6 research outputs found

    A Novel VLSI Architecture of Fixed-complexity Sphere Decoder

    Full text link
    Fixed-complexity Sphere Decoder (FSD) is a recently proposed technique for Multiple-Input Multiple-Output (MIMO) detection. It has several outstanding features such as constant throughput and large potential parallelism, which makes it suitable for efficient VLSI implementation. However, to our best knowledge, no VLSI implementation of FSD has been reported in the literature, although some FPGA prototypes of FSD with pipeline architecture have been developed. These solutions achieve very high throughput but at very high cost of hardware resources, making them impractical in real applications. In this paper, we present a novel four-nodes-per-cycle parallel architecture of FSD, with a breadth-first processing that allows for short critical path. The implementation achieves a throughput of 213.3 Mbps at 400 MHz clock frequency, at a cost of 0.18 mm2 Silicon area on 0.13{\mu}m CMOS technology. The proposed solution is much more economical compared with the existing FPGA implementations, and very suitable for practicl applications because of its balanced performance and hardware-complexity; moreover it has the flexibility to be expanded into an eight-nodes-per-cycle version in order to double the throughput.Comment: 8 pages, this paper has been accepted by the conference DSD 201

    Efficient VLSI Implementation of Soft-input Soft-output Fixed-complexity Sphere Decoder

    Get PDF
    Fixed-complexity sphere decoder (FSD) is one of the most promising techniques for the implementation of multipleinput multiple-output (MIMO) detection, with relevant advantages in terms of constant throughput and high flexibility of parallel architecture. The reported works on FSD are mainly based on software level simulations and a few details have been provided on hardware implementation. The authors present the study based on a four-nodes-per-cycle parallel FSD architecture with several examples of VLSI implementation in 4 × 4 systems with both 16-quadrature amplitude modulation (QAM) and 64-QAM modulation and both real and complex signal models. The implementation aspects and details of the architecture are analysed in order to provide a variety of performance-complexity trade-offs. The authors also provide a parallel implementation of loglikelihood- ratio (LLR) generator with optimised algorithm to enhance the proposed FSD architecture to be a soft-input softoutput (SISO) MIMO detector. To the authors best knowledge, this is the first complete VLSI implementation of an FSD based SISO MIMO detector. The implementation results show that the proposed SISO FSD architecture is highly efficient and flexible, making it very suitable for real application

    Parallel Searching-Based Sphere Detector for MIMO Downlink OFDM Systems

    Get PDF
    In this paper, implementation of a detector with parallel partial candidate-search algorithm is described. Two fully independent partial candidate search processes are simultaneously employed for two groups of transmit antennas based on QR decomposition (QRD) and QL decomposition (QLD) of a multiple-input multiple-output (MIMO) channel matrix. By using separate simultaneous candidate searching processes, the proposed implementation of QRD-QLD searching-based sphere detector provides a smaller latency and a lower computational complexity than the original QRD-M detector for similar error-rate performance in wireless communications systems employing four transmit and four receive antennas with 16-QAM or 64-QAM constellation size. It is shown that in coded MIMO orthogonal frequency division multiplexing (MIMO OFDM) systems, the detection latency and computational complexity of a receiver can be substantially reduced by using the proposed QRD-QLD detector implementation. The QRD-QLD-based sphere detector is also implemented using Field Programmable Gate Array (FPGA) and application specific integrated circuit (ASIC), and its hardware design complexity is compared with that of other sphere detectors reported in the literature.Nokia Renesas MobileTexas InstrumentsXilinxNational Science Foundatio

    FlexCore: Massively Parallel and Flexible Processing for Large MIMO Access Points

    Get PDF
    Large MIMO base stations remain among wireless network designers’ best tools for increasing wireless throughput while serving many clients, but current system designs, sacrifice throughput with simple linear MIMO detection algorithms. Higher-performance detection techniques are known, but remain off the table because these systems parallelize their computation at the level of a whole OFDM subcarrier, sufficing only for the less demanding linear detection approaches they opt for. This paper presents FlexCore, the first computational architecture capable of parallelizing the detection of large numbers of mutually-interfering information streams at a granularity below individual OFDM subcarriers, in a nearly-embarrassingly parallel manner while utilizing any number of available processing elements. For 12 clients sending 64-QAM symbols to a 12-antenna base station, our WARP testbed evaluation shows similar network throughput to the state-of-the-art while using an order of magnitude fewer processing elements. For the same scenario, our combined WARP-GPU testbed evaluation demonstrates a 19x computational speedup, with 97% increased energy efficiency when compared with the state of the art. Finally, for the same scenario, an FPGA-based comparison between FlexCore and the state of the art shows that FlexCore can achieve up to 96% better energy efficiency, and can offer up to 32x the processing throughput

    Energy Efficient VLSI Circuits for MIMO-WLAN

    Get PDF
    Mobile communication - anytime, anywhere access to data and communication services - has been continuously increasing since the operation of the first wireless communication link by Guglielmo Marconi. The demand for higher data rates, despite the limited bandwidth, led to the development of multiple-input multiple-output (MIMO) communication which is often combined with orthogonal frequency division multiplexing (OFDM). Together, these two techniques achieve a high bandwidth efficiency. Unfortunately, techniques such as MIMO-OFDM significantly increase the signal processing complexity of transceivers. While fast improvements in the integrated circuit (IC) technology enabled to implement more signal processing complexity per chip, large efforts had and have to be done for novel algorithms as well as for efficient very large scaled integration (VLSI) architectures in order to meet today's and tomorrow's requirements for mobile wireless communication systems. In this thesis, we will present architectures and VLSI implementations of complete physical (PHY) layer application specific integrated circuits (ASICs) under the constraints imposed by an industrial wireless communication standard. Contrary to many other publications, we do not elaborate individual components of a MIMO-OFDM communication system stand-alone, but in the context of the complete PHY layer ASIC. We will investigate the performance of several MIMO detectors and the corresponding preprocessing circuits, being integrated into the entire PHY layer ASIC, in terms of achievable error-rate, power consumption, and area requirement. Finally, we will assemble the results from the proposed PHY layer implementations in order to enhance the energy efficiency of a transceiver. To this end, we propose a cross-layer optimization of PHY layer and medium access control (MAC) layer
    corecore