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Abstract

Fixed-complexity sphere decoder (FSD) is one of the most promising techniques

for the implementation of multiple-input multiple-output (MIMO) detection, with

relevant advantages in terms of constant throughput and high flexibility of paral-

lel architecture. The reported works on FSD are mainly based on software level

simulations and a few details have been provided on hardware implementation. In

this paper, we present the study based on a four-nodes-per-cycle parallel FSD ar-

chitecture with several examples of VLSI implementation in 4 × 4 systems with

both 16-QAM and 64-QAM modulation and both real and complex signal mod-

els. Implementation aspects and details of the architecture are analyzed in order to

provide a variety of performance-complexity trade-offs. We also provide a parallel

implementation of log-likelihood-ratio (LLR) generator with optimized algorithm

to enhance the proposed FSD architecture to be a soft-input soft-output (SISO)

MIMO detector. To our best knowledge, this is the first complete VLSI implemen-

tation of an FSD based SISO MIMO detector. The implementation results show

that the proposed SISO FSD architecture is highly efficient and flexible, making it

very suitable for real applications.

Keywords–fixed-complexity sphere decoder, parallel architecture, MIMO detection,

complex signal model, LLR generation, VLSI implementation.
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1 Introduction

Multiple-input multiple-output (MIMO) system is one of the most important elements of

novelty in next generation wireless communications, and provides increased data through-

put and link range without additional bandwidth and transmit power [1]. It has already

been included in multiple wireless communications standards, such as the IEEE 802.16e

WiMax and the 3rd generation partnership project (3GPP) long term evolution (LTE) [2].

A large variety of MIMO detection techniques have been proposed, including the family

of sphere decoders (SD). The originally proposed sphere decoder performs depth-first

tree traversal by employing Schnorr-Euchner enumeration (SESD) [3]. This technique

achieves maximum-likelihood (ML) performance and its hardware implementation has

been extensively explored in both hard and soft output versions [4] [5] [6]. Unfortunately

the SESD offers an intrinsically variable throughput, which tends to decrease significantly

at low signal-to-noise ratio (SNR) [4] [5]. Another disadvantage of the SESD is the

sequential tree search order, which makes it difficult to employ parallel architectures to

improve the throughput. Different forms of pipelining have been proposed to avoid this

SD drawback [7] [8]. Some sub-optimal algorithms, such as the K-best algorithm and the

fixed-complexity sphere decoder (FSD), are proposed to obtain constant throughput and

reduce hardware complexity, with an acceptable degree of performance loss [9] [10].

Receivers with concatenated MIMO detection and channel decoding have been recently

proposed using powerful error correcting codes, such as Turbo and low-density parity-

check (LDPC) codes in order to achieve near-capacity performance [11]. Soft information

could be obtained by extending the existing hard-output sphere decoders, which could

be SESD, K-best SD or FSD, into a list sphere decoder (LSD), which generates a list

of candidates instead of the only ML solution. Then the log-likelihood-ratios (LLR) are

evaluated based on the list and the a-priori information. Finally the LLRs are forwarded

to the channel decoder [9] [12] [13].

Although the soft-output SESD achieves optimal performance, it still suffers from

variable throughput [14], and the performance drops dramatically when the number of

visited nodes is bounded in order to limit the complexity and the latency in hardware
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implementation [15]. The recently proposed soft-output single tree search (STS) SD is

also based on the depth-first SESD algorithm. It can be implemented efficiently, and

achieves excellent throughput at medium to high SNR values, but it is much less efficient

at low SNR region [6]. Furthermore, it is difficult to map these algorithms to highly

parallel architectures, because of the natural sequential search order.

The sub-optimal algorithms, such as the K-best and the FSD, could also be improved

into soft-output versions, which guarantee constant throughput at the cost of a certain

performance loss. The K-best algorithm keeps a certain number (i.e. K ) of best nodes

in each level while traversing the tree, by applying sorting operations, which require

additional hardware resources [9]. The FSD algorithm also achieves constant throughput

but with relatively lower hardware complexity. The most outstanding feature of FSD

is the regular tree traversal path, which enables the design of highly-efficient parallel

architectures [10].

The reported works on FSD are mainly based on software level simulations and most

of investigations on hardware are implemented on FPGA devices, such as the FPGA

prototypes with pipeline architectures reported in [16] and [17]. These FPGA prototypes

achieve very high throughput, but at a very high cost of occupied hardware resources,

making them impractical in real applications.

In this paper, we improve a four-nodes-per-cycle parallel FSD architecture, which is

implemented in real signal model as reported in [18], into complex signal model, and

present a panorama of FSD implementations considering different types of modulation

and both real and complex signal models, in order to provide a variety of performance-

complexity trade-offs for different practical situations. We find that the four-nodes-per-

cycle FSD architecture can be efficiently implemented, especially in complex signal model,

in terms of throughput per area unit.

The LSD acts only as a list generator in the SISO MIMO detection and an LLR

generator is required to iteratively refine LLR for each codeword bit based on the candidate

list and on the feedback information received from the channel decoder [9] [12] [13]. The

LLR generator usually shows comparable computational complexity as LSD, but it did
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not attract enough attention by researchers. In this paper we also provide a parallel

implementation of LLR generator in order to construct an efficient SISO MIMO detector

combined with the four-nodes-per-cycle FSD architecture.

This paper is organized as follows: Section 2 introduces the system model of sphere

decoders; Section 3 details the four-nodes-per-cycle architecture together with several

implementation aspects and the parallel implementation of LLR generator; Section 4

shows the implementation results and compares the overall performance among the FSD

implementations and other SD implementations; Section 5 concludes the paper.

2 System Model and Sphere Decoding Algorithm

The diagram of iterative MIMO decoding system with Nt transmit antennas and Nr re-

ceive antennas is shown in Fig. 1. The source bits are firstly encoded by a channel encoder,

which could be for instance a Turbo encoder [19] or an LDPC encoder [20]. Then the coded

bit stream is interleaved in order to overcome correlated channel noise. The interleaved

bits are mapped into an Nt-dimensional transmit signal vector s = [sNt−1, . . . , s1, s0]T .

Each symbol of the vector is chosen independently from a complex constellation Ω with

M binary bits per symbol, i.e., |Ω| = 2M . The transmission rate is denoted as R = NtM

bits per channel use (bpcu). The received vector can be denoted as

y = Hs + n, (1)

where H is the Nr × Nt complex channel matrix, assumed to be perfectly known at

the receiver through channel estimation, n = [nNr−1, . . . , n1, n0]T is an Nr-dimensional

complex additive i.i.d. (independent and identically distributed) white Gaussian noise

vector.

In Fig. 1, the SISO MIMO detector is employed to generate soft information which

is required by the concatenated channel decoder. The SISO MIMO detector could be

an LSD or employ other MIMO detection algorithms, such as the STS SD or the mini-

mum mean square error (MMSE) decoder [21]. In this paper we assume LSD is employed,
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Figure 1: Iterative MIMO decoding system.

which generates a candidate list in order to compute LLRs. Soft information is exchanged

between the inner MIMO detector and the outer channel decoder through a pair of in-

terleaver and deinterleaver. After a certain number of iterations, decoded bit stream is

available through hard decision depending on the required throughput or bit-error-rate

(BER) performance [11].

In the transmit symbol vector constellation ΩNt there exists an ML solution that can

be expressed as

sML = arg min
s∈ΩNt

‖y−Hs‖2. (2)

sML can be obtained through exhaustive search in a small MIMO system, such as a 4

× 4 system with QPSK modulation (totally 22×4 = 256 possible solutions) [22]. But for

a large system, it is impractical to perform exhaustive search, because of the very large

number of possible solutions to be examined [23]. For example in a 4 × 4 system with

16-QAM modulation, there are 24×4 = 65, 536 possible solutions. The sphere decoders are

therefore proposed to reduce the computational complexity by formulating the calculation

of (2) as a tree visit problem and applying certain pruning criteria to decrease the number

of visited nodes [24].

A likelihood metric, generally in form of partial Euclidean distance (PED), is evaluated

for each visited node in order to prune the tree or determine the traversal path. For hard-

output sphere decoders, the transmit vector with minimum PED is chosen as the final

solution [4], whereas for LSD, a certain number of visited tree leaves with the lowest PED

values are sent to an LLR generator to compute the soft output information [10].

5



2.1 Complex Signal Model

Before the decoding stage, the preprocessing with QR decomposition is applied as

H = QR, (3)

where Q is Nr ×Nr complex orthogonal matrix, R is Nt ×Nr complex upper triangular

matrix with positive diagonal elements. The QR decomposition is of critical importance

in many MIMO detection algorithms to reduce the complexity of receivers and to get

better decoding results [25].

Then the PED for each visited node is given by

di = di+1 + |ei|2, i = Nt − 1, Nt − 2, . . . , 0, (4)

where

ei = yZF
i −

Nt−1∑
j=i

Ri,jsj = bi −Ri,isi, (5)

yZF = QHy, (6)

bi = yZF
i −

Nt−1∑
j=i+1

Ri,jsj. (7)

|ei|2 is the increment of PED in the ith level and yZF is the zero-forcing solution [4].

2.2 Real Signal Model

As an alternative to the described complex signal based processing, the SD algorithm can

be performed also in a real-valued signal model, by transforming the complex channel

matrix into real values:

Ĥ =

 Re{H} −Im{H}

Im{H} Re{H}

 , (8)
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ŷ =

 Re{y}

Im{y}

 , (9)

ŝ = [ŝ2Nt−1, . . . , ŝ1, ŝ0]T =

 Re{s}

Im{s}

 , (10)

where Re{x} and Im{x} denote the real and imaginary parts of x, respectively.

After the transformation, the Nr×Nt dimensional channel matrix H turns to 2Nr×2Nt

dimensional. Then the QR decomposition is applied on real values:

Ĥ = Q̂R̂, (11)

where Q̂ is 2Nr × 2Nr real-valued orthogonal matrix, R̂ is 2Nt × 2Nr real-valued upper

triangular matrix with positive diagonal elements.

The extended matrix dimensions imply that the number of tree levels is doubled and

the PED calculation in (4) ∼ (7) can be expressed as

di = di+1 + |ei|2, i = 2Nt − 1, 2Nt − 2, . . . , 0, (12)

where

ei = ŷZF
i −

2Nt−1∑
j=i

R̂i,j ŝj = bi − R̂i,iŝi, (13)

ŷZF = Q̂
H

ŷ, (14)

bi = ŷZF
i −

2Nt−1∑
j=i+1

R̂i,j ŝj. (15)

For each vector in the transmit constellation, the calculated PED values are same in

either real and complex signal models. However, it should be noticed that the choice of

signal model could significantly impact on the BER performance, the throughput and the

hardware complexity of sphere decoders.
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2.3 Depth-first SESD

Before describing the FSD, firstly we look at the fundamental depth-first SESD. The

SESD performs tree traversal in depth-first style and prunes the tree by comparing the

PED of each visited node with current radius of the sphere, which is set to infinity at

the beginning and is updated during the traversal. The tree traversal moves downwards

from the top level, as shown in Fig. 2, with the example of 2 × 2 system with QPSK

modulation; in this case, the tree has two levels and each node in the top level has four

child nodes. The dark nodes numbered as 1 to 6 denote the visiting order. The SESD

starts the depth-first tree traversal by choosing firstly the child node with minimum PED

(node 1) and moves downwards. When reaching the bottom level, the minimum PED

of the child nodes is compared with the current radius. If the PED is smaller than the

radius, the radius is updated with the value of the PED (nodes 2) and the other child

nodes are discarded. Then the SESD returns to the sibling nodes in the upper level and

performs the same procedure. If the PED of the node is smaller than the current radius

(node 3), the tree traversal goes downwards (node 4), otherwise the whole branch under

the node is pruned (nodes 5 and 6). By applying the tree pruning, the total number

of visited nodes is significantly reduced compared with the exhaustive search, while still

yielding ML performance.

The soft-output SESD performs the similar depth-first tree traversal as the hard-

output SESD. The difference is that the radius will not be updated until a required

number of candidates are obtained, and sorting operations are necessary to insert new

candidates into the list. After the tree traversal, the final candidate list is sent to an LLR

generator to compute the soft information.

The SESD needs to reach the bottom tree level immediately, in order to update the

radius and perform tree pruning: the depth-first sequential order makes it hard to adopt

parallel processing architectures. The resulting throughput is variable and tends to drop

down significantly at low SNR region. Furthermore, the performance becomes much worse

when the number of visited nodes is bounded with the purpose of reducing the detection

complexity and latency in real applications [15]. In order to obtain a constant throughput,
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Figure 2: Example of depth-first SESD.

a constant number of nodes must be visited. Sub-optimal detection methods have been

proposed to achieve this result and the FSD technique is one of the most interesting ones.

3 FSD Architecture

The FSD algorithm is also based on PED calculation but does not need to update a radius

to prune the tree. Both the number and the positions of the nodes to be visited in each

level are pre-determined before decoding, depending on the so-called node distribution.

According to its definition, the processing complexity of FSD is fixed, therefore yielding a

constant throughput. Furthermore, because it is not necessary to reach the bottom level

immediately to update the radius, the traversal order is very flexible, which can be either

in depth-first or in breadth-first style. One of the most outstanding advantages of the

FSD is the flexibility to adopt parallel architectures for its deterministic and regular tree

traversal path. Several pipeline architectures implemented on FPGA devices have been

reported to achieve very high throughput, however, they also consume very large amount

of hardware resources [16] [17]. However we find that highly area efficient implementation

of FSD is possible with the four-nodes-per-cycle parallel architecture.

3.1 Four-nodes-per-cycle Architecture

The four-nodes-per-cycle FSD architecture proposed in [18] employs breadth-first tree

traversal in order to shorten the critical path. The three major computational tasks,

including bi calculation, direct enumeration (DE) and di calculation, are distributed on

three different groups of nodes in each clock cycle. The tree traversal order is shown in Fig.

3 in 4 × 4 system with 16-QAM modulation, complex signal model and node distribution

9



{1, 1, 1, 16}, which means that all the 16 nodes are visited in the top level, and only

one child node with minimum PED is chosen in the lower levels for each survived parent

node. Each group of four nodes (denoted as Glevel,column) in dashed blocks are processed

in parallel according to the breadth-first order. This arrangement of groups of nodes

processed in parallel can be also applied to other cases, for instance the real signal model

with different number of antennas and list size.

The block scheme of the four-nodes-per-cycle FSD architecture is shown in Fig. 4, for

a 4 × 4 system with 16-QAM modulation and complex signal model. The signals with

index crt are referred to the current cycle, while those with index prv are related to the

previous cycle. The signal lines with slashes are referred to four different values for each

of the four nodes in a certain group. Each of the main arithmetic tasks employs four units

with identical internal structure, in order to process four nodes in parallel per clock cycle.

As shown in Fig. 3, the tree traversal paths in FSD are highly regular, which insures that

the nodes being processed in each cycle have definite positions. The FSD performs the

arithmetic tasks in each cycle on different groups of nodes according to their positions,

which are controlled by a level counter and a column counter in the control unit.

The bi units are responsible for calculating bi in (7). When computing bi, because

both real and imaginary parts of si is chosen from a small set {+3,+1,−1,−3} for

16-QAM modulation, the multiplications between Ri,j and si can be transformed into

additions between ±2Re{Ri,j}, ±Re{Ri,j}, ±2Im{Ri,j} and ±Im{Ri,j} (with additional

±4Re{Ri,j}, ±8Re{Ri,j}, ±4Im{Ri,j}, ±8Im{Ri,j} for 64-QAM modulation). The val-

ues of ±2Re{Ri,j} and ±2Im{Ri,j} can be easily obtained through left shifting operation.

In order to shorten the delay path, all these values are compressed into a Wallace com-

press tree of carry save adder (CSA), which is followed by a common ripple carry adder

(RCA) [26].

The DE units are employed to select child nodes to be visited. Because all the can-

didates are derived from a common parent (i.e. with the same di+1), the solution is to

compare |ei| among all the child nodes and choose the node with minimum |ei|. Since

bi is already calculated in the previous cycle, the task of DE unit is simply comparing
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Figure 4: Diagram of the four-nodes-per-cycle FSD architecture in 4 × 4 system with
16-QAM modulation, in complex signal model.

|bi−Ri,isi| among the child nodes. However this solution results in a large hardware com-

plexity. The complexity can be reduced by applying the method introduced in [17]. The

modulation constellation is divided into several small parts and the proper si is chosen by

comparing the real and the imaginary parts of bi with the threshold values 0, ±2Re{Ri,i}

and ±2Im{Ri,i} that define the boundaries of each symbol.

The di units compute the PED for each visited node. The calculation of di is imple-

mented in the straightforward way according to (12). The complex value of ei is firstly
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calculated by adding Ri,isi to bi. Then two multipliers are employed to calculate the

square of both real and imaginary parts, followed by an addition with di+1 (PED of the

parent node).

The four-nodes-per-cycle architecture features scalable parallelism which varies in the

range between the common one-node-per-cycle architecture and the pipeline architectures,

depending on the system size (i.e. number of antennas and modulation type) and the

performance requirements (e.g. throughput or BER) of targeted wireless communications

standards. For example, it can be extended into an eight-nodes-per-cycle version by

doubling the arithmetic units, including the bi units, the DE units and the di units, in

order to provide nearly doubled throughput.

3.2 Complexity of FSD

The complexity of LSD is usually mentioned in terms of the number of visited nodes,

which is mainly affected by the following factors: number of transmit and receive antennas,

modulation type, required list size, the choice of real or complex signal model, and the

node distribution specifically for FSD.

Because the number of tree levels is doubled when the real signal model is adopted

compared with the complex signal model, the number of visited nodes will be increased

significantly with the same list size. For example, in 4×4 system with 16-QAM modulation

and list size = 16, totally 116 nodes are visited in real signal model with node distribution

{1, 1, 1, 1, 1, 1, 4, 4}. To the contrary, only 64 nodes are visited in complex signal model

with node distribution {1, 1, 1, 16}, approximately only half of the number in real signal

model.

From another point of view, the implementation in complex signal model requires more

computational resources, such as adders and multipliers, because both real and imaginary

parts should be calculated in (4) ∼ (7) at the same time [17]. Several works have been

reported considering the choice of real or complex signal model. Burg et al. argue that

performing sphere decoding directly on the complex constellation is more efficient in

VLSI implementations [4]. To the contrary, Myllylä et al. show that the real valued
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algorithms are less complex and feasible for practical LSD implementation [15]. However,

a quantitative comparison based on fully synthesized hardware systems and extended to

several MIMO systems between the two alternatives is currently not available. We will see

later that the complex implementation achieves higher efficiency in terms of throughput

per area unit, which is more meaningful compared with considering only on the Silicon

area.

Some channel ordering algorithms can be applied to improve the performance. We

find that even a simple sorted QR decomposition (SQRD) improves the performance

significantly. The SQRD algorithm reorders the sequence of detection to minimize the

risk of error propagation, by maximizing |Ri,i| for i = Nt−1, Nt−2, . . . , 0 [29]. Therefore

the transmit antennas with strongest signal is assigned to the levels closer to the root of

the tree [25].

In addition to the signal models, the node distribution also affects both performance

and complexity of FSD. Although it is difficult to provide a comprehensive analysis of

the node distribution to achieve optimal performance, a general method proposed in [27]

could be used for an arbitrary constellation and for any number of antennas. The number

of visited child nodes of each parent node in one level can be chosen from a small set

{1, Nb}, where Nb is the number of branches per node. In the top levels, a full search is

performed by visiting all the Nb branches, whereas in the lower levels, only one branch

is chosen as survivor [28]. When combined with the SQRD, this method guarantees

that the nodes with highest signal-to-noise ratio (SNR) are firstly visited. In this paper

we adopt this kind of node distribution together with the SQRD to maximize the BER

performance, with an exception for the case with 64-QAM modulation and list size = 128.

It is implemented with the node distribution {1, 1, 2, 64}, which also follows the basic

rule that expands the paths in the top levels.

3.3 Parallel LLR Generator

After the sphere decoding, the candidate list is forwarded to the LLR generator. Then

the LLR for each coded bit is evaluated based on the candidate list and the a-priori
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information vector LA coming from the outer channel decoder. Let LE,k denote the

extrinsic information, i.e., LLR, for the kth bit in the coded bit vector, k = R−1, . . . , 1, 0.

The max-log approximation of LE,k calculation is formulated according to [11]

LE,k ≈
1

2
max

xi∈Xk,+1

{− di
σ2

+ xT
i,[k] · LA,[k]}

−1

2
max

xi∈Xk,−1

{− di
σ2

+ xT
i,[k] · LA,[k]}, (16)

where Xk,+1 and Xk,−1 represent the sets of vector xi having xi,k = +1 and xi,k = −1

respectively, σ2 is the noise variance, xT
i,[k] is the sub-vector of xT

i omitting the bit xi,k,

and LA,[k] is the sub-vector of the a-priori information vector LA with omitted LA,k,

k = R− 1, . . . , 1, 0 and i = P − 1, . . . , 1, 0 (P denotes the list size).

The whole computation task shows considerable complexity O(PR2) in terms of ad-

ditions. The LLR generation methods reported in [12] and [30] are soft-output only and

do not support iterative decoding with channel decoder, whereas the strategy of mixed

STS and LLR generation reported in [6] is soft-input soft-output but can not be applied

to the LSD. In this paper we optimize the algorithm in (16) by reusing intermediate data

and reduce the complexity of LLR generation to O(PR).

Let T k
i = xT

i,[k] · LA,[k] and Ti = xT
i · LA, then we have

Ti = T k
i + xi,kLA,k, (17)

where i = P − 1, . . . , 1, 0.

When evaluating LLRs as expressed in (16) in a straightforward way, T k
i needs to be

calculated for PR times. For different coded bits, T k
i can be expressed as the difference

between Ti and xi,kLA,k:

T k
i = Ti − xi,kLA,k. (18)

Therefore the approach for reducing complexity is to get Ti for each of the P candidates

at the beginning of processing, with only P accumulations required for all Ti. Then Ti

could be reused in the following procedure for evaluating LLRs for different coded bits,
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and get T k
i by subtracting xi,kLA,k from Ti. Pseudo code of the optimized LLR generation

is given in Fig. 5. For simplicity, we denote Qi = Ti − di/σ2 and Qk
i = T k

i − di/σ2.

Based on the optimized LLR generation algorithm, we designed several compact func-

tional blocks in order to build an efficient LLR generator, which is highly parallel and

scalable to improve further the throughput.

The architecture of the LLR generator is shown in Fig. 6. The implementation is

targeted to the 4 × 4 MIMO systems with 16-QAM modulation (R = P = 16). P

accumulation units (ACC UNIT i) concurrently calculate Qi for each of the candidates in

the list. The comparison stage to get final LE,k is performed by the R comparison units

(COM UNIT k). Each of them evaluates LE,k for the kth coded bit. Pipeline registers

are allocated between the ACC UNITs and the COM UNITs in order to improve the

throughput. Based on the fixed-point evaluation, the input data width is chosen to be 12

bits for di, 8 bits for (1/σ2) and 8 bits for LA,k, but the internal data width is always 12

bits for Ti, Qi and Qk
i to avoid overflow. The output LE,k is clipped to 8 bits, the same

width as for the input LA,k.

The ACC UNITs are responsible to compute Qi = xT
i · LA − di/σ

2. The value of

(1/σ2) is assumed to be ready for use through channel estimation. To reduce complexity,

the multiplication (1/σ2)×di is transformed into a series of addition and shift operations,

which are executed in parallel with the accumulation Ti = xT
i · LA. The accumulation

of Ti requires totally R cycles for all the R coded bits. One additional cycle is needed

to subtract (1/σ2)× di from Ti. Then the accumulation stage is finished and Qi is ready

for the following comparison stage. Therefore totally (R + 1) cycles are required by the

accumulation stage.

The COM UNITs evaluate the LLRs, i.e., LE,k for each coded bit. Firstly Qi is

selected and subtracted from xi,kLA,k to get Qk
i . Then Qk

i is classified into two lists, i.e.,

POS_LIST and MIN_LIST in Fig. 5, which contain Qk
i for the candidates with xi,k = +1 or

xi,k = −1 respectively. If Qk
i is moved into one of the two lists, it is compared with the

current value in the corresponding register, which is set to be the minimum possible value

LLR_MIN at the beginning. When Qk
i is greater than the current registered value, The
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//Accumulation stage
for (i=P-1;i>=0;i--) {
    Calculate Ti = xi

T·LA;
    Calculate Qi = Ti − (1/σ2)×di;
}
//Comparison stage
for (k=R-1;k>=0;k--) {
    for (i=P-1;i>=0;i--) {
        Calculate Qi

k = Qi − xi,k×LA,k;
        if (xi,k = +1) 
            Move Qi

k into POS_LIST;
        else if (xi,k = −1) 
            Move Qi

k into MIN_LIST;
    }
    MAX_SEARCH in POS_LIST for LLR_POS;
    MAX_SEARCH in MIN_LIST for LLR_MIN;

LE,k =  (LLR_POS − LLR_MIN)/2;
}

Figure 5: Pseudo code for the optimized LLR generation.
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1/σ2 d0LA,k x0,k
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LLR_MIN LLR_MINQi
0
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Figure 6: Parallel architecture of the LLR generator.

register is updated with Qk
i . For the opposite list, LLR_MIN is employed to compare with

the registered value. It actually performs a NOP operation and the registered value stays

unchanged. After P cycles the comparison among Qk
i is finished. The registers contain

the maximum Qk
i in each of the two lists respectively, which are denoted as LLR_POS and
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Table 1: Silicon complexity and breakdown of the five FSD implementations

FSD 1 FSD 2 FSD 3 FSD 4 FSD 5

bi units (KG) 11.6 12.1 49.9 43.0 44.6

DE units (KG) 0.5 0.8 2.3 4.8 5.0

di units (KG) 2.9 5.5 10.0 15.0 15.5

Reg & ctrl (KG) 9.2 9.1 33.8 36.2 74.3

Total (KG) 24.2 27.5 96.0 99.0 139.4

LLR_MIN in Fig. 5. The difference between LLR_POS and LLR_MIN is the final output LE,k.

4 Implementation Results and Analysis

We improve the four-nodes-per-cycle FSD architecture described in [18] into complex

signal model to validate the impacts on implementation efficiency, and further extend the

architecture into eight-nodes-per-cycle version to provide doubled throughput for 64-QAM

modulation. For 16-QAM and 64-QAM modulation, the four- and the eight- nodes-per-

cycle architectures are employed respectively. For simplicity, all the five cases are denoted

as FSD 1 ∼ FSD 5 in the following parts:

FSD 1: 16-QAM, list size = 16, real model;

FSD 2: 16-QAM, list size = 16, complex model;

FSD 3: 64-QAM, list size = 64, real model;

FSD 4: 64-QAM, list size = 64, complex model;

FSD 5: 64-QAM, list size = 128, complex model.

Communications performance of the four-nodes-per-cycle FSD is given in Fig. 7, in

4 × 4 system with 16-QAM modulation, coupled with a four state, 1 / 3 code rate

Turbo decoder, which executes 8 decoding iterations; two iterations between inner MIMO

detector and outer Turbo decoder are performed. The performance of FSD with list size

= 16 is given in both real and complex signal model and the other cases are all in complex

signal model. List size is 16 for SESD. For K-best SD, K = 8 and K = 12 are adopted.

We can see that both FSD and K-best SD exhibit performance gaps compared with the

optimal SESD algorithm. The gaps can be compensated in certain degree by increasing
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Figure 7: Performance comparison among SESD, K-best SD and FSD.

the list size or K with higher complexity, as shown between FSD-16 and FSD-32, and

between K-best-8 and K-best-12. The BER curves for real and complex FSD are almost

overlapped and the performance of FSD-16 is slightly higher than K-best-12 at BER =

10−5. However, the complexity of K-best-12 is much higher compared with FSD-16 in

terms of visited nodes. The difference comes from the tree traversal strategy of the two

algorithms. The K-best SD needs to compute the PED for all the child nodes among the

K parents followed by a complicated sorting network to select the K survived nodes in

each level, but for the FSD, because the child nodes are selected only among the siblings

with a common parent, it is not necessary to compute the PED for all child nodes. For

example, in Fig. 7, the complex FSD with list size = 16 needs to visit only (4× 16) = 64

nodes, but the K-best SD with K = 12 needs to visit (16+3×12×16) = 592 nodes, which

is much higher compared with the FSD. Therefore we conclude that among sub-optimal

algorithms, the FSD algorithm is more efficient than the K-best algorithm.

The five cases of FSD implementation are synthesized on the same 0.13 µm CMOS

technology. The Silicon complexity and breakdown is shown in Table 1. The Silicon area

is measured in terms of gate equivalents (KG). We can see that the Silicon area of complex

FSD increases slightly compared with real FSD with the same modulation and list size,

by only 3 KG for both 16-QAM and 64-QAM modulation. However, the area of FSD

5 increases by 40 KG compared with FSD 4. The area of all the computational blocks
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(bi units, DE units and di units) remains approximately the same in FSD 5 compared

with FSD 4, but the proportion of registers is increased sharply, nearly doubled. It can

be concluded that for FSD the area increment comes mainly from the increased list size,

with nearly negligible impact from the choice of real or complex model.

The bi units occupy the largest proportion in the whole area. When moving from real

signal model to complex model, two identical carry save adder (CSA) trees are employed

to calculate both the real and the imaginary parts of bi. However, the number of required

CSAs for each of the CSA trees is significantly reduced because of the reduced number of

tree levels, making the overall proportion of bi units even decrease by a small amount.

The DE units need to select both real and imaginary parts of si, so the occupied area

is increased. But it does not impact on the total area too much because the DE units

share only a very small proportion (less than 3% for 16-QAM modulation, list size = 16)

in the whole architecture.

The di units need more computational resources in complex signal model because ei

is a complex value and both real and imaginary parts should be considered.

The same number of registers are required by both si and di, in real and complex

signal models, but a doubled number of registers are required by bi in complex model.

The control circuit remains approximately the same in both real and complex signal

models.

Table 2 shows the available throughput of the five cases. Although the implemen-

tations in real and complex signal models achieve the same processing speed in terms

of visited nodes per second (1.60 G in the four-nodes-per-cycle architecture and 3.08 G

in the eight-nodes-per-cycle architecture), there are large gaps between the throughput

in terms of coded bits per second, because the total numbers of visited nodes are quite

different between real and complex signal models. Hardware efficiency is given in terms

of throughput per area unit. We can see that either for 16-QAM or 64-QAM modulation,

implementations in complex signal model achieve higher values with the same list size.

Communications performance and implementation efficiency of the five implementa-

tions of FSD are shown in Fig. 8. The BER performance is given through simulations in
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Table 2: Throughput comparison among the five FSD implementations

FSD 1 FSD 2 FSD 3 FSD 4 FSD 5

Visited nodes 116 64 456 256 448

Max. clock freq. (MHz) 400 400 384.6 384.6 384.6

Nodes/second (G) 1.60 1.60 3.08 3.08 3.08

Throughput (Mbps) 213.3 376.5 159.1 279.7 161.9

Efficiency (Mbps/KG) 8.81 13.69 1.66 2.83 1.16
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Figure 8: Performance and Silicon complexity of the five FSD implementations.

4× 4 system, coupled with a four state, 1 / 3 code rate Turbo decoder, which executes 8

decoding iterations [30]. SQRD is applied to all the five cases and two iterations between

soft-output FSD and Turbo decoder are performed.

For 16-QAM modulation and list size = 16, the SNR at BER = 10−5 is 6.5 dB for

both real and complex FSD. The complex FSD achieves almost twice of the throughput

compared with the real FSD, but occupies only 13% more area. It is obvious that the

complex FSD is more efficient than the real FSD. For 64-QAM and list size = 64, the

complex FSD achieves also almost twice of the throughput compared with the real FSD

and occupies nearly the same area, however with a 0.5 dB SNR gap at BER = 10−5. The

performance gap can be compensated by increasing the list size, at the cost of increased

area and decreased throughput.

The proposed LLR generator is also synthesized on the 0.13 µm CMOS technology. It

occupies a Silicon area of 22 KG, at 500 MHz clock frequency [31]. In this implementation
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Table 3: Comparison with several recently published SISO MIMO detectors

[9] [6] [32] FSD 2

Antenna 4×4 4×4 4×4 4×4

Modulation 16-QAM 16-QAM 16-QAM 16-QAM

Algorithm K-best STS MMSE FSD

Technology 0.13 µm 90 nm 90 nm 0.13 µm

Max. clock freq. (MHz) 200 250 568 400

Throughput (Mbps) 106.6 72@16dB 757 376.5

Area (KG) 97 96 410 49.5

Efficiency( Mbps/KG) 1.10 0.75@16dB 1.85 7.61

the accumulation stage costs 17 cycles and the comparison stage costs 16 cycles. Thanks to

the pipeline architecture, the maximum throughput is determined by the stage with longer

delay, i.e., the accumulation stage. The achievable throughput is therefore (16×500)/18

= 444 Mbps, with an extra cycle to start a new procedure.

When combined with the four-nodes-per-cycle FSD architecture, a highly efficient

SISO MIMO detector is available, which costs only 49.5 KG Silicon area for 4×4 system

with 16-QAM modulation.

The implementation efficiency is compared with several recently published SISO MIMO

detectors in Table 3. The FSD 2 implemented in complex signal model achieves the highest

efficiency in terms of throughput per area unit. It achieves much higher throughput com-

pared with the SISO K-best SD reported in [9] and the SISO STS reported in [6], which

suffers variable throughput. The SISO MMSE detector achieves very high throughput at

the cost of 410 KG Silicon area, which reduces its efficiency.

5 Conclusion

In this paper we improve a recently proposed four-nodes-per-cycle FSD architecture into

complex signal model in order to verify the impacts on implementation efficiency and

further extend the architecture into eight-nodes-per-cycle version to provide doubled
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throughput for 64-QAM modulation. We conclude that the complex signal model is

more efficient for FSD implementation compared with the real signal model in terms of

throughput per area unit. For 16-QAM modulation, the complex FSD achieves nearly

doubled throughput (376.5 Mbps) with the same BER performance and only 3 KG ad-

ditional Silicon area compared with the real FSD. For 64-QAM modulation, thanks to

the improved eight-nodes-per-cycle architecture, the complex FSD achieves 279.7 Mbps

throughput. We also provide a parallel implementation of LLR generator with 444 Mbps

throughput in 4 × 4 system with 16-QAM modulation. When combined with the LLR

generator, a highly efficient SISO FSD is available.
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