11 research outputs found

    Operator quantum machine learning: Navigating the chemical space of response properties

    Get PDF
    The identification and use of structure property relationships lies at the heart of the chemical sciences. Quantum mechanics forms the basis for the unbiased virtual exploration of chemical compound space (CCS), imposing substantial compute needs if chemical accuracy is to be reached. In order to accelerate predictions of quantum properties without compromising accuracy, our lab has been developing quantum machine learning (QML) based models which can be applied throughout CCS. Here, we briefly explain, review, and discuss the recently introduced operator formalism which substantially improves the data efficiency for QML models of common response properties

    FCHL revisited:Faster and more accurate quantum machine learning

    Get PDF
    We introduce the FCHL19 representation for atomic environments in molecules or condensed-phase systems. Machine learning models based on FCHL19 are able to yield predictions of atomic forces and energies of query compounds with chemical accuracy on the scale of milliseconds. FCHL19 is a revision of our previous work [Faber et al. 2018] where the representation is discretized and the individual features are rigorously optimized using Monte Carlo optimization. Combined with a Gaussian kernel function that incorporates elemental screening, chemical accuracy is reached for energy learning on the QM7b and QM9 datasets after training for minutes and hours, respectively. The model also shows good performance for non-bonded interactions in the condensed phase for a set of water clusters with an MAE binding energy error of less than 0.1 kcal/mol/molecule after training on 3,200 samples. For force learning on the MD17 dataset, our optimized model similarly displays state-of-the-art accuracy with a regressor based on Gaussian process regression. When the revised FCHL19 representation is combined with the operator quantum machine learning regressor, forces and energies can be predicted in only a few milliseconds per atom. The model presented herein is fast and lightweight enough for use in general chemistry problems as well as molecular dynamics simulations

    Ab initio machine learning in chemical compound space

    Get PDF
    Chemical compound space (CCS), the set of all theoretically conceivable combinations of chemical elements and (meta-)stable geometries that make up matter, is colossal. The first principles based virtual sampling of this space, for example in search of novel molecules or materials which exhibit desirable properties, is therefore prohibitive for all but the smallest sub-sets and simplest properties. We review studies aimed at tackling this challenge using modern machine learning techniques based on (i) synthetic data, typically generated using quantum mechanics based methods, and (ii) model architectures inspired by quantum mechanics. Such Quantum mechanics based Machine Learning (QML) approaches combine the numerical efficiency of statistical surrogate models with an {\em ab initio} view on matter. They rigorously reflect the underlying physics in order to reach universality and transferability across CCS. While state-of-the-art approximations to quantum problems impose severe computational bottlenecks, recent QML based developments indicate the possibility of substantial acceleration without sacrificing the predictive power of quantum mechanics
    corecore