2,347 research outputs found

    Optimal Pricing to Manage Electric Vehicles in Coupled Power and Transportation Networks

    Full text link
    We study the system-level effects of the introduction of large populations of Electric Vehicles on the power and transportation networks. We assume that each EV owner solves a decision problem to pick a cost-minimizing charge and travel plan. This individual decision takes into account traffic congestion in the transportation network, affecting travel times, as well as as congestion in the power grid, resulting in spatial variations in electricity prices for battery charging. We show that this decision problem is equivalent to finding the shortest path on an "extended" transportation graph, with virtual arcs that represent charging options. Using this extended graph, we study the collective effects of a large number of EV owners individually solving this path planning problem. We propose a scheme in which independent power and transportation system operators can collaborate to manage each network towards a socially optimum operating point while keeping the operational data of each system private. We further study the optimal reserve capacity requirements for pricing in the absence of such collaboration. We showcase numerically that a lack of attention to interdependencies between the two infrastructures can have adverse operational effects.Comment: Submitted to IEEE Transactions on Control of Network Systems on June 1st 201

    A comparison of resource allocation process in grid and cloud technologies

    Get PDF
    Grid Computing and Cloud Computing are two different technologies that have emerged to validate the long-held dream of computing as utilities which led to an important revolution in IT industry. These technologies came with several challenges in terms of middleware, programming model, resources management and business models. These challenges are seriously considered by Distributed System research. Resources allocation is a key challenge in both technologies as it causes the possible resource wastage and service degradation. This paper is addressing a comprehensive study of the resources allocation processes in both technologies. It provides the researchers with an in-depth understanding of all resources allocation related aspects and associative challenges, including: load balancing, performance, energy consumption, scheduling algorithms, resources consolidation and migration. The comparison also contributes an informal definition of the Cloud resource allocation process. Resources in the Cloud are being shared by all users in a time and space sharing manner, in contrast to dedicated resources that governed by a queuing system in Grid resource management. Cloud Resource allocation suffers from extra challenges abbreviated by achieving good load balancing and making right consolidation decision

    Stochastic Greedy-Based Particle Swarm Optimization for Workflow Application in Grid

    Get PDF
    The workflow application is a common grid application. The objective of a workflow application is to complete all the tasks within the shortest time, i.e., minimal makespan. A job scheduler with a high-efficient scheduling algorithm is required to solve workflow scheduling based on grid information. Scheduling problems are NP-complete problems, which have been well solved by metaheuristic algorithms. To attain effective solutions to workflow application, an algorithm named the stochastic greedy PSO (SGPSO) is proposed to solve workflow scheduling; a new velocity update rule based on stochastic greedy is suggested. Restated, a stochastic greedy-driven search guidance is provided to particles. Meanwhile, a stochastic greedy probability (SGP) parameter is designed to help control whether the search behavior of particles is exploitation or exploration to improve search efficiency. The advantages of the proposed scheme are retaining exploration capability during a search, reducing complexity and computation time, and easy to implement. Retaining exploration capability during a search prevents particles from getting trapped on local optimums. Additionally, the diversity of the proposed SGPSO is verified and analyzed. The experimental results demonstrate that the SGPSO proposed can effectively solve workflow class problems encountered in the grid environment
    • …
    corecore