815 research outputs found

    Novel wireless modulation technique based on noise

    Get PDF
    In this paper, a new RF modulation technique is presented. Instead of using sinusoidal carriers as information bearer, pure noise is applied. This allows very simple radio architectures to be used. Spread-spectrum based technology is applied to modulate the noise bearer. Since the transmission bandwidth of the noise bearer can be made very wide, up to ultra-wideband regions, extremely large processing gains can be obtained. This will provide robustness in interference-prone environments. To avoid the local regeneration of the noise reference at the receiver, the Transmit-Reference (TR) concept is applied. In this concept, both the reference noise signal and the modulated noise signal are transmitted, together forming\ud the bearer. The reference and modulated signals are separated by applying a time offset. By applying different delay times for different channels (users) a new multiple access scheme results based on delay: Delay Division Multiple Access (DDMA). A theoretical analysis is given for the link performance of a single-user and a multi-user system. A testbed has been built to demonstrate the concept. The demonstrator operates in a 50 MHz bandwidth centered at 2.4 GHz. Processing gains ranging from 10Âż30 dB have been tested. The testbed confirms the basic behavior as predicted by the theory

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation

    Multi-User Multi-Carrier Differential Chaos Shift Keying Communication System

    Full text link
    In this paper, a multi user Multi-Carrier Differential Chaos Shift Keying (MC-DCSK) modulation is presented. The system endeavors to provide a good trade-off between robustness, energy efficiency and high data rate, while still being simple. In this architecture of MC-DCSK system, for each user, chaotic reference sequence is transmitted over a predefined subcarrier frequency. Multiple modulated data streams are transmitted over the remaining subcarriers allocated for each user. This transmitter structure saves energy and increases the spectral efficiency of the conventional DCSK system.Comment: Accepted in the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC 2013

    Code-Multiplexing-Based One-Way Detect-and-Forward Relaying Schemes for Multiuser UWB MIMO Systems

    Get PDF
    In this paper, we consider decode-and-forward (DF) one-way relaying schemes for multiuser impulse-radio ultrawideband (UWB) communications. We assume low-complexity terminals with limited processing capabilities and a central transceiver unit (i.e., the relay) with a higher computational capacity. All nodes have a single antenna differently from the relay in which multiple antennas may be installed. In order to keep the complexity as low as possible, we concentrate on noncoherent transceiver architectures based on multiuser code-multiplexing transmitted-reference schemes. We propose various relaying systems with different computational complexity and different levels of required channel knowledge. The proposed schemes largely outperform systems without relay in terms of both bit error rate (BER) performance and coverage

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown
    • 

    corecore