1,064 research outputs found

    DISTRIBUTED INTELLIGENT SPECTRUM MANAGEMENT IN COGNITIVE RADIO AD HOC NETWORKS

    Get PDF
    The rapid growth of the number of wireless devices has brought an exponential increase in the demand of the radio spectrum. However, according to the Federal Communications Commission (FCC), almost all the radio spectrum for wireless com- munications has already been allocated. In addition, according to FCC, up to 85% of the allocated spectrum is underutilized due to the current fixed spectrum alloca- tion policy. To alleviate the spectrum scarcity problem, FCC has suggested a new paradigm for dynamically accessing the allocated spectrum. Cognitive radio (CR) technology has emerged as a promising solution to realize dynamic spectrum access (DSA). With the capability of sensing the frequency bands in a time and location- varying spectrum environment and adjusting the operating parameters based on the sensing outcome, CR technology allows an unlicensed user to exploit the licensed channels which are not used by licensed users in an opportunistic manner. In this dissertation, distributed intelligent spectrum management in CR ad hoc networks is explored. In particular, four spectrum management issues in CR ad hoc networks are investigated: 1) distributed broadcasting in CR ad hoc networks; 2) distributed optimal HELLO message exchange in CR ad hoc networks; 3) distributed protocol to defend a particular network security attack in CR ad hoc networks; and 4) distributed spectrum handoff protocol in CR ad hoc networks. The research in this dissertation has fundamental impact on CR ad hoc network establishment, net- work functionality, network security, and network performance. In addition, many of the unique challenges of distributed intelligent spectrum management in CR ad hoc networks are addressed for the first time in this dissertation. These challenges are extremely difficult to solve due to the dynamic spectrum environment and they have significant effects on network functionality and performance. This dissertation is essential for establishing a CR ad hoc network and realizing networking protocols for seamless communications in CR ad hoc networks. Furthermore, this dissertation provides critical theoretical insights for future designs in CR ad hoc networks

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Fuzzy Based PC-PUSH in CR-MANETs

    Get PDF
    In cognitive radio (CR), the secondary user (SU) needs to hand off its ongoing communication to an idle channel in order to avoid interference to the primary user (PU). Spectrum hand off issue becomes challenging in CR mobile ad hoc networks (CR-MANETs) because of the uncertainty in spectrum availability, broad range of spectrum bands and lack of central entity. The purpose of this study is to design a unified spectrum handoff (USH) scheme for CR-MANETs that considers the spectrum heterogeneity and its availability over time and space. A local flow hand off is performed when spectrum hand off cannot be carried out due to the SUs mobility. To improve further USH, preemptive unified spectrum handoff (PUSH) algorithm is proposed in which two different preemptive hand off threshold regions are defined. The PUSH algorithm also predicts the cognitive link availability considering the PU interference boundary. Although the PUSH scheme improves the hand off performance, the number of spectrum hand offs due to the PU activity should be reduced in this scheme. Therefore, the PC-PUSH (Power Controller-PUSH) scheme is proposed in which the fuzzy logic is used to improve the PUSH in terms of the number of spectrum handoffs because of the PU activity. The PC-PUSH decreases the interference to the PUs, while reducing the number of spectrum handoffs. The results show that the proposed scheme improves the link maintenance probability, decreases the hand off delay, and reduces the number of spectrum handoffs

    A Comprehensive Analysis of Literature Reported Mac and Phy Enhancements of Zigbee and its Alliances

    Get PDF
    Wireless communication is one of the most required technologies by the common man. The strength of this technology is rigorously progressing towards several novel directions in establishing personal wireless networks mounted over on low power consuming systems. The cutting-edge communication technologies like bluetooth, WIFI and ZigBee significantly play a prime role to cater the basic needs of any individual. ZigBee is one such evolutionary technology steadily getting its popularity in establishing personal wireless networks which is built on small and low-power digital radios. Zigbee defines the physical and MAC layers built on IEEE standard. This paper presents a comprehensive survey of literature reported MAC and PHY enhancements of ZigBee and its contemporary technologies with respect to performance, power consumption, scheduling, resource management and timing and address binding. The work also discusses on the areas of ZigBee MAC and PHY towards their design for specific applications

    Data Gathering in Cognitive Radio Ad Hoc and Sensor Wireless Networks

    Get PDF
    Data gathering is a network communication task in which all of the network’s nodes send their individual messages to a distinguished sink node. In cognitive radio ad hoc and sensor wireless networks (CR-AHSWNs), unlicensed secondary users (SUs) opportunistically use channels when the licensed primary users are not using them. Therefore, the channels available to each SU vary with time and location, which makes the development of data gathering algorithms for CR-AHSWNs challenging. In this thesis, a data gathering protocol for CR-AHSWNs is proposed. The protocol consists of several distributed SU action selection and channel selection algorithms. An algorithm that can reduce the data gathering delay by selecting message forwarding SUs is also proposed. Finally, an algorithm that calculates an estimate of the successful data gathering ratio (SDGR) is proposed. The SDGR is affected by each SU’s channel availability and network collisions, and the exact value is extremely challenging to calculate
    corecore