91,513 research outputs found

    Reduced-order modeling and dynamics of nonlinear acoustic waves in a combustion chamber

    Get PDF
    For understanding the fundamental properties of unsteady motions in combustion chambers, and for applications of active feedback control, reduced-order models occupy a uniquely important position. A framework exists for transforming the representation of general behavior by a set of infinite-dimensional partial differential equations to a finite set of nonlinear second-order ordinary differential equations in time. The procedure rests on an expansion of the pressure and velocity fields in modal or basis functions, followed by spatial averaging to give the set of second-order equations in time. Nonlinear gasdynamics is accounted for explicitly, but all other contributing processes require modeling. Reduced-order models of the global behavior of the chamber dynamics, most importantly of the pressure, are obtained simply by truncating the modal expansion to the desired number of terms. Central to the procedures is a criterion for deciding how many modes must be retained to give accurate results. Addressing that problem is the principal purpose of this paper. Our analysis shows that, in case of longitudinal modes, a first mode instability problem requires a minimum of four modes in the modal truncation whereas, for a second mode instability, one needs to retain at least the first eight modes. A second important problem concerns the conditions under which a linearly stable system becomes unstable to sufficiently large disturbances. Previous work has given a partial answer, suggesting that nonlinear gasdynamics alone cannot produce pulsed or 'triggered' true nonlinear instabilities; that suggestion is now theoretically established. Also, a certain form of the nonlinear energy addition by combustion processes is known to lead to stable limit cycles in a linearly stable system. A second form of nonlinear combustion dynamics with a new velocity coupling function that naturally displays a threshold character is shown here also to produce triggered limit cycle behavior

    Soliton dynamics in gas-filled hollow-core photonic crystal fibers

    Full text link
    Gas-filled hollow-core photonic crystal fibers offer unprecedented opportunities to observe novel nonlinear phenomena. The various properties of gases that can be used to fill these fibers give additional degrees of freedom for investigating nonlinear pulse propagation in a wide range of different media. In this review, we will consider some of the the new nonlinear interactions that have been discovered in recent years, in particular those which are based on soliton dynamics

    The Surface Topography of a Magnetic Fluid -- a Quantitative Comparison between Experiment and Numerical Simulation

    Full text link
    The normal field instability in magnetic liquids is investigated experimentally by means of a radioscopic technique which allows a precise measurement of the surface topography. The dependence of the topography on the magnetic field is compared to results obtained by numerical simulations via the finite element method. Quantitative agreement has been found for the critical field of the instability, the scaling of the pattern amplitude and the detailed shape of the magnetic spikes. The fundamental Fourier mode approximates the shape to within 10% accuracy for a range of up to 40% of the bifurcation parameter of this subcritical bifurcation. The measured control parameter dependence of the wavenumber differs qualitatively from analytical predictions obtained by minimization of the free energy.Comment: 21 pages, 16 figures; corrected typos, added reference to Kuznetsov and Spector(1976), S.J. Fortune(1995) and Harkins&Jordan (1930). Figures revise
    corecore