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Abstract 

The DC-DC flyback power converter is widely used in low power commercial and 

industrial applications ( > 150 W) such as in computers, telecom, consumer 

electronics because it is one of the simplest and least expensive converter topologies 

with transformer isolation. Its main power circuit consists of just a semiconductor 

device like a MOSFET operating as a switch, a transformer, an output diode and an 

output filter capacitor. The converter switch, however, is susceptible to high voltage 

spikes due to the interaction between its output capacitance and the leakage 

inductance of the transformer. These spikes can exceed the ratings of the switch, thus 

destroying the device, and thus flyback converters are always implemented with some 

sort of snubber circuit that can clamp any voltage spikes that may appear across their 

switches. 

There are two types of snubbers: passive snubbers that consist of passive electrical 

components such as capacitors, inductors and diodes and active snubbers, that consist 

of passive components and an active semiconductor switch. It is generally believed 

that passive snubbers are less expensive but also less efficient than active snubbers, 

but this belief has been placed in doubt with recent advances in passive snubber 

technology. Flyback converter with regenerative passive snubbers that dissipate little 

energy have been recently proposed and have greater efficiency than traditional 

passive snubbers. Although the efficiency of passive snubbers has improved, no 

comparison has been made between these new passive snubbers and active snubbers 

as it is still assumed that active snubbers are always more efficient.  

The main focus of this thesis is to compare the performance of an example passive 

snubber and an example active snubber. These example snubber circuits have been 

selected as being among the best of their types. In this thesis, the steady-state 

operation of each snubber circuit is explained in detail and analyzed, the results of the 

analysis is used to create a procedure for the design of key components, and the 

procedure is demonstrated with a design example. The results of the design examples 

were used to build prototypes of flyback converters with each example snubber and 

the prototypes were used to obtain experimental results. Based on these experimental 

results, conclusions about the efficiency of  flyback converters with passive 
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regenerative and active snubbers operating under various input line and output load 

conditions are made in this thesis. 
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Chapter 1 

1       Introduction 

1.1     Power Electronics 

Power electronics is the branch of electrical engineering that studies the use of 

electronics to convert power from the form supplied by a source to the form required 

by a load. Power converters are widely used because it is rare for an available power 

source such as an AC outlet, solar panel, or battery, to match the requirements of a 

load such as a motor, a desktop computer, or telecom equipment. They typically 

consist of semiconductor devices such as diodes and transistors used as on/off 

switches, magnetic elements such as inductors and transformers, and capacitors. As 

there are two general types of sources, AC and DC, and two general types of loads, 

AC and DC, therefore, there are four general types of power converters: AC-DC, DC-

DC, DC-AC, AC-AC. The focus of this thesis is on low power DC-DC converters. 

1.2     MOSFETS 

For such applications, MOSFETs (metal-oxide-semiconductor field-effect transistors) 

are used as the converter switches as they can turn on and off quickly and are 

inexpensive. MOSFETs can be either N-channel or P-channel as shown in Fig. 1.1(a) 

and Fig. 1.1(b) respectively; N-channel MOSFET are preferred as they can handle 

more voltage and current stress. An N-channel MOSFET operates as follows: When 

sufficient voltage is placed across its gate and source, a channel opens up in the 

device and current flows from drain to source; current stops flowing in the device 

after the gate-source voltage is removed. A MOSFET can be considered to consist of 

a switch, an anti-parallel diode and a drain-source capacitor, as shown in Fig. 1.2. 

When the switch is on, the device has an equivalent resistance of RDS(on) across its 

drain-source terminals.  
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(a) (b) (c) 

Fig. 1.1 (a) N-channel MOSFET. (b) P-Channel MOSFET. (c) Equivalent 

MOSFET model 

An ideal MOSFET device would not dissipate any power when in operation. Such a 

device does not exist in the real world and a MOSFET does have power losses. These 

losses can be classified as being either conduction losses or switching losses. Both 

types are reviewed here. 

Conduction losses are caused whenever current flows from drain to source in a 

MOSFET. Since a MOSFET can be considered to be a resistor when it is fully on and 

operating as an on/off switch, power is lost when current is flowing through the 

device and as when current is flowing through a resistor. 

Switching losses are caused whenever a MOSFET undergoes a switching transition, 

either when it is turned on or it is turned off. The power losses are caused by the 

overlap between the voltage across the switch and the current flowing through it as 

power is related to the product of voltage and current.  This overlap can be seen in the 

drain-source voltage (Vds) and drain current (Ids) waveform shown in Fig. 1.2; it 

should be noted that the overlaps of voltage and current have been exaggerated. From 

these waveforms, it can be seen that the rise and fall of voltage and current is not 

instantaneous as the edges of both waveforms are not sharp. In an ideal switching 

device, both waveforms would be perfect rectangles and there would be no overlap 

between the two waveforms. 
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Fig. 1.2 Switching losses of a non-ideal MOSFET. 

1.3     Flyback Converters 

The components of a power electronic converter can be arranged in many ways to 

form electrical circuit structures; such structures are referred to as topologies in the 

literature. For low power DC-DC converters, the most popular topology for DC-DC 

conversion applications involving 150 W of power or less is the flyback converter 

because of its cost and simplicity. A circuit diagram of the standard DC-DC flyback 

converter is shown in Fig. 1.3. 

As can be seen from Fig. 1.3, the converter consists of a MOSFET device that is used 

as a switch, a transformer, a diode, and a capacitor. The converter operates as follows: 

When the MOSFET switch is turned on, voltage is impressed across the primary of 

the transformer and energy is stored in the transformer. No energy is transferred to 

output during this time as the output diode is reverse-biased due to the polarity of the 

transformer secondary and the way it is connected to the diode; energy is supplied to 

the load by the output capacitor. When the switch is turned off, current stops flowing 

in the transformer’s primary and polarity of the transformer’s secondary voltage 

changes so that the output diode becomes forward-biased and current flows to the 

output. It is during this time that energy is transferred from the transformer to the 

output. 

The switch is turned on and off in a periodic manner. For a given set of component 

parameters, the amount of output DC voltage is determined by how long the switch is 

on during a switching cycle (period) – the longer the switch is on, more output DC 

voltage is generated. Time must be allowed, however, for the transformer to be reset 
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so that the negative volt-seconds (defined as the amount of voltage over a given time) 

placed across a transformer is equal to the positive volt-seconds. If this condition is 

not satisfied, then more energy will be placed in the transformer than will be removed 

during a switching cycle so that the net accumulation in energy will result in the 

transformer becoming saturated and the transformer primary becoming a short-circuit. 

The result of this short-circuit will be a catastrophic failure of the switch due to 

excessive peak current. 

It should be noted that flyback converters, like most DC-DC converters in general, are 

operated with high switching frequencies ( > 25 kHz) as this reduces the size of the 

transformer and the output capacitor. Doing so is advantageous as smaller power 

converters in electrical equipment or consumer products result in their being more 

compact and the cost and size savings can be used to offer more features. Higher 

switching frequencies, however, also result in greater switching losses and less 

converter efficiency so that a compromise between converter size and efficiency must 

be considered.  

 
 

Fig. 1.3 Flyback converter. 
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1.3.1     Flyback Transformer with Leakage Inductance 

A transformer in a flyback converter is generally a magnetic core with a primary 

winding and a secondary winding. Each winding is a wire wrapped numerous times 

around a magnetic core. Voltage can be stepped down or up depending on the number 

of turns of the secondary winding relative to those of the primary winding. When 

voltage is placed across the primary winding, magnetic flux is generated in the core 

with some leaking out in the air. Flux flowing through the secondary winding induces 

a voltage to appear across the winding’s terminals and the output diode is either 

forward-biased or reverse-biased, depending on whether the flux is increasing or 

decreasing.  

Leakage flux can be modeled as a leakage inductance as shown in Fig. 1.4. If there 

was no leakage flux, then there would be no leakage inductance as all the flux would 

flow through the transformer core. The effect of leakage inductance on the operation 

of the flyback converter is to force voltage spikes to appear across the MOSFET 

switch when it is turned off.  

Consider the simplified circuit section shown in Fig. 1.5. This circuit section shows an 

inductor in series with a MOSFET switch that is drawn as the simplified model shown 

in Fig. 1.1(c); this diagram can be considered to be equivalent to having transformer 

leakage inductance in series with a switch. When the switch is on, current can be 

considered to flow through the inductor and the switch; when the switch is turned off, 

energy in the inductor cannot just disappear and thus the inductor current must have a 

path to flow through. This is the case in the flyback converter when the switch is 

turned off – energy in the transformer core can be transferred to the output, but energy 

in the leakage inductance cannot be. What can happen is that the leakage inductance 

current starts to flow through the drain-source capacitance of the MOSFET, thus 

charging up the capacitor and increasing the voltage across the device. Depending on 

the amount of energy stored in the leakage inductance, which is related to the amount 

of leakage flux in the transformer, the voltage across the device may exceed the 

device’s ratings and a catastrophic failure of the device would happen.  
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Fig. 1.4 Flyback converter with leakage inductance. 

 

Fig. 1.5 Simplified flyback converter section with leakage inductance and switch. 

1.4     Passive Snubber Circuits 

The problem of excessive voltage spikes appearing across the flyback converter 

switch when it is turned off can be reduced if a passive snubber is added to the circuit.  

A passive snubber usually consists of a capacitor that is larger than the output 

capacitance of the switch and additional passive components that help discharge this 

capacitor; it gets its name from its ability to eliminate or “snub” voltage spikes. 

Adding a snubber increases the amount of capacitance seen by the leakage inductor, 

which slows down the rate of rise in voltage after the switch is turned off, thus 
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reducing any potential voltage spikes. A snubber also helps reduce turn-off switching 

losses as the slower rate of voltage rise during a turn-off transition reduces the amount 

of overlap between switch voltage and current during this transitions, which reduces 

the amount of power dissipated in the switch.  

1.4.1     RCD Snubber 

There are different types of passive snubber circuits. The simplest type is the RCD 

snubber circuit [1]-[7], which consists of a resistor, a capacitor, and a diode, as shown 

in a flyback converter in Fig. 1.6. The converter with the snubber works as follows: 

When the switch is turned off, the transformer’s leakage inductance “sees” two 

possible current paths: one through the output capacitance of the switch and one 

through the snubber circuit capacitor Cclamp. As the net capacitance that is seen is 

larger than it would be without the RCD snubber in the circuit, the voltage rise across 

the switch is slower and the eventual switch voltage is less. Energy that is transferred 

to Cclamp is transferred to Rsn, which allows Cclamp to discharge so that its voltage does 

not become excessive. 

 

Fig. 1.6 Flyback converter with RCD snubber 
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1.4.2     LCDD Snubber 

Although the RCD snubber can be effective in reducing switch voltage spikes, it is 

inefficient as all energy stored in the leakage inductance is dissipated through a 

resistor. An alternative passive snubber is the LCDD snubber [8] shown in a flyback 

converter in Fig. 1.7. This snubber consists of an inductor, a capacitor, and two 

diodes. The snubber works as follows: Like the RCD snubber, leakage inductor 

current flows through the output capacitance of the switch and the snubber capacitor 

when the switch is turned off. Some energy is transferred to the output during this 

time as a negative voltage is placed across the transformer primary. When the switch 

is turned on again, current flows through the switch from two paths, one from the 

transformer primary and one from Cclamp, diode D2 and inductor Lauxiliary, thus 

discharging Cclamp. The circulating current that is the result of this second current path 

increases conduction losses and increases peak current stress in the switch. Although 

the LCDD snubber is more efficient than the RCD snubber, it is not considered to be 

an efficient snubber because not high portion of energy is recycled 

 

Fig. 1.7 A flyback converter with LCDD snubber. 
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1.4.3 Regenerative Energy Snubber 

One type of passive snubber that is better than the RCD and LCDD snubbers is the 

regenerative snubber [9]-[13]. An example of a regenerative energy snubber in a 

flyback converter is shown in Fig. 1.8. This snubber is the same as the LCDD snubber 

with one important difference: the inductor in the LCDD snubber is replaced by a 

winding that is taken from the transformer. What this winding does is that it provides 

a way for more of the energy stored in Cclamp to be transferred to the output. It also 

provides a counter voltage to the voltage across Cclamp when the switch is turned on so 

that the amount of current that circulates through the switch is reduced, thus reducing 

conduction losses and peak current stresses. The operation of the converter shown in 

Fig. 1.8 is very similar to that of the LCDD snubber and thus it will not be explained 

here. Regenerative energy snubbers, so called because they do not dissipate energy 

like RCD snubbers, are considered to be the most efficient type of passive snubbers in 

the power electronics literature.  

 

Fig. 1.8 A Flyback converter with a regenerative snubber. 

1.5     Active Clamp Snubber 

Passive snubbers can reduce switch turn-off losses because they reduce the overlap of 

voltage and current during the time a switch is turned off; they do nothing, however, 

to reduce turn-on losses. As a result, power electronics researchers have proposed 

various types of active snubbers that can do so [15-17]. 

 



 

10 
 

An active snubber is a snubber that has an active switch in its circuit. This active 

switch allows the snubber to help reduce turn-on switching losses in addition to 

suppressing voltage spikes and reducing turn-off switching losses by allowing the 

main flyback converter switch to turn on with zero-voltage switching (ZVS). The 

term ZVS refers to any method that allows a converter switch to turn on with almost 

zero voltage across it during the turn-on switching transition time. Since the power 

dissipated in a switch during a switching transition is related to the product of the 

voltage across the switch and the current through it at the time of transition, making 

the switch voltage zero during this time ensures a significant reduction of switching 

losses as there is no overlap between voltage and current, given that there is no 

voltage.  

A number of active snubbers have been proposed in the power electronics literature 

[14]-[19], but by far the most popular type is the active clamp snubber shown in a 

flyback converter in Fig. 1.9 [20-31]. This is because it is simple and inexpensive as it 

consists of an active switch and a clamping capacitor. The active clamp snubber is 

considered to be far superior to other active snubbers, which are used only under 

certain limited conditions such as limited input voltage range. Utilization of Active 

clamp for Forward converters are discussed in [32-37]. 

 

Fig. 1.9 Flyback converter with active clamp snubber. 

 

 

 



 

11 
 

1.6      Thesis Objectives 

Passive snubbers are generally considered to be cheaper, but less efficient than active 

snubbers and the decision as to which type to use has mainly focused on cost. Recent 

advances in passive regenerative energy snubbers, however, have resulted in better 

efficiency for converters with passive snubbers than before so that while it was 

obvious in the past that active snubbers were always more efficient than passive 

snubbers, this is not so obvious now. 

The best passive snubber is the regenerative energy snubber shown in Fig. 1.8 and the 

best active snubber is the active clamp snubber shown in Fig. 1.9. No comparison 

between these two snubbers has been reported in the power electronics literature and 

it is the main objective of this thesis to make such as comparison between these two 

snubbers for various input voltage and output load conditions. The results of the 

proposed research can be used by power electronics engineers to decide which 

snubber should be used, given a particular set of operating conditions. 

1.7     Thesis outline: 

This thesis is organized as follows: 

 In Chapter 2, the general operation of the regenerative energy snubber shown in Fig. 

1.8 is explained in detail as are the modes of operation that a flyback converter with 

such a snubber goes through during a switching cycle. These modes of operation are 

analyzed and the results of the analysis are used to derive a procedure for the design 

of the converter that is demonstrated with an example. 

In Chapter 3, the general operation of the active clamp snubber shown in Fig. 1.9 is 

explained in detail as are the modes of operation that a flyback converter with such a 

snubber goes through during a switching cycle. These modes of operation are 

analyzed and the results of the analysis are used to derive a procedure for the design 

of the converter that is demonstrated with an example. 

In Chapter 4, experimental results obtained from converter prototypes of the two 

converters that have been designed according to the design procedure presented in 

Chapters 2 and 3 are presented and a comparison of the efficiency of flyback 
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converters with each of the two snubbers operating under various input voltage and 

output load conditions is made. 

In Chapter 5, the contents of the thesis are summarized, the contributions and 

conclusions of this thesis are presented. 
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Chapter 2 

2     Regenerative Snubber Circuits 

2.1     Introduction 

As was mentioned in Chapter 1, passive snubbers that do not dissipate energy but 

regenerate it are the most efficient passive snubbers. In this chapter, the operation of a 

flyback converter with a passive regenerative energy snubber is explained in detail. 

First the general operation of the converter is explained, then the converter’s modes of 

operation are explained in greater detail. From the converter’s modes of operation, 

equations that define key parameters are derived and these equations are then used to 

develop a procedure for the design of the converter. This design procedure is 

demonstrated with an example and the parameters determined by the procedure were 

used in the construction of a converter prototype that was used to obtain experimental 

results that will be presented in Chapter 4.  

2.2     Converter Operation 

The flyback converter with the regenerative energy snubber that is discussed in this 

thesis is shown in Fig. 2.1. The converter is a standard flyback converter with a 

passive snubber that consists of snubber capacitor Cclamp, diodes D1 and Dreg, and an 

auxiliary winding Nt that is taken from the flyback transformer. An external inductor 

Lr can be connected in series with the auxiliary transformer winding if additional 

inductance is needed to limit the current through Cclamp and Dreg, as will be explained 

later in this section.  
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Fig. 2.1 A flyback converter with a regenerative snubber. 

The snubber circuit that is shown in Fig. 2.1 consists of the snubber diodes D1, Dreg,  

the clamp capacitor Cclamp.  , and the extra winding that is coupled with the 

transformer. 

 The symbols in Fig. 2.1 are as follows:   

Smain is the main switch, Cclamp is the clamp capacitor, Tmain is the transformer, Lik is 

the leakage inductance of the transformer, Lm is the magnetizing inductance of the 

transformer, Np is the number of turns for the primary side of the transformer, Ns is 

the number of turns for the secondary side of the transformer, Nt is the number of 

turns for the territory winding of the transformer, D1 and Dreg are the snubber diodes, 

Vin is the input voltage, Vo is the output voltage, Co is the filter capacitor,Do1 is the 

output rectifier. 

The transformer has the following turns ratio: 

  

(2-1) ns =
Ns

Np
 

(2-2) nt =
Nt

Np
 

 

where Np, Ns, and Nt are the number of turns of the primary, secondary, and territory 

windings respectively. 
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The magnetizing inductance of the transformer Lm is considered to be large  compared 

with the leakage inductance. 

2.2.1     General Converter Operation 

The converter works as follows: when the main switch Smain is turned off, the 

transformer leakage inductance energy is transferred to the snubber capacitor Cclamp 

through the diode D1. Eventually, the current through D1 and Cclamp reduces to zero. 

When the switch is turned on at the beginning of the next switching cycle, Cclamp 

discharges through the switch, the diode Dreg, and the auxiliary winding. Since the 

auxiliary winding is coupled to the main transformer, energy from Cclamp is stored in 

the transformer. This energy is released to the output along with the energy that is 

normally stored in the flyback transformer when the switch is turned off. 

2.2.2     Modes of Operation with analysis: 

The converter has five time intervals in a switching cycle at the steady-state operation. 

To simplify the steady-state analysis, the following assumptions are made: 

• Switches and diodes are ideal. 

• Inductors and capacitors are ideal without any parasitic elements. 

• The capacitor Co is large enough to keep the output voltage Vo constant. 

• The non-ideal transformer is modeled by adding a leakage inductance and a 

magnetizing inductance to an ideal transformer. 

 

)1< t < t oMode 1 (t 

This mode starts at to, when the current in the regenerative branch stops flowing. The 

current through Lik and Lm increases linearly as shown in the equation (2-4). The 

snubber is completely idle in this mode. Moreover, there is no energy transfer from 

the primary to the secondary side. This mode is shown in Fig. 2.2. 
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Fig. 2.2 Circuit diagram during the first mode. 

Equation (2-3) represents the differential equation for this mode. The solution 

represents the current through the magnetizing inductance, which is shown in 

equation (2-4).   

         𝑉𝑖𝑛 = (Lm + Lik)
diLm

dt
 (2-3) 

(2-4) ilm(t) = ilik(t) =
vin

Lm + Lik
t + iLm

(t0) 

 

)2< t < t 1Mode 2 (t 

This mode starts as soon as the switch is turned off at t1. The energy from leakage 

inductance and magnetizing inductance will start releasing to Cclamp via D1. The 

voltage across Cclamp and the current through both Lm and Lik are shown in equations 

(2-7), (2-8) respectively. The time interval for this mode is very short. This mode ends 

when Do1 turns on at t2. This mode is shown in Fig. 2.3. 
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Fig. 2.3 Circuit diagram during the second mode. 

Equations (2-5) and (2-6) represent the differential equations for this mode, and the 

solution gives the voltage across the clamp capacitor, and  the current through the 

magnetizing inductance, which are shown in equations (2-7) and (2-8).   

  

   (2-5) 

 

(Lm + Lik)C
d2vc𝑐𝑙𝑎𝑚𝑝

(t)

dt2
+ 𝑣𝑐𝑐𝑙𝑎𝑚𝑝

(t) = 0 

 

   (2-6) iLm
(t) = iLik

(t) = C
dvc𝑐𝑙𝑎𝑚𝑝

(t)

dt
 

 

   (2-7) 

 

𝑉𝑐𝑐𝑙𝑎𝑚𝑝
(𝑡) = 𝑣𝑐𝑐𝑙𝑎𝑚𝑝

(𝑡1) cos(𝜔1𝑡) + 𝑖𝐿𝑚
(𝑡1) 𝑍1 sin(𝜔1𝑡) 

 

   (2-8)    

 

𝑖𝐿𝑚
(𝑡) =

𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(𝑡1)

𝑍1
sin(𝜔1𝑡) + 𝑖𝐿𝑚(𝑡1) cos(𝜔1 𝑡) 

 

   (2-9) 

 

 

𝜔1 =  √
1

C(Lik + Lm)
 

 (2-10) Z1 = √
Lik + Lm

C
 

 

where 𝜔 1 is the angular frequency, and Z1 is the characteristic impedance. 
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)3< t < t 2Mode 3 (t 

This mode starts at t2 when Do1 turns on. During this mode the energy from 

magnetizing inductance is transferred to the output via Do1, and the energy from 

leakage inductance continues releasing to Cclamp. This mode ends at t3 when the whole 

energy of the leakage inductance is transferred to Cclamp. The voltage across the Cclamp, 

and the current through Lik are shown in equations (2-14) and (2-15). This mode is 

shown in Fig. 2.4. 

 

Fig. 2.4 Circuit diagram during Mode 3. 

Equations (2-11), (2-12), and (2-13) represent the differential equations for this mode, 

and the solution gives the voltage across the clamp capacitor as well as the current 

through the leakage inductance, which are shown in equations (2-14) and (2-15). 

(2-11) 𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(t) + Lik

diLik
(t)

dt
− vo

Np

Ns
= 0 

(2-12) ic(t) = C𝑐𝑙𝑎𝑚𝑝

𝑑𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(t)

dt
 

(2-13) 𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(t) + lik C𝑐𝑙𝑎𝑚𝑝  

d2𝑣𝑐𝑐𝑙𝑎𝑚𝑝

dt2
− vo

Np

Ns
= 0 

(2-14) 

𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(𝑡) = (𝑣𝑐𝑐𝑙𝑎𝑚𝑝

(𝑡2) − 𝑣𝑜

𝑁𝑝

𝑁𝑠
) cos(𝜔2𝑡) + 𝑖𝐿𝑖𝑘

(𝑡2)𝑍2 sin(𝜔2𝑡)

− 𝑣𝑜

𝑁𝑝

𝑁𝑠
 

(2-15) 
𝑖𝐿𝑖𝑘

(𝑡) =
𝑣𝑐𝑐𝑙𝑎𝑚𝑝

(𝑡2) − 𝑣𝑜

𝑁𝑝

𝑁𝑠

𝑍2
sin(𝜔2𝑡) + 𝑖𝐿𝑖𝑘

(𝑡2) cos(𝜔2𝑡) 

where: 



 

19 
 

   

(2-16) 
𝜔2 =  √

1

C𝑐𝑙𝑎𝑚𝑝Lik
 

 (2-17) Z2 = √
Lik

C𝑐𝑙𝑎𝑚𝑝
 

where 𝜔2  is the angular frequency, and Z2 is the characteristic impedance. 

Mode 4 (t3 < t < t4) 

This mode starts at t3 when the current through the leakage inductance stops flowing. 

The energy from the magnetizing inductance is still transferred to the output. This 

mode ends at t4 when the switch is turned on. The current through Lm is shown in the 

equation (2-19). This mode is shown in Fig. 2.5. 

 

Fig. 2.5 Circuit diagram during Mode 4. 

Equation (2-18) represents the differential equations for this mode, and the solution  

gives the current through magnetizing inductance, which is shown in equation (2-19). 

(2-18) Lm

diLm

dt
= vo

Np

Ns
 

(2-19) iLm
(t) =  

1

Lm
vo

Np

Ns
t + iLm

(t3) 
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Mode 5 (t4 < t < t5) 

This mode starts at t4 when turning on the switch. The energy from magnetizing 

inductance stops releasing to the output. The energy in Cclamp starts discharging 

through the switch, Dreg, and the territory winding. Moreover, the current increases 

linearly through Lik and Lm. The voltage across Cclamp and the current through territory 

winding are shown in equations (2-22) and (2-23). This mode ends at t5 when the 

current through the territory winding decreases to zero. This mode is shown in Fig. 

2.6. 

 

Fig. 2.6 Circuit diagram during Mode 5. 

Equations (2-20) and (2-21) represent the differential equations for this mode, and 

their solution gives the voltage across clamp capacitor and the current through the 

clamp capacitor, which are shown in equations (2-22) and (2-23). 

(2-20) Lik nt
2 C 

d2𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(t)

dt2
+ ntvin − 𝑣𝑐𝑐𝑙𝑎𝑚𝑝

(t) = 0 

  

(2-21) ic(t) = C
d𝑣𝑐𝑐𝑙𝑎𝑚𝑝

dt
 

  
(2-22) 

𝑣𝑐𝑐𝑙𝑎𝑚𝑝
(𝑡) = 𝑣𝑐𝑐𝑙𝑎𝑚𝑝

(𝑡4) 𝑐𝑜𝑠(𝜔3𝑡) + 𝑛𝑡𝑍3𝑖𝑐(𝑡4) 𝑠𝑖𝑛(𝜔3𝑡)            

 

(2-23) 
ic(t) =

−v0(t4)

ntZ3
sin(𝜔3t) + ic(t4) cos(𝜔3 t) 

where: 

   

(2-24) 
𝜔3 =  √

1

C𝑐𝑙𝑎𝑚𝑝Lik
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 (2-25) Z3 = √
Lik

C𝑐𝑙𝑎𝑚𝑝
 

where 𝜔3 is the angular frequency, and Z3 is the characteristic impedance. 

2-3 Design procedure  

The equations for the modes of operation that were shown  in the previous section can 

be used to generate graphs of steady-state characteristics for this converter. 

A program can be implemented by a computer program such as C or  MATLB. In the 

steady-state  , the current  and voltage of any converter component at the start of a 

switching cycle must be the same as that at the end of the switching cycle. If the 

equations presented  in the previous section are used by a program to track component 

current and voltage values throughout  a switching cycle when the converter is 

operating with a given set of component values, then the program can determine if the 

converter is operating in the steady-state. Once this has been determined , then the 

appropriate steady-state component voltage and current values can be found. If this is 

done for a number of component value sets, then characteristic curves and graphs can 

be generated. 

The characteristic graphs that are generated and shown illustrate the effects that 

changing a particular component value can have on converter voltages and currents. 

With these graphs, it is possible to systematically design a converter that would allow 

appropriate converter component values to be selected.  

The minimum input voltage for the designed converter is 36 Volts (Vin,min), and the 

maximum input voltage is 72 Volts (Vin,max).  The output voltage  is always 12 Volts 

(Vo). The maximum output power is 100 Watts. There are many parameters for the 

converter. Some of these parameters will be assumed, and others will be derived or 

chosen according to design curves. 

In this section, several guidelines that should be considered in the design of the 

flyback converter with the regenerative energy snubber shown in Fig. 2.1 are 

discussed. It should be noted that any design procedure that takes into account the 

following design considerations is iterative and thus several iterations are required 

before an appropriate design is selected. 
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1) Select the value of maximum duty cycle   

While a flyback converter has the ability to work at a duty cycle higher than 50%, the 

maximum duty cycle will be chosen at 50%. As the duty cycle increases, the peak 

primary current decreases, but the peak secondary current and voltage stress on the 

switch both increase. Thus, it is a good compromise to choose Dmax=50%.  

2) Select magnetizing inductance for Flyback transformer: 

Adding a regenerative snubber circuit does not considerably change the primary 

current waveforms from the one seen in the regular Flyback converter; therefore, the 

common method for determining the magnetizing inductance can be used. 

Magnetizing inductance can be chosen according to several considerations. For 

example, it can be chosen in order to ensure continuous conduction mode CCM, or it 

can be chosen to maintain a maximum ripple in the current at the primary or 

secondary value. In this design, CCM will be used. The maximum allowed ripple for 

1 amp. The magnetizing inductance can be calculated using the following equation, 

which represents the rate of change of a current through an inductor: 

 Δ I𝐿𝑀

 Δ t
=  

𝑉𝑖𝑛,𝑚𝑖𝑛 − 𝑉𝑅𝑑𝑐,𝑜𝑛

𝐿𝑚
 (2-26) 

 

where Δ I𝐿𝑚
  is the ripple current in the primary, 𝑉𝑅𝑑𝑐,𝑜𝑛

 is the voltage drop across the 

switch when the switch is in on-state and its value is around 1 Volt. 

   Δ I𝐿𝑚
= 1 amp;By using the following values:  

Δ t =
1

𝑓sw
∗ Dmax =

1

50000
∗ .5 = 1 ∗ 10−5 sec 

 mhen L,  tmaximum duty cycleis the  maxis the switching frequency, and D swwhere f

=0.35 mH.mand it was found to be  L can be calculated 
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3) Choosing transformer turns ratio 

Transformer turns ratio also affects the voltage stress on the main switch as duty cycle 

does. Transformer turns ratio and duty cycle are related to each other. If a small 

maximum duty cycle is chosen, then the transformer turns ratio should be high and 

vice versa. Since the maximum duty cycle was chosen to be 50% in this design, 

determining turns ratio will not be hard. It can be calculated by using the following 

equation, which represents the conversion ratio for the flyback converter: 

1

𝑛𝑠
=

𝑉𝑖𝑛,𝑚𝑖𝑛 − 𝑉𝑅𝑑𝑐,𝑜𝑛

𝑉𝑜 + Vfw
∗  

Dmax

1 − Dmax
 (2-27) 

where Vfw is the voltage drop across the output rectifier during forward biased, which 

is around 0.8 Volts. By substituting the known values in the above equation, it can be 

found that ns=0.366. Hence, if 80 turns were chosen for the primary, then almost 30 

turns will be used for the secondary.  

4) Selecting leakage inductance  

As mentioned previously, leakage inductance is an undesirable meaning it is desirable 

to keep it as low as possible. It is usually less than 10% of magnetizing inductance. In 

this design, the measured leakage inductance is 10 µH. 

5)  Select the value of turns ratio territory to primary (nt) 

Choosing the values of nt and clamp capacitor Cclamp are the  most important 

components in designing the converter as they affect  the efficiency of the converter. 

The design curves approach will be used to determine the proper values for these 

parameters. In this section the design procedure for choosing nt will be illustrated, and 

in the following section the design procedure for choosing the Cclamp will be 

illustrated.  Fig. 2.7 shows the design curves. 
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Fig. 2.7 Design curves for choosing nt 

 

The horizontal axes represents the on-time for the main switch while the vertical axes 

represents the current through the coupled winding and the clamp capacitor. As can be 

seen from Fig. 2.7, the value of nt determines how much time is required to discharge 

the clamp capacitor. If the value of nt is chosen to be small, it will result in high peak 

current, and this current will be added to the current in the main switch. Increasing the 

peak value of the current through the main switch is not a good choice. Thus, setting 

values of nt to less than 1/4 should be avoided.  On the other hand, as the value of nt 

increases, the time required to discharge the clamp capacitor will be longer. For better 

performance, the time for discharging the clamp capacitor should be less than 25% of 

on-time for the switch [10].  Therefore, setting nt values to more than 5/8 should be 

avoided. Thus, a good compromise value of nt is = 0.5. 

6) Select clamp capacitor Cclamp 

Design curves will be used to select  a proper clamp capacitor. The value of the clamp 

capacitor is even more critical than nt. It affects the current through the output 

rectifier.  

Fig. 2.8 shows the voltage across the clamp capacitor, and Fig. 2.9 shows the output 

rectifier current. As can be seen from Fig. 2.8, the clamp capacitor charges quickly 

with a higher maximum voltage when it has a small value. However, as the clamp 

capacitor increases in value, the time of the charge will be longer, and will yield a 

smaller maximum voltage. The time to charge the clamp capacitor should not be too 
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long. It should be less than 25% of the off-time for the switch [10]. Hence, the clamp 

capacitor should be between 100 nF and 175 nF. 

Fig. 2.9 shows the current through the output rectifier with different clamp capacitor 

values. It is noticeable that as clamp capacitor values get smaller, the current through 

the output rectifier rises to its maximum value sharply. This results in a loss of ZCS 

turning on for the output rectifier. Therefore, setting clamp capacitor values to less 

than 100 nF should be avoided. A good compromise is to choose 150 nF as the clamp 

capacitor value because it provides ZCS turning on for the output rectifier  and 

charges in less than 25% of the off-time for the switch.  

 

Fig. 2.8 Voltage across clamp capacitor   

                                                                                                        

 

Fig. 2.9 Current through output rectifier 
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7) Selecting D1  

D1 should be selected to be able to carry maximum current that occurs during the 

worst scenario, which happens at both the minimum input voltage and full load. It 

should also be chosen with a voltage rating higher than the maximum reverse voltage.  

The peak current through D1 is equal to the maximum current in the magnetizing 

inductance 𝐼𝐿𝑚,𝑚𝑎𝑥
.     

The maximum current through D1 is equal to the maximum current through the 

magnetizing inductance. The magnetizing inductance current can be approximated 

using the following equation: 

𝐼𝐿𝑚,𝑝𝑘
= 𝐼𝐿𝑚,𝑎𝑣𝑔

+  Δ I𝐿𝑀
≈

𝑛𝑠  . 𝑉𝑜

(1 − 𝐷max ). 𝑅𝐿 
+ Δ I𝐿𝑀

 
(2-28) 

By using 𝑛𝑠  = 0.37, 𝑉𝑜 = 12𝑣, 𝐷𝑚𝑎𝑥 , 𝑅𝐿 = 1.5, 𝛥 𝐼𝐿𝑀
= 1 𝐴, it can be found 

that 𝐼𝐿𝑚,𝑝𝑘
 is equal to 6.92A. 

Equation (2-26) can be used to determine the maximum current in the worst case 

scenario. By knowing the maximum values, the rating of current and voltage for D1 

can be calculated by taking into account a safety margin as follows:  Current rating = 

safety factor *maximum current. The maximum reverse voltage applied across D1 can 

be approximately determined by the following equation (2-29) [10]: 

𝑣𝐷1,𝑚𝑎𝑥 ≈ 2 ∗ 𝐼𝐿𝑚𝑚𝑎𝑥
∗ √

𝐿𝑖𝑘

𝐶𝑐𝑙𝑎𝑚𝑝
−

𝑉𝑜

𝑛𝑠
 (2-29) 

 

By using 𝐼𝐿𝑚𝑚𝑎𝑥
6.92𝐴, 𝑛𝑠 = 0.37, 𝑉𝑜 = 12 𝑣, 𝐿𝑖𝑘 = 10 𝑢𝐻, 𝐶𝑐𝑙𝑎𝑚𝑝 = 150 𝑛𝐹   it can 

be found that 𝑣𝐷1,𝑚𝑎𝑥 =  80.5𝑣.  

Equation (2-27) shows the approximated value for the maximum reverse voltage 

across D1 in the worst case scenario. 

The maximum reverse voltage rating should also be higher than the voltage calculated 

in equation (2-29). A safety margin is necessary to ensure that the device does not 

burn if the voltage or current increases slightly above the maximum value for any 

reason. 
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8) Select the switch 

The switch, which is a MOSFET, is chosen based on maximum stress voltage, 

maximum peak current, total power losses, maximum allowed operating temperature, 

and current driver capability. Different transistors have different Rds,on, which 

determines conduction losses, thus, it is better to minimize Rds,on but transistors with 

low Rds,on  are more expensive. Therefore, there should be a compromise between the 

cost and the value of Rds,on.   

Maximum current passes through the switch can be approximated as shown in 

equation (2-30): 

𝑰𝒅𝒔,𝒎𝒂𝒙 ≈  
𝑷𝒐

η 𝑣𝑖𝑛,𝑚𝑖𝑛 𝐷𝑚𝑎𝑥
+ 𝐼𝐶𝑐𝑙𝑎𝑚𝑝,𝑝𝑒𝑎𝑘,𝑚𝑜𝑑𝑒 5

  (2-30) 

By using Po=100, η =80%, Vin,min =36V, Dmax =0.5, 𝐼𝐶𝑐𝑙𝑎𝑚𝑝,𝑝𝑒𝑎𝑘,𝑚𝑜𝑑𝑒 5
 =9.72A, it can 

be found that 𝑰𝒅𝒔,𝒎𝒂𝒙 ≈ 16.6A.   

Equation (2-30) shows that the current through the main switch is composed of two 

components. The first component represents the average input current during the on-

time of the main switch. This component is supplied directly from the input source. 

The second component, on the other hand, represents the current through the switch 

supplied from the snubber circuit. The second component causes a hump in the 

waveform of the current through the main switch. 

The maximum voltage stress across the switch can approximately be calculated from 

equation (2-31) [x].  Equation (2-31) shows that the maximum voltage stress is equal 

to the sum of input voltage, reflected voltage from the output, and some extra voltage 

due to resonant between the leakage inductance and the clamp capacitor. 

vds,peak ≈ vin,max +
vo

ns
+  √

Lik

cclamp
  ILmmax

 (2-31) 

By using Vin,max=72V,  Vo=12V, ns=0.366, Lik=10 µH, Cclamp=150nF, it can be 

found that =160.9V.     

A safety margin should be considered when choosing the ratings of the switch. 
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9) Selecting Dreg 

Dreg should be selected to be able to carry the maximum current that occurs during the 

worst case scenario, which happens at both the minimum input voltage and full load. 

It should also be chosen with a voltage rating higher than the maximum reverse 

voltage. The current through Dreg is equal to the current in the clamp capacitor in 

Mode 5, and the maximum value will be equal to  9.72A.   

A diode with a forward current rating  higher than the maximum current by a safety 

margin factor should be chosen.  

The voltage stress across the Dreg can be approximated using the following equation 

(2-32): 

𝑣𝐷𝑟𝑒𝑔,𝑚𝑎𝑥
= 𝑣𝑑𝑠,𝑝𝑒𝑎𝑘 −

𝑉𝑜

𝑛𝑠
 (3-32) 

By using 𝑣𝑑𝑠,𝑝𝑒𝑎𝑘=160.8 𝑣, 𝑉𝑜 = 12 𝑣, 𝑛𝑠 = 0.37,  it can be found that𝑣𝐷𝑟𝑒𝑔,𝑚𝑎𝑥
=

127.6 𝑣   

10)  Select output rectifier:  

Adding the regenerative snubber does not alter significantly the maximum voltage 

stress across the output diode. The average current through the output rectifier is equal 

to the load current.  

The maximum reverse voltage across the output rectifier can be simply calculated by 

using equation (2-33): 

𝑣𝐷1,𝑚𝑎𝑥 = vo + vin,maxns (2-33) 

The maximum forward current through the output rectifier can be approximately 

calculated by using equation (2-34). 

ID1,max ≅
2Po

vo(1 − Dmax)
 (2-34) 

 

By using vin,max = 72v, ns = 0.37, vo = 12v, it can be found that vD1,max = 38.64v.  

By using 𝑃𝑜 = 100𝑤, it can be found that ID1,max
 is equal to 33.33 Amp    
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 A safety margin should always be considered when choosing the ratings of the 

switch.  

11)  Select output capacitor: 

In the flyback topology, there is no output inductor filter and this means that the size 

of the output capacitor should be bigger than other topologies, e.g., forward 

converters. The output capacitor has to be selected in order to meet the following four 

parameters: capacitance, ESR (equivalent series resistance), RMS current rating and 

voltage rating. Choosing a capacitor with a desired value and a required voltage rating 

gives a ripple current rating lower than required. There are two solutions to meet the 

current ripple requirement: either increasing the voltage rating or connecting several 

capacitors on parallel. Choosing the output capacitor can be facilitated by the 

following equation: 

 

ΔV =
𝐼 ∗  Δt

𝐶
 (2-35) 

 

If it is assumed that a 200uF capacitor is being discharged by a 20 Amp load current 

over 1 usec, then ΔV will be equal to 0.1 Volts. If the peak to peak ripple current is 5 

Amps and the ESR of this capacitor is 0.145 Ohms, then the voltage ripple can be 

calculated to be ΔV= ΔI ∗ ESR = 5 ∗ 0.145 = 0.725 Volts 

If 0.725 volts is higher than the allowed ripple voltage, the capacitors need to be 

connected in parallel. If two capacitors are connected in parallel, the equivalent ESR 

for both of them is 
0.145∗0.145

0.145+0.145
= 0.0725 𝑂ℎ𝑚𝑠, and ΔV = 5 ∗ 0.0725 =

0.3625 Volt𝑠 . Assuming that the maximum allowed voltage ripple is 0.4 Volts, then 

connecting two capacitors on parallel satisfies the requirements. 

 

Fig. 2.10 shows the designed flyback converter with the energy regenerative snubber. 
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Fig. 2.10 The designed flyback converter with energy regenerative snubber. 

 

Current and voltage ratings for MOSFET and diodes will be mentioned in Chapter 4 

with full experimental results. 

2.4     Conclusion 

In this chapter, the operation, analysis, and design of a flyback converter with a 

passive regenerative energy snubber were presented. The general operation and the 

converter’s modes of operation were explained, equations that define the operation of 

the converter for each operation mode were derived, and these equations were used to 

develop a procedure for the design of the converter. Based on the analysis and design, 

the following characteristics were identified: 

• When nt is very small, then the switch suffers from high peak current. 

• If Cclamp is very small, then the current in the output rectifier rises very 

quickly. 

The design procedure was demonstrated with an example for the design of a converter 

with input voltage Vin = 36-72 V, output voltage Vo = 12 V, maximum output power 

Po.max = 100 W, and switching frequency fsw = 50 kHz. Based on the design example, 

the values of certain key converter parameters were obtained and these parameter 

values were used to build a converter prototype, used to obtain the experimental 

results that will be described in Chapter 4. 
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Chapter 3 

3     Active clamp technique for Flyback converter 

3.1      Introduction 

As was mentioned in Chapter 1, active clamp snubbers are the most popular type of 

active snubbers in flyback converters because of their simplicity, low cost, and high 

efficiency. In this chapter, the operation of a flyback converter with an active clamp 

snubber is explained in detail. First the general operation of the converter is 

explained, then the converter’s specific modes of operation are explained. From the 

converter’s modes of operation, equations that define key parameters are derived and 

these equations are then used to develop a procedure for the design of the converter. 

This design procedure is demonstrated using an example, and the parameters 

determined by the procedure were used in the construction of a converter prototype, 

used to obtain experimental results that will be presented in Chapter 4.  

3.2 Converter operation 

The active clamp flyback converter discussed in this thesis is shown in Fig. 3.1. The 

converter has an active clamp that consists of switch Saux and capacitor Cclamp, in 

addition to the typical elements found in all flyback converters including a 

transformer, a main switch (Smain), a secondary diode (Do1) and an output filter 

capacitor (Co). An external inductor Lr can be connected in series with the primary 

winding of the transformer if its leakage inductance is too small to help the main 

switch turn on with zero-voltage switching (ZVS). 

The circuit diagram for a flyback converter with active clamp circuit is shown in Fig. 

3.1.  
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 Fig. 3.1 Flyback converter with active clamp 

The clamp circuit consists of the auxiliary switch (Saux), and the clamp 

capacitor(Cclamp). If  the leakage inductor is small  and  is not sufficient to produce the 

zero voltage transition, an external inductor Lr can be connected on series with the 

transformer in order to get  the active clamp circuit working properly. 

As can be seen in Fig. 3.1., there is a capacitor on parallel with each switch, and these 

capacitors are called output capacitors. Their values are much smaller than the value 

of the clamp capacitor. These capacitors will be charged and discharged through the 

operation of the flyback converter, which will be discussed during the survey of the 

modes of operation. The symbol Cr is equal to the parallel combination of the output 

capacitances of both switches. In order to achieve  ZVS, the resonant period between 

the clamp capacitor and the leakage inductance must be greater than the turn off time 

of the main switch. 

The symbols in Fig. 3.1 are as follows: 

Smain is the main switch, Saux is the auxiliary switch, Cclamp is the clamp capacitor, 

Tmain is the transformer, and Np is the number of turns for the primary side of the 

transformer. Ns is the number of turns for the secondary side of the transformer, Vin is 

the input voltage, Vo is the output voltage, and Co is the filter capacitor. Do is the 

output rectifier. Lik is the leakage inductance of the transformer. Lm is the magnetizing 

inductance of the transformer. The transformer has the following turns ratio: 

(3-1) ns =
Ns

Np
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are the number of turns for primary and secondary respectively.  pand N shere Nw 

3.2.1     General Converter Operation 

The converter works as follows: when the main switch Smain is turned off, transformer 

leakage inductance energy is transferred to the snubber capacitor Cclamp through the 

body diode of Saux. While current is flowing through its body diode, Saux can be turned 

on with ZVS. After the current stops flowing through the Cclamp, it reverses direction 

and starts to flow "up" the transformer. When the main switch is about to be turned on 

to start the next switching cycle, Saux is turned off and current starts to flow through 

the body diode of Smain, thus allowing it to turn on with ZVS. Eventually, the current 

in the transformer reverses direction and flows in the switch itself. 

3.2.2     Modes of operations with analysis:-   

In order to facilitate the operation of the converter the following assumptions are 

made: 

1- The capacitors, diodes, and inductors are considered ideal; they do not have 

parasitic elements. 

2- The switches are represented by adding the body diodes and the output 

capacitors because they are basic parts in the operation of the active clamp. 

During a switching cycle, the converter enters a sequence of eight topological stages. 

What follows is a detailed description of  the modes of operation. 

Mode 1 (t0 < t < t1):   

During this mode the main switch is on and the auxiliary switch is off. There is no 

current flowing in the snubber circuit. Energy is being stored in the main power 

transformer. Fig. 3.2 shows the flyback circuit during Mode 1. Equation (3-2) 

represents the differential equation for this mode, and equation (3-3) represents the 

solution of equation (3-2), which gives the current through the magnetizing 

inductance or the leakage inductance. 
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 )1<t<t0ode 1 (tM3.2  Fig. 

(3-2) vin = (Lm + lik)
diLm

dt
 

 (3-3) iLm
(t) =

vin

Lm + Lik
 (t − to) + iLm

(t0) 

Mode 2 (t1 < t < t2):  

This mode starts when the main switch is turned off. The output capacitor of the main 

switch starts to charge, while the output capacitor of the auxiliary switch starts to 

discharge. Since the output capacitors for the switches are very small, this mode is 

brief. Fig. 3.3 illustrates the flyback circuit during Mode 2. Equations (3-4) and (3-5) 

represent the differential equations for this mode, and the solution is given in 

equations (3-6) and (3-7). (3-6) represents the voltage across the output capacitance of 

the switches, and (3-7) gives the current through the leakage inductance.    

 

 )2<t<t1ode 2 (tM3.3  Fig. 

(3-4) 
d2

vCr

dt2
Cr(Lik + Lm) + vCr(t1) = vin   
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(3-5) ic𝑟
= c𝑟  

dvc𝑟
(t)

dt
 

(3-6) vCr(t) =  vin(1 − cos(ω1t)) + iLik
(t1) Z1 sin(ω1 t) 

(3-7) iLik
(t) =  

vin

Z1
sin(ω1t) + iLik

(t1) cos(ω1 t)     

where                                                

Z1 = √
Lik + Lm

cr
 

 

(3-8) 

 

𝜔1 =    
1

√cr(Lm + Lik)
 (3-9) 

 

Mode 3 (t2 < t < t3):  

At time t2, the output capacitor of the auxiliary switch is fully discharged, and its body 

diode starts to conduct. On the other hand, the output capacitor for the main switch is 

fully charged during this mode, and the main switch stops conducting completely. 

Fig. 3.4 illustrates the flyback circuit during Mode 3. The differential equations for 

this mode are given in equations (3-10) and (3-11), and the solutions are given in 

equations (3-12), and (3-13). (3-12) shows the voltage across the clamp capacitor, and 

(3-13) shows the current through the leakage inductance.    

 

 )3<t<t2ode 3 (tM3.4  Fig. 

(3-10) Lik Cclamp

d2vcclamp

dt2
+ n vo + vcclamp

(t) = 0 

(3-11) iLik
(t) = cclamp  

 dvcclamp
(t)

dt
 

(3-12) vclamp(t) = n vo cos(ω2 t ) +  iLik
(t2) Z2 sin(ω2 t) 
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(3-13) iLik
(t) =  iLik

(t2) cos(ω2t) −
n vo

Z2
sin(ω2t) 

Z2 = √
Lik + Lm

cclamp
 

 

 (3-14) 

 

𝜔2 =    
1

√cclamp(Lm + Lik)
 (3-15) 

 

Mode 4 (t3 < t < t4): 

At time t3, the primary voltage of the main transformer becomes equal to –𝑛𝑠V0; 

consequently, the secondary diode starts to conduct. During this mode or the previous 

one, the auxiliary switch can be turned on with ZVS. This mode ends when the 

snubber capacitor current reaches zero. Fig. 3.5 illustrates the flyback circuit during 

Mode 4. Solving the differential equations (3-16) and (3-17) gives the current through 

leakage inductance,  and the voltage across the clamp capacitor, as shown in equations 

(3-18), and (3-19) . 

 

)4<t<t3ode 4 (tM3.5  Fig. 

(3-16) iLm
(t) = iLm

(t3) −
n vo

Lm
 t 

(3-17) Lik Cclamp  

d2vcclamp
(t)

dt2
+ vclamp(t) = n vo 

 (3-18) iLik
(t) =  

n ∗ vo − vclamp(t)

Z3
sin(ω3t) + iLik

(t3) cos(ω3 t) 

 (3-19) vclamp(t) = n vo − (n vo − vclamp(t3)) cos(ω3 t) + iLik
(t3) Z3  sin (ω3t)   

Z3 = √
Lik

cclamp
  (3-20) 
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𝜔3 =    
1

√cclamp. (Lik)
  (3-21) 

 

):5< t < t 4(t Mode 5 

This mode is the same as Mode 4 but the snubber capacitor current flows in the 

reverse direction. Fig. 3.6 shows the flyback circuit during Mode 5. 

 

  )5<t<t4ode 5 (tM3.6  Fig. 

):   6< t < t 5Mode 6(t 

At t5 the auxiliary switch is turned off. The output capacitor of the main switch starts 

to discharge, while the output capacitor of the auxiliary switch starts to charge. Fig. 

3.7 illustrates the flyback circuit during Mode 6. The time interval for this mode is 

relatively small due to the small sizes of output capacitors. 

Equations (3-22) and (3-23) represent the differential equations for this mode, and the 

solution is given in equations (3-24) and (3-25). (3-24) represents the voltage across 

output capacitance of the switches, and (3-25) gives the current through the leakage 

inductance.    
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)6<t<t5ode  6 (tM3.7  Fig. 

(3-22) vin + Lik Cr  
d2v𝑐𝑟

dt2
+ n vo + vCr = 0 

(3-23) 
i𝑐𝑟

= c𝑟  
dv𝑐𝑟

(t)

dt
 

(3-24) 
vCr(t) =  vin + n vo − (vin + n ∗ vo − vCr(t5)) cos(ω4t)

+ iLik
(t5)Z4 sin(ω4t) 

(3-25) ILik
(t) = ilik

(t5) ∗ cos(ω4 t) + (vin + nvo − vCr(t5))/Z4 ∗ cos(ω4t)) 

where:  

Z4 = √
Lik

cr
 

 (3-26) 

𝜔4 =    
1

√cr. (Lik)
  (3-27) 

  ):7< t < t 6Mode 7(t 

At time t6, the output capacitor of the main switch is fully discharged and its body 

diode starts to conduct. The main switch can be turned on during this mode with ZVS. 

On the other hand, the output capacitor of the auxiliary switch is fully charged, and it 

is completely off during this mode.  Fig. 3.8 illustrates the flyback circuit during 

Mode 7. 
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 )7<t<t6ode 7 (tM3.8  Fig. 

Equations (3-28) and (3-29) represent the differential equations for this mode. 

Equation (3-30) represents the current through the magnetizing inductance. Equation 

(3-31) represents the current through the output rectifier. The clamp capacitor has a 

constant current and voltage during this mode, and they are shown in equations (3-32) 

and (3-33) respectively. 

(3-28) Lm

diLm
(t)

dt
= nvo 

 (3-29) diDo1

dt
= −n ∗ (

n vo

Lm
+

vin + nv0

Lik
) 

 (3-30) iLm
(t) = iLm

(t6) −
n vo

Lm
t 

(3-31) iDo1
(t) =  −n ∗ (

n vo

Lm
+

vin + nv0

Lik
) t + iDo1

(t6) 

(3-32) iclamp(t) = 0 

(3-33) vclamp(t) = nvo       

 

 ):8< t < t 7Mode 8(t 

This interval starts when the main switch is turned on. The current in the secondary 

side turns off after a very short time of turning the main switch on, and this mode 

ends. Fig. 3.9 illustrates the flyback circuit during Mode 8. 
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 )8<t<t7ode 8 (tM3.9  Fig. 

The voltage across the primary side is equal to the reverse output voltage as shown in 

equation (3-34). The output capacitor of the main switch is fully discharged as shown 

in equation (3-35), and the voltage across the main switch is equal to zero because it 

is conducting current.  

The snubber circuit is idle during this mode. The clamp capacitor has a constant 

voltage and zero current as shown in equation (3-36) and (3-37).   

Currents through the leakage inductance and the magnetizing inductance are given in 

equations (3-38), and (3-39) respectively.  

(3-34) vpri(t) = −nvo 

  (3-35)  vcr,main(t) = 0 

 (3-36) vclamp(t) = n vo     

 (3-37) iclamp(t) = 0 

 (3-38) iLik
(t) = iLik

(t7) +
vin + n ∗ vo

Lik
 (t − t7) 

 (3-39) iLm
(t) = iLm

(t7) +
n ∗ vo

Lm
 (t − t7) 

3.3     Design procedure: 

The equations for the modes of operation that were shown  in the previous section can 

be used to generate graphs of steady-state characteristic curves for this converter. 

The program can be implemented by a computer program such as C or  MATLB. In 

the steady-state  , the current  and voltage of any converter component at the start of a 

switching cycle must be the same as that at the end of the switching cycle. If the 

equations presented  in the previous section are used by a program to track component 
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current and voltage values throughout  a switching cycle when the converter is 

operating with a given set of component values, then the program can determine if the 

converter is operating in the steady-state. Once this has been determined, then the 

appropriate steady-state component voltage and current values can be found. If this 

has been done for a number of component value sets, then characteristic curves and 

graphs can be generated. 

The characteristic graphs that are generated and showed the effects that changing a 

particular component value can have on converter voltages and currents. With these 

graphs, it is possible to proceed systematically for with design of the converter that 

would allow appropriate converter component values to be selected.  

The range of the input voltage is between 36 volts and 72 volts. The output voltage is 

constant at 12 volts. The output power is between 9 Watts and 100 Watts. These 

values are identical to the values used in designing the flyback converter with the 

regenerative snubber. The aim is to maintain the same values wherever possible. By 

doing this, a direct comparison can be performed.   

There are many parameters that need to be determined during the design.  Some of 

these parameters need to be assumed, and they will be given values identical for those 

in Chapter 2. Design curves and derivations will be used to choose the rest of the 

converter parameters. 

In this section, several guidelines that should be considered in the design of the 

flyback converter with the active clamp circuit shown in Fig. 3.1 are discussed. It 

should be noted that any design procedure that takes into account the following design 

considerations is iterative and thus several iterations are required before an 

appropriate design is selected.  

1) Select the value of maximum duty cycle   

The maximum duty cycle will be chosen to be 50%, the same as in the regenerative 

snubber circuit, in order to reduce the voltage across the main switch and the current 

in the output rectifier. 

 



 

42 
 

2) Select magnetizing inductance for flyback transformer: 

Similar to the regenerative snubber, the presence of the active clamp circuit will not 

significantly affect the current through the primary side of  the transformer.  

The magnetizing inductance can be calculated using equation (3-40), which represents 

the rate of change for the current through an inductor: 

(3-40) 

 

 Δ ILM

 Δ t
=  

𝑉𝑖𝑛,𝑚𝑖𝑛 − 𝑉𝑅𝑑𝑠,𝑜𝑛

Lm
 

where Δ ILM
  is the ripple current in the primary, 𝑉𝑅𝑑𝑠,𝑜𝑛 is the voltage drop across the 

switch when the switch is in on-state and its value is around 1 Volt. 

By inserting  the following values into equation (3.40):  

Δ 𝐼𝐿𝑚
= 1 amp; 

Δ t =
1

𝑓sw
∗ D𝑚𝑎𝑥 =

1

50000
∗ .5 = 1 ∗ seconds 5-10 

can be  m, Lis the maximum duty cycle  maxDis the switching frequency, and  swwhere f

=0.35 mH.m, and it was found to be  Lcalculated 

3) Choosing transformer turns ratio 

A transformer in an active clamp is different than a transformer in the regenerative 

snubber in terms of the number of windings. The active clamp circuit has two 

windings, which are the primary winding and the secondary winding, while the 

transformer in the energy regenerative snubber has three windings: the primary, 

secondary, and tertiary windings.  Determining the turns ratio of the  transformer 

between the primary and secondary winding will be exactly the same for both the 

active clamp and regenerative snubber. The design of the transformer in the active 

clamp circuit is easier because there is no need to choose a proper value for the 

number of turns for the tertiary winding. The following equation, which represents the 

conversion ratio for the basic flyback converter, was used to calculate the value of ns: 

 (3-41) 
1

ns
=

𝑉𝑖𝑛,𝑚𝑖𝑛 − 𝑉𝑅𝑑𝑠,𝑜𝑛

Vo + Vfw
∗  

Dmax

1 − Dmax
 

By using the following values 𝑉𝑖𝑛,𝑚𝑖𝑛 = 36v, 𝑉𝑅𝑑𝑠,𝑜𝑛 = 1v, 𝑉𝑜 = 12𝑣, Vfw = .7𝑣, 𝑛𝑠 

will be equal to  0.37. 
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4) Selecting leakage inductance 

The value of leakage inductance for any transformer is a small percentage of 

magnetizing inductance. In the regenerative snubber circuit it is always better for the 

value of leakage inductance to be very small. On the other hand, in the active clamp 

circuit, it may be necessary to increase the value of leakage inductance in order to get 

ZVS. Increasing the value of leakage inductance can be achieved by adding an 

inductor on the series with the transformer. 

The condition for ZVS is that the energy in leakage inductance at t1 or t5 should be 

bigger than the energy in the output capacitor [20-21]. Equations (3-42), (3-43) show 

the energy in leakage inductance and output capacitor respectively. Equation (3-44) 

shows the condition for ZVS.  

(3-42) ELik
= LikIsmain,peak

2 

(3-43) Ecr
= cr (vin,max + n vo)

2
 

(3-44) Lik >    
cr (vin,max + n𝑠 vo)

2

Ismain,peak
2  

Cr represents the value of parasite capacitor of the two switches together. This value 

depends on the type of the transistor that will be used.  The leakage inductance was 

measured to be 10 µH as mentioned in Chapter 2. The required leakage inductance is 

35 µH; therefore, there is a need to connect an inductor on series with the transformer. 

The value of the external inductor should be 25 µH.  

5) Select clamp capacitor Cclamp 

The clamp capacitor is an important factor in designing the active clamp circuit. It 

should be chosen properly to provide a better working condition. 

In this design, the design curves method will be used to determine the value of the 

clamp capacitor. Fig. 3.10 shows the current passes through the clamp capacitor in 

Mode 4 and Mode 5. These curves were drawn with different values of the clamp 

capacitor. At the end of Mode 5, the current should be negative. 

It is noticeable that when Cclamp=15 nF, the resonance frequency between the clamp 

capacitor and the leakage inductor is relatively high. This causes ringing across the 
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auxiliary switch. The smaller the value of the  clamp capacitor, the higher the ringing; 

therefore, clamp capacitor values of less than 80 nF should be avoided. 

At the end of Mode 5, the current should be negative and big enough to ensure  a 

complete discharge of the output capacitor. Thus, setting the value of  the clamp 

capacitor to less than 100 nF should be avoided. 

All the curves that end inside the circular area can provide ZVS for both switches. All 

values of the clamp capacitor that are higher than 100 nF will provide ZVS. However, 

using large clamp capacitor values does not provide better clamping performance; it 

just increases cost and size. Therefore, clamp capacitor values larger than 200 nF 

should not be used. 

Because clamp capacitors with values between 125 nF and 180 nF can be used, a 150 

nf clamp capacitor will be used. Therefore, the clamp capacitor will be the same for 

the two topologies, the active clamp circuit and the regenerative snubber circuit. 

 

Fig. 3.10 The current through clamp capacitor for different values of clamp 

capacitor. 

 

6)  Select the main switch 

The maximum voltage across the main switch is shown in equation (3- 54 ) [21], The 

current in main switch can be calculated by using (3- 64 ) [21].  

(3- 54 ) 
vmain,max = vin,max + vo/𝑛𝑠 + ilik(t3) Z3 
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 (3- 64 ) 
𝐼𝑚𝑎𝑖𝑛,𝑚𝑎𝑥 =   

𝑃𝑜

η 𝑣𝑖𝑛,𝑚𝑖𝑛 𝐷𝑚𝑎𝑥
+

𝑣𝑖𝑛,𝑚𝑖𝑛

𝐿𝑚
 𝐷𝑚𝑎𝑥𝑇𝑠𝑤        

By using 𝑣𝑖𝑛,𝑚𝑎𝑥 = 72𝑣, 𝑣𝑜/𝑛𝑠 = 32.4𝑣, 𝑖𝑙𝑖𝑘(𝑡3) = 6.7𝐴, 𝑍2 = 15.3 𝑜ℎ𝑚, it can be 

found that 𝑣𝑚𝑎𝑖𝑛,𝑚𝑎𝑥 = 207𝑣,  

By using 𝑃𝑜 = 100𝑤, η = 0.8, 𝐿𝑚 = 0.35, 𝑇𝑠𝑤 = 20 𝑢𝑠  it can be found that  

𝐼𝑚𝑎𝑖𝑛,𝑚𝑎𝑥 = 8 𝑎𝑚𝑝. 

Because one switch will be used for the two topologies, a direct comparison can be 

performed. The maximum current and voltage of the main switch will be determined 

for both topologies, and then the main switch rating will be chosen according to the 

maximum current and voltage for both topologies. More details will be provided in 

Chapter 4 about choosing the proper main switch. 

    7)  Selecting the auxiliary switch 

The body diode of the auxiliary switch conducts the current for half the period, and 

the channel of the MOSFET conducts the current for the rest of the period. The 

current in the auxiliary switch is identical to the current in the clamp capacitor. The 

maximum voltage stress across the auxiliary switch can be approximately calculated 

using equation (3- 74 ) [20]. Equation (3- 74 ) shows that maximum voltage across the 

auxiliary switch is almost equal to the sum of maximum input voltage, the reflected 

output voltage, and some transient voltage.  

vaux,max ≈  vin,max +
𝑣𝑜

𝑛𝑠
+

2LikfswPo,max

η vin,maxDmax(1 − Dmax)
 (3- 74 ) 

By using 𝑣𝑖𝑛,𝑚𝑎𝑥 = 72𝑣, 
𝑣𝑜

𝑛𝑠
=

12

0.37
= 32.43𝑣, 𝐿𝑖𝑘 = 35 𝑢𝐻, 

 𝑓𝑠𝑤 = 50 𝐾ℎ𝑧,  𝑃𝑜,𝑚𝑎𝑥 = 100𝑤, η = 0.8  , 𝐷max = 0.5, 𝑣𝑎𝑢𝑥,𝑚𝑎𝑥 = 128.7 𝑣𝑜𝑙𝑡 

The maximum current flows through the auxiliary switch is approximately equal to 

the maximum current through the main switch.  
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8) Select output rectifier: 

The maximum reverse voltage across the output rectifier can be calculated by using 

equation (3-48), which shows that it is equal to the primary voltage reflected in the 

secondary side, and the output voltage. The maximum forward current can be 

approximately calculated using equation (3-49). 

vD1,max
= vin,maxns + vo (3-48) 

ID1,max
≈

2Po

vo(1 − Dmax)
 (3-49) 

 

By using vin,max = 72v, ns = 0.37, vo = 12v, it can be found that vD1,max = 38.64v.  

By using 𝑃𝑜 = 100𝑤, it can be found that ID1,max
 is equal to 33.33 Amp. The 

mechanism that will be used to choose the output rectifier is similar to the one used 

choosing the main switch. The maximum current and voltage of the output rectifier 

for both topologies will be determined, and then ratings will be chosen according to 

the two topologies. The same output rectifier will be used for the two topologies, so a 

direct comparison can be performed. 

9) Select output capacitor: 

The output capacitor is the same for both topologies, the active clamp and the 

regenerative snubber. The equations and description on how to choose the output 

capacitor were shown in chapter 2. 

Fig. 3.11 shows the designed Flyback converter with the  active clamp technique. 

 

Fig. 3.11 Designed flyback converter with active clamp technique 
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Chapter 4 will give complete details about the type of component used in the building 

of the converter. 

3.4     Conclusion 

In this chapter, the operation, analysis, and design of a flyback converter with an 

active clamp snubber were presented. The general operation and the converter’s 

modes of operation of the converter were explained, equations that define the 

operation of the converter for each operation mode were derived, and these equations 

were used to develop a procedure for the design of the converter. Based on the 

analysis and design, the following characteristics were determined: 

A)  When the clamp capacitor is smaller than 80nF, then the  auxiliary switch will 

suffer from higher ringing.  

B) If the clamp capacitor is higher than 100nF, then ZVS will be achieved.  

The design procedure was demonstrated with an example for the design of a converter 

with input voltage Vin = 36-72 Volts, output voltage Vo = 12 Volts, maximum output 

power Po.max = 100 Watts, and switching frequency fsw = 50 kHz. Based on the design 

example, the values of certain key converter parameters were obtained and these 

parameter values were used to build a converter prototype that was used to obtain the 

experimental results that will be described in Chapter 4. 
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Chapter 4 

4     Experimental Results 

4.1     Introduction 

In this chapter, results obtained from experimental prototypes of the flyback converter 

with the regenerative energy snubber and the active clamp converter are presented. 

Two prototype types were built for each converter topology: a low input voltage 

prototype with input voltage range of 36-72 VDC and a high input voltage prototype 

with input voltage range 200 – 400 VDC. All the prototypes were built to supply a 

maximum output power of 100 W and an output voltage of 12 Volts. The converter 

switching frequency for all the prototypes was 50 kHz. 

The low input voltage range is representative of applications such as telecom. where 

the input voltage can be a DC battery that can range from 36 V to 72 V, or solar 

energy power systems, where the input voltage can range from 30 V to 40 V. The 

high input voltage range is representative of applications where a flyback converter is 

the second converter of a two-stage AC-DC power converter that consists of an AC-

DC front-end converter feeding the input of a DC-DC flyback converter such as the 

two converters studied in this work.  

Efficiency measurements of two sets of two converter topologies are presented in this 

chapter. The first set includes efficiency measurements of a low input voltage flyback 

converter with a regenerative energy snubber and a low input voltage active clamp 

converter; the second set includes efficiency measurements of a high input voltage 

flyback converter with a regenerative energy snubber and a high input voltage active 

clamp converter. Based on these measurements, conclusions about the performance of 

the two converter topologies are made at the end of the chapter. 

4.2     Experimental Results 

Circuit diagrams of a flyback converter with regenerative energy snubber and an 

active clamp flyback converter are shown in Fig. 4.1 and 4.2 respectively. The 
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component values used in the converter prototypes are listed in Table I. Figs. 4.3-4.9 

show typical experimental waveforms obtained from the prototypes of the two 

converter types. 

 

 

Fig. 4.1 Regenerative snubber circuit. 

 

Fig. 4.2 Active clamp circuit. 

TABLE I. List of converter prototype components. 

 Flyback converter with energy 

regenerative snubber 

Active clamp flyback 

converter 

Main Switch FQP22N30 FQP22N30 

Auxiliary switch - FPQ22N30 

Clamp capacitor C340C154K2R5TA C340C154K2R5TA 

Output diode APT30S20B(G) APT30S20B(G) 

Output capacitor Nichicon  UVY1H102MHD Nichicon  

UVY1H102MHD 
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Transformer  ETD44 with Np:Ns:Nt = 

4:1:1.5 

ETD44 with Np:Ns = 4:1 

D1 FML-G22S - 

Dreg 12TQ150 - 

Table I. List of converter prototype components. 

Fig. 4.3 shows the switch gating signal, the voltage across the switch, and the current 

through the switch of the flyback converter with the regenerative energy snubber. It 

can be seen that the switch does not have any voltage spikes; this is because the clamp 

capacitor in the snubber is effective in suppressing such spikes. It can also be seen 

that the switch current has a small resonant hump around the time when the switch 

has just been turned on; this is because of the clamp capacitor discharging through the 

switch and the tertiary winding. 

 

Fig. 4.3. Switch gating signal Vgs, switch voltage Vds, and switch current Ids of the 

flyback converter with regenerative passive snubber when Vin=72 V, Vout=12 V, 

Pout=72 W (Vgs: 20 v/div; Vds: 100 v/div;  Ids: 10A/div.)  

Fig. 4.4 shows the gating signals of the main switch, the voltage across the clamp 

capacitor, and the current through the tertiary winding of the flyback converter with 

the regenerative energy snubber. From this figure, it can be seen that the voltage 

across the clamp capacitor rises when the switch is turned off and falls when the 

switch is turned on. It can also be seen that the fall in capacitor voltage occurs when 

there is current flowing in the tertiary winding. It should be noted that the current in 
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the winding is a hump, which shows the resonant interaction between the clamp 

capacitor and the inductance of the tertiary winding. Moreover, this hump of current 

exists for only a small fraction of the switching cycle. 

 

Fig. 4.4 Main switch gate signal Vgs, clamp capacitor Vc , and current through 

tertiary winding IDreg of the flyback converter with regenerative passive snubber 

when Vin=72 V, Vout=12 V, Pout=72 W  (  Vgs : 20v/Div; Vc : 250v/Div;  IDreg  

:10A/Div) 

Fig. 4.5 shows the switch gating signal and the current through the output diode of the 

flyback converter with the regenerative energy snubber. It can be seen that current 

flows through the output diode only when the switch is off, as is expected of a flyback 

converter. It can also be seen that the output diode current has no reverse recovery 

current; this is because a fast recovery diode was used at the output.   
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Fig. 4.5 Main switch gate signal Vgs, current through output rectifier ID1 of the 

flyback converter with regenerative passive snubber when Vin=72 V, Vout=12 V, 

Pout=72 W    (  Vgs : 20v/Div; ID1  :10A/Div) 

Fig. 4.6 shows the main switch gating signal, voltage and current of the active clamp 

flyback converter. It can be seen that the voltage across the main switch drops to zero 

before it is turned on so that it can turn on with zero-voltage switching (ZVS) and thus 

with reduced switching losses. It can also be seen that the current in the switch is 

negative just before it is turned on. This is because current is flowing through the 

body diode of the switch at this time, thus forcing the voltage across the switch to be 

zero. Having current flowing through the switch at this time is the main mechanism 

by which the main switch can be made to operate with ZVS. 

 

 

Fig. 4.6 Main switch gate signal Vgs, main switch voltage Vds, and main switch 

current Ids of the flyback converter with active clamp circuit when Vin=72 V, 

Vout=12 V, Pout=72 W (  Vgs : 10v/Div; Vds : 100v/Div;  Ids  :5A/Div) 

 

Fig. 4.7 shows the gating signal of the auxiliary switch, the voltage across this switch 

and the current flowing through it. It can be seen that the auxiliary switch operates 

with ZVS as it is turned on when current is flowing through its body diode (the 

negative part of the switch current waveform). 
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Fig. 4.7 Auxiliary switch gate signal Vgs, auxiliary switch voltage Vds, and 

auxiliary switch current Ids of the flyback converter with active clamp circuit 

when Vin=72 V, Vout=12 V, Pout=72 W (  Vgs : 20v/Div; Vds : 250v/Div;  Ids  

:5A/Div) 

 

Fig. 4.8 shows the switch gating signal and the current through the output diode of the 

active clamp flyback converter. It can be seen that current flows through the output 

diode only when the switch is off, as is expected of a flyback converter. It can also be 

seen that the output diode current has no reverse recovery current; this is because a 

fast recovery diode was used at the output.   

 

Fig. 4.8 Main switch gate signal Vgs, the current through the output rectifier of 

the flyback converter with with active clamp circuit when Vin=72 V, Vout=12 V, 

Pout=72 W (Vgs : 20v/Div; ID1  :10A/Div) 

Fig. 4.9 shows that the voltage across the clamp capacitor of the active clamp 

converter. It can be seen that it has the shape of a resonant hump. This is because of 

the interaction between the clamp capacitor and the primary-side inductance of the 
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transformer. It can also be seen that the current in the capacitor does not begin to rise 

until the switch is turned off; this is because current flows in the switch when it is on. 

 

 

Fig. 4.9 Main switch gate signal Vgs, clamp capacitor Vc of the flyback converter 

with with active clamp circuit when Vin=72 V, Vout=12 V, Pout=72 W (  Vgs : 

20v/Div; Vc : 100v/Div) 

4.3     Efficiency Comparison 

In this section, the efficiency of a flyback converter with the regenerative energy 

snubber is compared to that of an active clamp converter. The comparison is made for 

two input voltage ranges: a low input voltage range of 36-72 VDC and a high input 

voltage range of 200 -400 VDC. The output voltage of the converter prototypes used 

in the comparison was 12 VDC, the maximum output power was 100 W and the 

converter switching frequency was 50 kHz. 

Fig. 4.10 shows graphs of converter efficiency vs output power for both flyback 

converter topologies at three different input voltages in the low input voltage range: 

36, 54, and 72 V. Fig. 4.11 shows graphs of converter efficiency vs output power for 

both flyback converter topologies at three different input voltages in the high input 

voltage range: 200, 311, and 376 V.  
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(a) 

 

(b) 

 

(c) 

Fig. 4.10 Efficiency curves for both topology (Active clamp and regenerative 

snubber circuit) at three different cases ((a):Vin=36v, (b): Vin=54v, and (c): 

Vin=72v), The converter rating is 100 W. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.11 Efficiency curves for both topology (Active clamp and regenerative 

snubber circuit) at three different cases((a):Vin=200v, (b): Vin=311v, and (c): 

Vin=376v), The converter rating is 100 W. 
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The following conclusions can be made based on the graphs of converter efficiency vs 

output power shown in Fig. 4.10 and 4.11: 

• When the two converters are operating with an input voltage in the low input 

voltage range, the active clamp converter is always more efficient than the flyback 

converter with the regenerative energy snubber. 

• When the two converters are operating with an input voltage in the high input 

voltage range, the flyback converter with the regenerative energy snubber is more 

efficient than the active clamp converter except when the two converters are 

operating with heavy loads.  

• In general, the flyback converter with regenerative energy snubber is the more 

efficient converter when the input current (and thus the transformer primary 

current) is low and is the less efficient converter when the input current (and 

transformer primary current) is high. 

The efficiency results shown in Fig. 4.10 and 4.11 can be explained by noting that the 

active clamp converter loses its ZVS capability when the transformer primary current 

is low. When this current is low, there is not enough energy to discharge the output 

capacitance of the main converter switch so that when the switch is turned on, it does 

so with voltage across it and thus with switching losses. Given that the converter with 

the regenerative snubber has switching losses but does not have an auxiliary circuit 

that has losses as well, this converter will be more efficient than the active clamp 

converter. It is only when the active clamp converter operates with ZVS that the 

savings in switching losses exceeds the losses of the auxiliary circuit so that the active 

clamp converter becomes the more efficient converter. 

4.4     Cost comparison 

In this section, a comparison between the two snubbers are done in terms of cost. 

Table II shows a comparison between the cost in components that are not the same for 

both topologies. In this schedule, the price of components that are not the same for 

both topologies is only presented. The main switch does not affect the cost 

comparison because it is found in both topologies, and exactly same transistor was 

used for both topologies. Five components are not the same for both topologies. The 
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auxiliary switch is found only in the active clamp circuit, and it costs around 3.44$. 

The diodes D1, Dreg are found only in the energy regenerative snubber, and they cost 

2.12$ and 0.95$ respectively. The transformer costs approximately 3$ in this 

prototype for active clamp circuit. The other transformer in energy regenerative 

snubber, which is three winding transformer, is more expensive than the transformer 

in active clamp topology around 15%. It costs around 3.45$. The resonant inductor is 

required only in active clamp circuit, and it costs 1.5$.   

Energy regenerative 

snubber 

Active Clamp Component name 

- FQP22N30 3.44$ Auxiliary switch 

2.12$ - 1D 

0.95$ - regD 

3$ +15%=3.45 $ 3$ Transformer 

- 1.25$ Resonant inductor 

Same for both topologies Same for both topologies Main Switch 

Same for both topologies Same for both topologies Output diode 

Same for both topologies Same for both topologies Clamp capacitor 

Same for both topologies Same for both topologies Output capacitor 

Table II Cost comparison ( prices obtained during December 2017) 

According to schedule II, the active clamp circuit costs 1.17$ more than what energy 

regenerative snubber costs. Also active clamp may require an external inductor that 

helps in providing ZVS, and this causes the active clamp circuit to have more space 

than what it is required for energy regenerative snubber. 

It can be concluded that energy regenerative snubber costs less than the active 

snubber, and it requires less space. 

4.5     Conclusion 

Experimental results obtained from prototypes of the flyback converter with the 

regenerative energy snubber and the active clamp converter were presented in this 

chapter. Graphs of converter efficiency vs output power obtained from efficiency 

measurements were also presented as well. Based on these graphs, it was determined 

that the flyback converter with the regenerative energy snubber  was the more 

efficient converter when the input current was low and was the less efficient converter 

when the input current was high. This was mainly because the active clamp converter 

can operate with ZVS when the input current is high and cannot operate with ZVS 
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when the input current is low. Since the active clamp converter has an auxiliary 

circuit that the other converter does not, the active clamp converter is the less efficient 

converter when the input current is low because it has switching losses and auxiliary 

circuit losses that the other converter does not have. 
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Chapter 5 

5     Conclusion 

5.1     Summary 

DC-DC flyback converters are very popular in low power conversion application of 

150 W or less as they are inexpensive and simple. The MOSFET switch in these 

converters, however, must be implemented with some sort of snubber to suppress high 

voltage spikes that can be caused by the interaction of the leakage inductance of the 

flyback transformer and the output capacitance of the switch. Without such a snubber, 

the voltage spikes that appear may have voltage levels that exceed the ratings of the 

device so that the end result can be a catastrophic failure of the device. 

Snubbers can be generally divided into two types: passive snubbers and active 

snubbers. Passive snubbers consist of a clamping capacitor and various other passive 

elements that allow the clamping capacitor to discharge. The most efficient passive 

snubber is the regenerative energy snubber, which has a winding that is taken from 

the flyback transformer in its circuit. This winding allows energy from the leakage 

inductance that would otherwise be dissipated to be transferred to the output and also 

limits the amount of current flowing out of the snubber that circulates in the 

converter.  

Active snubbers are like passive snubbers, but have an active switch in their circuit. 

The most popular type of active snubber is the active clamp snubber because of its 

relatively low cost, simplicity, and high efficiency. Unlike passive snubbers, active 

snubbers also allow the main converter switch to operate with zero-voltage switching 

(ZVS), thus further reducing switching losses. 

In the past, passive snubbers have been considered to be less expensive, but less 

efficient than active snubbers, but recent improvements in the efficiency of passive 

snubbers have placed this general rule in doubt. To date, there has been no 

comparison between passive snubbers and active snubbers as it has been assumed that 

active snubbers are obviously more efficient. The main objective of this thesis has 

been to compare the performance of the regenerative energy snubber and the active 

clamp snubber and to see which snubber is most efficient under various input voltage 
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and output load conditions. Such a comparison would allow power electronics 

engineers to make better decisions as to which snubber to use for a given set of 

circumstances. 

The contents of this thesis can be summarized as follows: In Chapter 1, certain 

fundamental principles relating to the work done in this thesis were reviewed as was 

the literature on passive and active snubbers for flyback converters. In Chapter 2, the 

general operation of the regenerative energy snubber was explained in detail as were 

the modes of operation that a flyback converter with such a snubber goes through 

during a switching cycle. These modes of operation were analyzed and the results of 

the analysis were used to derive a procedure for the design of the converter that was 

demonstrated with an example. The same was done in Chapter 3 for a flyback 

converter with the active clamp snubber. Experimental results obtained from 

converter prototypes of the two converters that have been designed according to the 

design procures presented in Chapters 2 and 3 were presented in Chapter 4 and a 

comparison of the efficiency of flyback converters with each of the two snubbers 

operating under various input voltage and output load conditions was made. 

5.2     Conclusions 

Based on the research work that was done, the following conclusions can be made: 

(i) A flyback converter with an active clamp snubber is always more efficient than 

with a regenerative energy snubber when the input DC source voltage is 72V or 

lower. Applications with such a voltage source include renewable energy applications 

such as solar power systems and fuel cell power systems and telecom applications 

where power conversion from a DC bus with voltage in the range of 36V-72V is 

required. The reason for the greater efficiency of the active clamp flyback converter is 

that the main switch operates with ZVS or near ZVS through the entire load range so 

that turn-on switching losses are always reduced, unlike these losses in the 

regenerative energy snubber flyback converter. 

(ii) The efficiency of a flyback converter with a regenerative snubber increases as the 

input voltage is increased to the point where such a converter can actually be more 

efficient than that the active clamp converter under high input DC source voltage 

conditions and medium to light loads. This is especially true when the input voltage is 
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400 V, which is a typical input voltage that occurs when a flyback converter is 

implemented as the back-end converter in a two-stage AC-DC converter with an AC-

DC front-end converter stage. AC-DC is used in different applications where the input 

voltage is AC and the required voltage is DC include cell phone chargers and personal 

computers. The reason for this greater efficiency is that under high voltage conditions, 

the active clamp converter loses its ability to operate with ZVS so that it becomes 

more like the regenerative energy converter, but with greater losses due to the 

switching losses of its active clamp switch. 

(iii) The value of clamp capacitor is very critical especially in designing the energy 

regenerative snubber where it has a small range. Using values of clamp capacitor out 

of this range causes a degradation of the efficiency. The range of clamp capacitor 

values in the active clamp technique is less critical where it has a wider range.  

5.3     Contribution 

The main contribution of this thesis is that this is the first time, to the best of the 

author’s knowledge, that a comparison has been made between the efficiency of a 

flyback converter with a regenerative energy snubber, which is considered to be the 

best passive snubber, and the active clamp snubber, which is considered to be the best 

active snubber. In some cases, the experimental results that were obtained as part of 

this work contradict the general belief that active snubbers are always more efficient 

than passive snubbers regardless of the application. The comparison presented in this 

thesis will allow power electronics engineers to make better decisions as to which 

type of snubber should be used for a particular application. 
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