of the

slide positions.

The output from the one-dimensional convolution layer is fed to an LSTM layer to extract the

remaining high-level features. Thereafter, a fully connected layer with ReLU activation is used

with a softmax layer to implement the multi-class classification.

Table 5.70 shows the View 1 result (classification accuracies) over 20 epochs when the above

topology is used with the heart sound data set. The result, at 85.98%, is very good.

Table 5.70. Performance over 20 epochs, View 1 (heart sounds)

75.18 75.42 79.54 79.99 81.15 81.57 81.77 80.75 82.94 82.59

83.28 83.58 83.61 84.18 84.43 84.72 86.03 85.96 85.27 85.98

As the test set is unbalanced, the sensitivity and specificity (instead of accuracy) will be

computed. To do that, the confusion matrix for the test set is obtained and shown in Table 5.71

below.

223

Table 5.71. Confusion matrix, View 1 (heart sounds)

 Predicted, Normal Predicted, Abnormal

Actual, Normal 1,879 499

Actual, Abnormal 338 3,252

For View 1, the sensitivity is 79.02% and the specificity is 90.58%. The arithmetic mean of the

two scores is 84.80%.

The same process is repeated for View 2 and View 3, each with a different number of feature

maps in the CNN layers in the CNN-LSTM topology.

The results produced by the topology for View 2 are shown in Table 5.72 below. At 98.84%, it

is much better than the results for View 1. This is due to the subset used for View 2, which is

different from the subset used for View 1. The results suggest that the subset used for View 2

has a much higher signal quality (i.e. cleaner).

Table 5.72. Performance over 20 epochs, View 2 (heart sounds)

95.53 96.14 97.03 97.26 97.76 98.07 97.83 97.80 97.93 97.39

97.69 98.40 98.42 98.42 98.58 98.48 98.47 98.75 98.58 98.84

Table 5.73 below shows the confusion matrix for the test set of View 2.

Table 5.73. Confusion matrix, View 2 (heart sounds)

 Predicted, Normal Predicted, Abnormal

Actual, Normal 3,338 43

Actual, Abnormal 39 3,583

For View 2, the sensitivity is 98.73% and the specificity is 98.92%. The arithmetic mean of the

two scores is 98.83%. This is better than View 1 (84.80%).

224

The results produced by the topology for View 3 are as shown in Table 5.74 below. At 98.40%,

it is comparable to the results for View 2 and much better than the results for View 1.

Table 5.74. Performance over 20 epochs, View 3 (heart sounds)

94.43 96.03 96.97 97.21 97.52 97.49 97.77 97.84 97.70 97.65

97.53 98.00 97.83 98.19 98.21 98.36 98.48 98.50 98.34 98.40

Table 5.75 below shows the confusion matrix for the test set of View 3.

Table 5.75. Confusion matrix, View 3 (heart sounds)

 Predicted, Normal Predicted, Abnormal

Actual, Normal 3,344 64

Actual, Abnormal 49 3,596

For View 3, the sensitivity is 98.12% and the specificity is 98.66%. The arithmetic mean of the

two scores is 98.39%.

5.8.4 Performance Improvement with Ensemble

To run the subsets through the multi-view temporal ensemble, the rule of co-occurrence will

apply. This means that the same data should be used as the input by all the sub-models. To

achieve this, the three subsets are combined as one and then run through the three CNN-LSTM

configurations. This produces three separate views. The penultimate outputs of the three views

are then blended by the multi-view temporal ensemble to give the system performance a lift.

The confusion matrix of the multi-view temporal ensemble is as shown below.

Table 5.76. Confusion matrix, multi-view temporal ensemble (heart sounds)

 Predicted, Normal Predicted, Abnormal

Actual, Normal 8,745 705

Actual, Abnormal 244 10,356

225

For the multi-view temporal ensemble in Table 5.76 above, the sensitivity is 92.54% and the

specificity is 97.70%. The arithmetic mean of the two scores is 95.12%. This is higher than the

average of the individual views (94.01%), as shown in Figure 5.30 below.

Figure 5.30. Comparison of MTE vs individual view (heart sound)

The shows that the multi-view temporal ensemble is able to reduce the effect of the noisy data

and improve the generalization performance over the average performance of the individual

sub-models.

5.8.5 Comparison with Existing Works

Physionet Challenge 2016 [20] provides a sample entry to serve as the benchmark of the heart

sound data set. It uses a state-of-the-art segmentation technique to identify the S1, S2, systole

and diastole states of the heart sounds, from which features are extracted by a form of Hidden

Markov Model (HMM). Logistic regression is then used for classification. The validation result

(based on subsets from Collections A through E) gives a sensitivity of 71.52% and a specificity

of 70.67%.

The same data set, based on Collections A through E, are used in this data experiment. The best

score is obtained when multi-view temporal ensemble is used with deep temporal convolution

networks at 𝑇𝑆 = 2. The sensitivity is 92.54% and the specificity is 97.70%. They are much

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

View 1 View 2 View 3 AVE MTE

Mean of Sp and Se, of MTE vs Individual Views

226

better than the baseline performance in the sample entry in the Physionet Challenge. This shows

that the proposed methods can achieve very good performance for the heart sound data set.

The scores of the top entries in the 2016 Physionet Challenge are substantially higher than those

of the sample entry [20]. The test set used in the actual challenge is a new and unseen data set

different from the training set (Collections A through E). Three classes are defined, namely

normal, abnormal and unsure. The scores for sensitivities and specificities are weighted by the

amount of noisy signal in the data set. The scores of the top five entries, based on the modified

computation for sensitivity and specificity, are shown in Table 5.77 below.

Table 5.77. Final scores for the 2016 Physionet Challenge

 Classification Method Sensitivity Specificity

Potes et al. [175] AdaBoost & CNN 94.24 77.81

Zabihi et al. [176] Ensemble of SVMs 86.91 84.90

Kay, Agarwal et al. [177] Regularized Neural Network 87.43 82.97

Bobillo [178] MFCCs, Wavelets, Tensors & KNN 86.39 82.69

Plesinger et al. [179] Probability-distribution based 76.96 91.25

The scores in Table 5.77 above are based on a different test set with a slightly different criterion,

but they show that the performance of the multi-view temporal ensemble with CNN-LSTM

sub-models is able to match up with the top scores in the Physionet Challenge. This

complements the conclusion of the other data experiments that the proposed methods provide

higher generalization performance on time series data.

227

Chapter 6. Conclusion

The goal of this thesis is to develop new deep temporal model for the classification of high-

dimensional data made from biosignals. Two hypotheses were made towards this goal, namely

the deep temporal convolution network and the multi-view temporal ensemble. A number of

new ideas were incorporated into their implementations. They were validated using biosignal

data sets in the public domain. The results show that the proposed methods could improve the

accuracy and variance of the classification of these signals.

This chapter concludes the thesis by highlighting the main points that have been made in the

thesis, as well as the work to be done in the future.

6.1 Main Points

The proposed deep temporal convolution network addresses the need in deep learning to match

the data function with the appropriate network structure. This takes the form of the introduction

of a concatenation sublayer to the deeper layers of a DBN-DNN. This enables the learning of

the compositional temporal context within a deep network. For non-stationary time series data

such as physiological signals, the data function is highly varying, and so the composition of

functions, as used in the proposed network, can be helpful in achieving better performance. To

expose the temporal context and encourage the model to be shift-invariant, data processing is

used, including (1) short term temporal order, (2) mini-batches that overlap, and (3) pooling of

target labels through deeper layers. A matching learning algorithm by backpropagation with

gradient routing is also proposed, with the “split-slide-add” operation being used for gradient

routing.

The proposed network was tested with the EEG Eye State data set, among others. The result

shows that it can generalize better than the equivalent DBN-DNN that makes use of just the

time delay representation at the input layer. Figure 6.1 below shows the improvement in

accuracy and the reduction in variance with the proposed network.

228

Figure 6.1. Classification accuracies of DTCN with 𝑇𝑆 = 1,2,5, eye state

In Figure 6.1 above, 𝑇𝑆 (time steps), which is the amount of concatenation, is increased from 1

(no concatenation) to 2 and then to 5. It can be seen from that there is a lift in the curve for

𝑇𝑆 = 5, implying higher accuracy with larger amount of concatenation. At the same time, the

fluctuation is smaller (lower variance) in the curve.

The exploration of deep learning was extended to ensemble technique and multi-view learning

in this work. An intermediate data fusion technique, called the multi-view temporal ensemble,

is proposed for use with time series data such as sound to boost the generalization performance

of classification. In the proposed method, the outputs of the sub-models in the ensemble are

linearly combined with mixing coefficients so that the features, used as the input by the final

classifier, can be more representative of the target concept. The mixing coefficients are based

on the complementarity of the views.

In this work, the cost function of the Laplacian eigenmap is adopted for alternate optimization

to solve the following two-fold problem: (1) the mixing coefficients are unknown, and (2) the

global view (i.e. the weighted sum of the individual views) is also unknown. The alternate

update of the two unknowns will result in the minimization of the cost function, resulting in the

convergence of the mixing coefficients. This technique can be used with time series data with

two rules: (1) co-occurrence, and (2) class-specificity.

80

82

84

86

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10

Accuracy (%) over 10 Folds

TS=1 TS=2 TS=5

229

A CNN-LSTM ensemble framework was described and tested with a time series data set. The

result shows that without manual segmentation and curation, the time series data can be

classified with greater generalization performance in the multi-view setting, compared to deep

learning based on single view alone.

Figure 6.2 below shows the improvement in accuracy and the reduction in variance for the ECG

data set when the multi-view temporal ensemble was used.

Figure 6.2. Classification accuracies for View 1, 2, 3, their average, and MTE (eye state)

As shown in Figure 6.2 above, the performance of the ensemble is better the simple average of

the three individual views. This is a sign that complementarity is a helpful property for learning

in ensemble learning.

6.2 Future Works

The current work provides a sound foundation for time series classification, but it does not

address the why and how in explanatory data analytics. In future, the time series captured by

sensor nodes should be combined with the other dimensions in the process. In such an intelligent

sensor network, the deep temporal convolution network and the multi-view temporal ensemble

can be used as the artificial intelligence engines within multidimensional data analytics. This

80

85

90

95

100

105

1 2 3 4 5 6 7 8 9 10

Accuracy (%), MTE vs Individual Views

View 1 View 2 View 3 AVE MTE

230

will infuse time series data into the data analytics for better insight into the causes of the

phenomenon.

6.2.1 Dimensions as Co-variates

The work in this thesis focuses on multivariate numeric data. It is proposed that the work be

extended to a richer kind of biomedical data that contains not just biosignals but also categorical

co-variates. These co-variates can be (1) control factors used in the design of experiments, (2)

confounding factors that need to be taken into account in observational study, or (3) the identity

or attributes of the subjects. These co-variates are likely to be available in a database rather than

from the sensors.

An example of such a data set is the data set of patients, where categorical attributes such as

gender, social economic status, activity mode, etc. are available. When these factors are not

taken into consideration, the results could be biased. For example, the heart rhythm may be

biased by the gender, the age, or the activity mode. Therefore, incorporating categorical co-

variates to the time series will adjust for the bias.

6.2.2 Intelligent Sensor Network

The advances in sensor, network and cloud computing provide ample opportunities to deploy

the solution in the real world setting. With signals from sensors and user data from databases,

real world data with time series and categorical covariates can be collected for epidermiological

study on social and preventive healthcare issues. Empathy of the ground and understanding of

the data are necessary for this effort to add real value to the solution. The evidence-based

approach, aided by signals collected by sensors, will provide reliable interpretation of the

underlying complex phenomenon.

6.2.3 More Robust to Noise

More strategies can be incorporated into multi-view temporal ensemble, such as wavelet-

transformation views and compressive sensing views, instead of just the distance views based

on the Gaussian kernel. These strategies make use of other aspects of the signals and may result

231

in complementarity that is more robust to noise, as the distance measure is known to be sensitive

to noise.

6.2.4 Incremental Learning

Incremental learning [180] can be incorporated into the deep learning mode. The deep model

trained with the general population can be adapted for use in new situations by training just the

final classifier with the new data set. It allows rapid deployment without the time-consuming

training of a brand new deep model. There are a number of choices here, but the ELM classifier

is a ready-to-use top layer classifier for this purpose.

6.3 Final Words

This work has contributed to the research community by showing that random-looking

biosignals can be classified with high accuracies with the proposed deep temporal convolution

network and multi-view temporal ensemble. It shows that end-to-end learning of the biosignals

can be achieved with little or no feature engineering. Going forward, these proposed networks

can be incorporated as engines in an explanatory data analytics framework of an intelligent

sensor network to create value in applications that are yet to be explored.

232

References

[1] L. Sörnmo and P. Laguna, Bioelectric Signal Processing in Cardiac and Neurological

Applications, First. Elsevier Academic Press, 2005.

[2] R. Oliver and D. Suendermann, “A First Step towards Eye State Prediction Using

EEG,” Proc. of the AIHLS, 2013.

[3] E. Frank, M. A. Hall, and I. H. Witten, “The WEKA Workbench. Online Appendix for

‘Data Mining: Practical Machine Learning Tools and Techniques,’” 2016. .

[4] S. A. Kurtz and J. Hastad, “Computational Limitations of Small-Depth Circuits.,” J.

Symb. Log., 1988.

[5] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends® Mach. Learn.,

2009.

[6] H. Mhaskar, Q. Liao, and T. Poggio, “When and Why Are Deep Networks Better than

Shallow Ones ?,” Proc. 31th Conf. Artif. Intell. (AAAI 2017), pp. 2343–2349, 2017.

[7] S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory

to Algorithms. 2014.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” J. Mach.

Learn. Res., 2014.

[9] S. Roweis and Z. Ghahramani, “A unifying review of linear gaussian models,” Neural

Computation. 1999.

[10] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks,

2015.

[11] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep

Belief Nets,” Neural Comput., 2006.

[12] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”

Neural Comput., 2002.

[13] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bull. Am.

233

Math. Soc., 2002.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data

representation,” Neural Comput., 2003.

[15] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger,

“Indications of nonlinear deterministic and finite-dimensional structures in time series

of brain electrical activity: Dependence on recording region and brain state,” Phys.

Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., vol. 64, no. 6, p. 8,

2001.

[16] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A Public Domain

Dataset for Human Activity Recognition Using Smartphones,” Eur. Symp. Artif. Neural

Networks, Comput. Intell. Mach. Learn., no. April, pp. 24–26, 2013.

[17] M. Bächlin et al., “Wearable assistant for Parkinsons disease patients with the freezing

of gait symptom,” IEEE Trans. Inf. Technol. Biomed., 2010.

[18] J. Kohlschuetter, J. Peters, and E. Rueckert, “Learning probabilistic features from

EMG data for predicting knee abnormalities,” in IFMBE Proceedings, 2016.

[19] K. J. Piczak, “ESC: Dataset for Environmental Sound Classification,” Proc. 23rd ACM

Int. Conf. Multimedia, MM 2015, pp. 1015–1018, 2015.

[20] G. D. Clifford et al., “Classification of Normal / Abnormal Heart Sound Recordings :

the PhysioNet / Computing in Cardiology Challenge 2016,” Comput. Cardiol. (2010).,

pp. 3–6, 2016.

[21] G. A. Diamond, “The wizard of odds: Bayes’ theorem and diagnostic testing,” Mayo

Clinic Proceedings, 1999.

[22] L. Gordis, Epidemiology, 5th ed. Saunders, 2013.

[23] L. Sörnmo and P. Laguna, “Bioelectrical Signal Processing in Cardiac and

Neurological Applications,” 2005.

[24] P. Anderer, G. Gruber, S. Parapatics, and G. Dorffner, “Automatic sleep classification

according to Rechtschaffen and Kales,” in Annual International Conference of the

IEEE Engineering in Medicine and Biology - Proceedings, 2007.

234

[25] N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, “Entropies for

detection of epilepsy in EEG,” Comput. Methods Programs Biomed., 2005.

[26] A. Norali and M. Som, “Surface Electromyography Signal Processing and Application:

A Review,” Int. Conf. Man-Machine Syst., no. October, pp. 11–13, 2009.

[27] L. Cao, W. Huang, and F. Sun, “A Deep and Stable Extreme Learning Approach for

Classification and Regression,” Proc. ELM, vol. 2, pp. 141–150, 2015.

[28] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on

Neural Networks. 1999.

[29] K. J. McGarry, S. Wermter, and J. MacIntyre, “Knowledge extraction from radial basis

function networks and multilayer perceptrons,” 2003.

[30] M. Gales and S. Young, “The Application of Hidden Markov Models in Speech

Recognition,” Found. Trends® Signal Process., vol. 1, no. 3, pp. 195–304, 2007.

[31] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are

universal approximators,” Neural Networks, 1989.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, Oct. 1986.

[33] A. Waibel, T. Hanazawa, G. E. Hinton, K. Shikano, and K. J. Lang, “Phoneme

recognition using time-delay neural networks,” IEEE Transactions on Acoustics,

Speech, and Signal Processing. 1989.

[34] C. Jin, M. Schenkel, and S. Carlile, “Neural system identification model of human

sound localization.,” J. Acoust. Soc. Am., vol. 108, no. 3 Pt 1, pp. 1215–1235, 2000.

[35] Y. Nancy Jane, H. Khanna Nehemiah, and K. Arputharaj, “A Q-backpropagated time

delay neural network for diagnosing severity of gait disturbances in Parkinson’s

disease,” J. Biomed. Inform., vol. 60, pp. 169–176, 2016.

[36] Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-Term Dependencies with

Gradient Descent is Difficult,” IEEE Trans. Neural Networks, 1994.

[37] K. Fukushima, “Artificial vision by multi-layered neural networks: Neocognitron and

its advances,” Neural Networks, 2013.

235

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, 1998.

[39] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradient

problem,” Proc. 30th Int. Conf. Mach. Learn., 2012.

[40] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput.,

1997.

[41] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for

Statistical Machine Translation,” 2014.

[42] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature learning

and deep learning for time-series modeling,” Pattern Recognit. Lett., 2014.

[43] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,”

Int. J. Forecast., 2006.

[44] M. Geurts, G. E. P. Box, and G. M. Jenkins, “Time Series Analysis: Forecasting and

Control,” J. Mark. Res., 2006.

[45] L. Bauwens, S. Laurent, and J. V. K. Rombouts, “Multivariate GARCH models: A

survey,” Journal of Applied Econometrics. 2006.

[46] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning

forecasting methods: Concerns and ways forward,” PLoS One, 2018.

[47] S. Krstanovic and H. Paulheim, “Ensembles of recurrent neural networks for robust

time series forecasting,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017.

[48] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” ACM

SIGKDD Explor. Newsl., 2010.

[49] H. Lütkepohl, New introduction to multiple time series analysis. 2005.

[50] F. W. Fairman, “Introduction to dynamic systems: Theory, models and applications,”

Proc. IEEE, 2008.

[51] L. R. Rabiner and B. H. Juang, “An Introduction to Hidden Markov Models,” IEEE

236

ASSP Mag., 1986.

[52] S. Ding, H. Zhu, W. Jia, and C. Su, “A survey on feature extraction for pattern

recognition,” Artificial Intelligence Review. 2012.

[53] A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat time series classification with

support vector machines,” in IEEE Transactions on Information Technology in

Biomedicine, 2009.

[54] A. Boardman, F. S. Schlindwein, A. P. Rocha, and A. Leite, “A study on the optimum

order of autoregressive models for heart rate variability,” Physiol. Meas., 2002.

[55] I. Popivanov and R. J. Miller, “Similarity search over time-series data using wavelets,”

Proc. - Int. Conf. Data Eng., 2002.

[56] V. Pichot et al., “Wavelet transform to quantify heart rate variability and to assess its

instantaneous changes,” J. Appl. Physiol., 2017.

[57] V. P. Nigam and D. Graupe, “A neural-network-based detection of epilepsy,”

Neurological Research. 2004.

[58] P. Y. Zhou and K. C. C. Chan, “A feature extraction method for multivariate time

series classification using temporal patterns,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2015.

[59] A. Flexer, G. Gruber, and G. Dorffner, “A reliable probabilistic sleep stager based on a

single EEG signal,” Artif. Intell. Med., 2005.

[60] J. Grabocka, A. Nanopoulos, and L. Schmidt-thieme, “Classification of Sparse Time

Series via Supervised Matrix Factorization,” Proc. Twenty-Sixth AAAI Conf. Artif.

Intell., 2010.

[61] C. Li, L. Khan, and B. Prabhakaran, “Feature selection for classification of variable

length multiattribute motions,” in Multimedia Data Mining and Knowledge Discovery,

2007.

[62] X. Weng and J. Shen, “Classification of multivariate time series using locality

preserving projections,” Knowledge-Based Syst., 2008.

237

[63] X. He and P. Niyogi, “Locality Preserving Projections,” in Proceedings of Neural

Information Processing Systems, 2003.

[64] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time warping,”

Knowl. Inf. Syst., 2005.

[65] L. Ye and E. Keogh, “Time Series Shapelets: A New Primative for Data Mining,”

Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discov. data Min. - KDD ’09, 2009.

[66] J. Lines and A. Bagnall, “Time series classification with ensembles of elastic distance

measures,” Data Min. Knowl. Discov., 2015.

[67] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh,

“Experimental comparison of representation methods and distance measures for time

series data,” Data Min. Knowl. Discov., 2013.

[68] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series

classification bake off: a review and experimental evaluation of recent algorithmic

advances,” Data Min. Knowl. Discov., 2017.

[69] G. a Ten Holt, M. J. T. Reinders, and E. a Hendriks, “Multi-Dimensional Dynamic

Time Warping for Gesture Recognition,” Time, 2007.

[70] H. Kaya and Ş. Gündüz-Öʇüdücü, “A distance based time series classification

framework,” Inf. Syst., 2015.

[71] S. Gudmundsson, T. P. Runarsson, and S. Sigurdsson, “Support vector machines and

dynamic time warping for time series,” in Proceedings of the International Joint

Conference on Neural Networks, 2008.

[72] B. Jain and S. Spiegel, “Dimension reduction in dissimilarity spaces for time series

classification,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016.

[73] A. Hayashi, Y. Mizuhara, and N. Suematsu, “Embedding Time Series Data for

Classification,” 2005.

[74] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral Techniques for

Embedding and Clustering,” NIPS, 2001.

238

[75] Y. Mizuhara, A. Hayashi, and N. Suematsu, “Embedding of time series data by using

Dynamic Time Warping distances,” Syst. Comput. Japan, 2006.

[76] J. Breneman, “Kernel Methods for Pattern Analysis,” Technometrics, 2009.

[77] W. A. Chaovalitwongse and P. M. Pardalos, “On the time series support vector

machine using dynamic time warping kernel for brain activity classification,” Cybern.

Syst. Anal., 2008.

[78] E. G. Bǎzǎvan, F. Li, and C. Sminchisescu, “Fourier kernel learning,” in Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2012.

[79] H. W. Lin, M. Tegmark, and D. Rolnick, “Why Does Deep and Cheap Learning Work

So Well?,” J. Stat. Phys., 2017.

[80] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature. 2015.

[81] P. Marius-Constantin, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer

perceptron and neural networks,” WSEAS Trans. Circuits Syst., 2009.

[82] G. Alain et al., “GSNs: generative stochastic networks,” Inf. Inference, 2016.

[83] M. Längkvist, L. Karlsson, and A. Loutfi, “Sleep Stage Classification Using

Unsupervised Feature Learning,” Adv. Artif. Neural Syst., 2012.

[84] M. Zębik, M. Korytkowski, R. Angryk, and R. Scherer, “Convolutional neural

networks for time series classification,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2017.

[85] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch with deep

neural networks: A strong baseline,” in Proceedings of the International Joint

Conference on Neural Networks, 2017.

[86] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting multi-channels deep

convolutional neural networks for multivariate time series classification,” Front.

Comput. Sci., 2016.

[87] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” in Procedings of the

239

British Machine Vision Conference 2016, 2016.

[88] E. D. Munz, “Batch Normalization: Accelerating Deep Network Training by Reducing

Internal Covariate Shift Sergey,” Nervenheilkunde, 2017.

[89] F. Karim, S. Majumdar, H. Darabi, and S. Chen, “LSTM Fully Convolutional

Networks for Time Series Classification,” IEEE Access, 2017.

[90] D. Bacciu, P. Barsocchi, S. Chessa, C. Gallicchio, and A. Micheli, “An experimental

characterization of reservoir computing in ambient assisted living applications,” Neural

Comput. Appl., 2014.

[91] M. Lukoševičius, “A practical guide to applying echo state networks,” Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

2012.

[92] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization and

applications of echo state networks with leaky- integrator neurons,” Neural Networks,

2007.

[93] M. G. Baydogan, G. Runger, and E. Tuv, “A bag-of-features framework to classify

time series,” IEEE Trans. Pattern Anal. Mach. Intell., 2013.

[94] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for classification

and feature extraction,” Inf. Sci. (Ny)., 2013.

[95] K. Buza, “Fusion methods for time-series classification,” Update, 2011.

[96] R. J. Kate, “Using dynamic time warping distances as features for improved time series

classification,” Data Min. Knowl. Discov., 2016.

[97] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification with COTE:

The collective of transformation-based ensembles,” in 2016 IEEE 32nd International

Conference on Data Engineering, ICDE 2016, 2016.

[98] J. Lines, S. Taylor, and A. Bagnall, “HIVE-COTE: The hierarchical vote collective of

transformation-based ensembles for time series classification,” in Proceedings - IEEE

International Conference on Data Mining, ICDM, 2017.

[99] C. Yanping et al., “UCR Time Series Classification Archive,”

240

URL:www.cs.ucr.edu/~eamonn/time_series_data/, 2015.

[100] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classification of time

series by shapelet transformation,” Data Min. Knowl. Discov., 2014.

[101] L. Deng and J. C. Platt, “Ensemble deep learning for speech recognition,” in

Proceedings of the Annual Conference of the International Speech Communication

Association, INTERSPEECH, 2014.

[102] L. P. Jin and J. Dong, “Ensemble Deep Learning for Biomedical Time Series

Classification,” Comput. Intell. Neurosci., 2016.

[103] J.-W. ZHANG, X. LIU, and J. DONG, “CCDD: AN ENHANCED STANDARD ECG

DATABASE WITH ITS MANAGEMENT AND ANNOTATION TOOLS,” Int. J.

Artif. Intell. Tools, 2012.

[104] J. Zhao, X. Xie, X. Xu, and S. Sun, Multi-view Learning Overview: Recent Progress

and New Challenges, vol. 38. 2017.

[105] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” in

Proceedings of the eleventh annual conference on Computational learning theory -

COLT’ 98, 1998.

[106] S. Sun, “A survey of multi-view machine learning,” Neural Computing and

Applications. 2013.

[107] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-View Clustering via Joint Nonnegative

Matrix Factorization,” in Proceedings of the 2013 SIAM International Conference on

Data Mining, 2013.

[108] I. Muslea, S. Minton, and C. A. Knoblock, “Active learning with multiple views,” J.

Artif. Intell. Res., 2006.

[109] B. Tan, E. Zhong, E. W. Xiang, and Q. Yang, “Multi-transfer: Transfer learning with

multiple views and multiple sources,” Stat. Anal. Data Min., 2014.

[110] C. O. Sakar, O. Kursun, and F. Gurgen, “Ensemble canonical correlation analysis,”

Appl. Intell., 2014.

[111] T. Niu, S. Zhu, L. Pang, and A. Elsaddik, “Sentiment analysis on multi-view social

241

data,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2016.

[112] W. Wang, R. Arora, K. Livescu, and J. A. Bilmes, “Unsupervised learning of acoustic

features via deep canonical correlation analysis,” in ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, 2015.

[113] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal Deep

Learning,” Proc. 28th Int. Conf. Mach. Learn., pp. 689–696, 2011.

[114] zydyr@163. co. Yan Zhang1, lvdanjv@hotmail. co. Danjv Lv1, and ylzhao@vip.

sina. co. Yili Zhao1, “Multiple-View Active Learning for Environmental Sound

Classification.,” International Journal of Online Engineering. 2016.

[115] T. Bänziger, D. Grandjean, and K. R. Scherer, “Emotion Recognition From

Expressions in Face, Voice, and Body: The Multimodal Emotion Recognition Test

(MERT),” Emotion, 2009.

[116] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of co-training,”

in Proceedings of the ninth international conference on Information and knowledge

management - CIKM ’00, 2000.

[117] A. Dixit, Ensemble Machine Learning. Packt Publishing Ltd., 2017.

[118] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123–140, 1996.

[119] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, no. 11, pp. 1134–

1142, 1984.

[120] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learning

and an application to boosting,” vol. 139, pp. 23–37, 1995.

[121] J. H. Friedman and J. H., “Stochastic gradient boosting,” Comput. Stat. Data Anal., vol.

38, no. 4, pp. 367–378, 2002.

[122] D. H. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5, no. 2, 1992.

[123] A. Zien and C. S. Ong, “Multiclass Multiple Kernel Learning,” Proc. ICML, vol. 1, no.

2, 2007.

242

[124] M. Gönen and E. Alpaydın, “Multiple Kernel Learning Algorithms,” J. Mach. Learn.

Res., vol. 12, pp. 2211–2268, 2011.

[125] N. Aronszajn, “Theory of Reproducing Kernels,” Trans. Am. Math. Soc., vol. 68, no. 3,

pp. 337–404, 1950.

[126] D. Erhan, Y. Bengio, A. Courville, Pierre-Antoine Manzagol, Pascal Vincent, and S.

Bengio, “Why Does Unsupervised Pre-training Help Deep Learning?,” J. Mach. Learn.

Res., 2010.

[127] Y. Chauvin and D. E. Rumelhart, Backpropagation : theory, architectures, and

applications. 1995.

[128] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time

series,” 2002.

[129] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of

initialization and momentum in deep learning,” Proc. 30th Int. Conf. Mach. Learn.

Jmlr W&Cp, 2013.

[130] A. Fischer and C. Igel, “An introduction to restricted Boltzmann machines,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2012.

[131] “Greedy Layer-Wise Training of Deep Networks,” in Advances in Neural Information

Processing Systems 19, 2018.

[132] Y. Bengio and O. Delalleau, “Justifying and generalizing contrastive divergence,”

Neural Computation. 2009.

[133] P. A. Cariani, “Neural timing nets,” Neural Networks, 2001.

[134] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for

stochastic optimization,” 2014.

[135] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural

Networks,” pp. 1–18, 2018.

[136] X. Glorot, A. Bordes, and Y. Bengio, “ReLU,” AISTATS ’11 Proc. 14th Int. Conf.

Artif. Intell. Stat., 2011.

243

[137] T. Xia, D. Tao, T. Mei, and Y. Zhang, “Multiview spectral embedding,” IEEE Trans.

Syst. Man, Cybern. Part B Cybern., vol. 40, no. 6, pp. 1438–1446, 2010.

[138] F. Cucker and S. Smale, “On the mathematical foundations of learning,” Bull. Am.

Math. Soc., vol. 39, no. 1, pp. 1–49, 2002.

[139] U. Naftaly†, N. Intrator‡, and D. Horn§, “Optimal ensemble averaging of neural

networks,” Netw. Comput. Neural Syst., 1997.

[140] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete

data via the EM algorithm,” J. R. Stat. Soc. Ser. B Methodol., vol. 39, no. 1, pp. 1–38,

1977.

[141] W. Martin and P. Flandrin, “Wigner-Ville Spectral Analysis of Nonstationary

Processes,” IEEE Trans. Acoust., 1985.

[142] N. Rehman and D. P. Mandic, “Multivariate empirical mode decomposition,” Proc. R.

Soc. A Math. Phys. Eng. Sci., 2010.

[143] V. Tiwari, “MFCC and its applications in speaker recognition,” Int. J. Emerg. Technol.,

2010.

[144] L. Hogben, “Spectral graph theory and the inverse eigenvalue problem of a graph,” in

Electronic Journal of Linear Algebra, 2005.

[145] M. Wang, X. S. Hua, X. Yuan, Y. Song, and L. R. Dai, “Optimizing multi-graph

learning: towards a unified video annotation scheme,” Proc. 15th Int. Conf. Multimed.,

pp. 862–871, 2007.

[146] N. Hatami, Y. Gavet, and J. Debayle, “Classification of Time-Series Images Using

Deep Convolutional Neural Networks,” 2017.

[147] E. Dua, D. and Karra Taniskidou, “UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml],” Irvine, CA: University of California, School of

Information and Computer Science., 2017. .

[148] J. G. Cleary and L. E. Trigg, “K*: An Instance-based Learner Using an Entropic

Distance Measure,” in Machine Learning Proceedings 1995, 1995.

[149] T. Wang, S. U. Guan, K. L. Man, and T. O. Ting, “EEG eye state identification using

244

incremental attribute learning with time-series classification,” Math. Probl. Eng., 2014.

[150] I. Güler and E. D. Übeyli, “Adaptive neuro-fuzzy inference system for classification of

EEG signals using wavelet coefficients,” J. Neurosci. Methods, 2005.

[151] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE

Trans. Syst. Man Cybern., 1993.

[152] V. Srinivasan, C. Eswaran, and A. N. Sriraam, “Artificial neural network based

epileptic detection using time-domain and frequency-domain features,” J. Med. Syst.,

2005.

[153] L. Wang et al., “Automatic epileptic seizure detection in EEG signals using multi-

domain feature extraction and nonlinear analysis,” Entropy, 2017.

[154] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler,

“Implementation of a Real-Time Human Movement Classifier Using a Triaxial

Accelerometer for Ambulatory Monitoring,” IEEE Trans. Inf. Technol. Biomed., vol.

10, no. 1, pp. 156–167, 2006.

[155] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human activity

recognition on smartphones using a multiclass hardware-friendly support vector

machine,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2012.

[156] B. Romera-Paredes, M. S. H. Aung, and N. Bianchi-Berthouze, “A One-Vs-One

classifier ensemble with majority voting for activity recognition,” in ESANN 2013

proceedings, 21st European Symposium on Artificial Neural Networks, Computational

Intelligence and Machine Learning, 2013.

[157] B. Almaslukh, A. Jalal, and A. Abdelmonim, “An Effective Deep Autoencoder

Approach for Online Smartphone-Based Human Activity Recognition,” Int. J. Comput.

Sci. Netw. Secur., 2017.

[158] N. Giladi, R. Kao, and S. Fahn, “Freezing phenomenon in patients with parkinsonian

syndromes,” Mov. Disord., 1997.

[159] L. Dauwerse, A. Hendrikx, K. Schipper, C. Struiksma, and T. A. Abma, “Quality-of-

245

life of patients with Parkinson’s disease,” Brain Inj., 2014.

[160] J. D. Schaafsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. Hausdorff, and N. Giladi,

“Characterization of freezing of gait subtypes and the response of each to levodopa in

Parkinson’s disease,” Eur. J. Neurol., 2003.

[161] H. Braak, E. Ghebremedhin, U. Rüb, H. Bratzke, and K. Del Tredici, “Stages in the

development of Parkinson’s disease-related pathology,” Cell and Tissue Research.

2004.

[162] B. R. Bloem, J. M. Hausdorff, J. E. Visser, and N. Giladi, “Falls and freezing of Gait in

Parkinson’s disease: A review of two interconnected, episodic phenomena,” Movement

Disorders. 2004.

[163] I. Lim et al., “Effects of external rhythmical cueing on gait in patients with Parkinson’s

disease: A systematic review,” Clinical Rehabilitation. 2005.

[164] M. Bächlin, D. Roggen, M. Plotnik, J. M. Hausdorff, N. Giladi, and G. Tröster,

“Online detection of freezing of gait in Parkinson’s disease patients: A performance

characterization,” in BODYNETS 2009 - 4th International ICST Conference on Body

Area Networks, 2011.

[165] S. T. Moore, H. G. MacDougall, and W. G. Ondo, “Ambulatory monitoring of freezing

of gait in Parkinson’s disease,” J. Neurosci. Methods, 2008.

[166] S. Mazilu et al., “Online Detection of Freezing of Gait with Smartphones and Machine

Learning Techniques,” in Proceedings of the 6th International Conference on

Pervasive Computing Technologies for Healthcare, 2012.

[167] V. Balasubramanyam and K. Balachander, “Evaluation of knee activities using EMG

signals for pre-predicting lower limb dystonia diseases,” Int. J. Intell. Eng. Syst., 2018.

[168] C. D. Joshi, U. Lahiri, and N. V. Thakor, “Classification of gait phases from lower

limb EMG: Application to exoskeleton orthosis,” in IEEE EMBS Special Topic

Conference on Point-of-Care (POC) Healthcare Technologies: Synergy Towards

Better Global Healthcare, PHT 2013, 2013.

[169] Z. Yi et al., “Extracting time-frequency feature of single-channel vastus medialis EMG

246

signals for knee exercise pattern recognition,” PLoS One, 2017.

[170] H. B. Sailor, D. M. Agrawal, and H. A. Patil, “Unsupervised filterbank learning using

Convolutional Restricted Boltzmann Machine for environmental sound classification,”

in Proceedings of the Annual Conference of the International Speech Communication

Association, INTERSPEECH, 2017.

[171] Y. Tokozume, Y. Ushiku, and T. Harada, “Between-Class Learning for Image

Classification,” in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2018.

[172] R. N. Tak, D. M. Agrawal, and H. A. Patil, “Novel Phase Encoded Mel Filterbank

Energies for Environmental Sound Classification,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 2017.

[173] A. Kumar, M. Khadkevich, and C. Fugen, “Knowledge Transfer from Weakly Labeled

Audio Using Convolutional Neural Network for Sound Events and Scenes,” in

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, 2018.

[174] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a

New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, no.

23, pp. e215–e220, 2000.

[175] C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, “Ensemble of feature-based and

deep learning-based classifiers for detection of abnormal heart sounds,” in Computing

in Cardiology, 2016.

[176] M. Zabihi, A. B. Rad, S. Kiranyaz, M. Gabbouj, and A. K. Katsaggelos, “Heart sound

anomaly and quality detection using ensemble of neural networks without

segmentation,” in Computing in Cardiology, 2016.

[177] E. Kay and A. Agarwal, “DropConnected neural networks trained on time-frequency

and inter-beat features for classifying heart sounds,” Physiol. Meas., 2017.

[178] I. J. Diaz Bobillo, “A tensor approach to heart sound classification,” in Computing in

Cardiology, 2016.

247

[179] F. Plesinger, J. Jurco, P. Jurak, and J. Halamek, “Discrimination of normal and

abnormal heart sounds using probability assessment,” in Computing in Cardiology,

2016.

[180] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering. 2010.

