3 research outputs found

    Analysis and Investigation of Hybrid DC–DC Non-Isolated and Non-Inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) for High Voltage Step-Up Applications:Hardware Implementation

    Get PDF
    In significant cases, the generated voltage needs to be step-up with high conversion ratio by using the DC-DC converter as per the requirement of the load. The drawbacks of traditional boost converter are it required high rating semiconductor devices and have high input current ripple, low efficiency, and reverse recovery voltage of the diodes. Recently, the family of Multilevel Boost Converter suggested and suitable configuration to overcome the above drawbacks. In this article, hybrid DC-DC non-isolated and non-inverting Nx Interleaved Multilevel Boost Converter (Nx-IMBC) is analyzed in Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM) with boundary condition and investigated in detail. The Nx-IMBC circuit combined the features of traditional Interleaved Boost Converter (IBC) and Nx Multilevel Boost Converter (Nx-MBC). The modes of operation, design of Nx-IMBC and the effect of the internal resistance of components are presented. The comparison study with various recent DC-DC converters is presented. The experimental and simulation results are presented with or without perturbation in input voltage, output power and output reference voltage which validates the design, feasibility, and working of the converter

    A New ZCS-PWM Full-Bridge Boost Converter

    Get PDF
    The objective of this thesis is to propose, analyze, design, implement, and experimentally confirm the operation of a new Zero-Current-Switching PWM dc-dc full- bridge boost converter that does not have the drawbacks ofpreviously proposed circuits of the same type. In this thesis, the general operating principles of the converter are reviewed, and the converter’s operation is discussed in detail and analyzed mathematically. As a result of the mathematical analysis, key voltage and current equations that describes the operation of the auxiliary circuit and other converter devices have been derived. The steady state equations of each mode of operation are used as the basis of a MATLAB program that is used to generate steady-state characteristic curves that shows the effect that individual circuit parameters have on the operation of the auxiliary circuit and the boost converter. Observations as to their steady-state characteristics are made and the curves are used as part of a design procedure to select the components of the converter, especially those of the auxiliary circuit. An experimental full-bridge PWM dc-dc boost converter prototype is built based on the converter design and typical waveforms are presented. The efficiency of the proposed converter operating with the auxiliary circuit is compared to that of a standard PWM dc-dc full-bridge boost converter and the increased efficiency o f the proposed converter is confirme

    A Comparison between Different Snubbers for Flyback Converters

    Get PDF
    The DC-DC flyback power converter is widely used in low power commercial and industrial applications ( \u3e 150 W) such as in computers, telecom, consumer electronics because it is one of the simplest and least expensive converter topologies with transformer isolation. Its main power circuit consists of just a semiconductor device like a MOSFET operating as a switch, a transformer, an output diode and an output filter capacitor. The converter switch, however, is susceptible to high voltage spikes due to the interaction between its output capacitance and the leakage inductance of the transformer. These spikes can exceed the ratings of the switch, thus destroying the device, and thus flyback converters are always implemented with some sort of snubber circuit that can clamp any voltage spikes that may appear across their switch. There are two types of snubbers: passive snubbers that consist of passive electrical components such as capacitors, inductors and diodes and active snubbers, that consist of passive components and an active semiconductor switch. It is generally believed that passive snubbers are less expensive but also less efficient than active snubbers, but this belief has been placed in doubt with recent advances in passive snubber technology. Flyback converter with regenerative passive snubbers that dissipate little energy have been recently proposed and have greater efficiency than traditional passive snubbers. Although the efficiency of passive snubbers has improved, no comparison has been made between these new passive snubbers and active snubbers as it is still assumed that active snubbers are always more efficient. The main focus of this thesis is to compare the performance of an example passive snubber and an example active snubber. These example snubber circuits have been selected as being among the best of their type. In this thesis, the steady-state operation of each snubber circuit is explained in detail and analyzed, the results of the analysis is used to create a procedure for the design of key components, and the procedure is demonstrated with a design example. The results of the design examples were used to build prototypes of flyback converters with each example snubber and the prototypes were used to obtain experimental results. Based on these experimental results, conclusions about the efficiency of flyback converters with passive regenerative and active snubbers operating under various input line and output load conditions are made in this thesi
    corecore