7 research outputs found

    A HOS-Based Blind Spectrum Sensing in Noise Uncertainty

    Get PDF
    Spectrum sensing for cognitive radio is a challenging task since it has to be able to detect the primary signal at a low signal to noise ratio (SNR). At a low SNR, the variance of noise fluctuates due to noise uncertainty. Detection of the primary signal will be difficult especially for blind spectrum sensing methods that rely on the variance of noise for their threshold setting, such as energy detection. Instead of using the energy difference, we propose a spectrum sensing method based on the distribution difference. When the channel is occupied, the distribution of the received signal, which propagates under a wireless fading channel, will have a non-Gaussian distribution. This will be different from the  Gaussian noise when the channel is vacant. Kurtosis, a higher order statistic (HOS) of  the  4th order,  is used as normality test for the test statistic. We measured the detection rate of the proposed method by performing a simulation of the detection process. Our proposed method's performance proved superior in detecting a real digital TV signal in noise uncertainty

    Efficient and Robust Signal Detection Algorithms for the Communication Applications

    Get PDF
    Signal detection and estimation has been prevalent in signal processing and communications for many years. The relevant studies deal with the processing of information-bearing signals for the purpose of information extraction. Nevertheless, new robust and efficient signal detection and estimation techniques are still in demand since there emerge more and more practical applications which rely on them. In this dissertation work, we proposed several novel signal detection schemes for wireless communications applications, such as source localization algorithm, spectrum sensing method, and normality test. The associated theories and practice in robustness, computational complexity, and overall system performance evaluation are also provided

    A HOS-Based Blind Spectrum Sensing in Noise Uncertainty

    Full text link

    Cooperative spectrum sensing using adaptive quantization mapping for mobile cognitive radio networks

    Get PDF
    Sparsity in spectrum is the result of spectrum underutilization. Cognitive radio (CR) technology has been proposed to address inefficiency of spectrum utilisation through dynamic spectrum access technique. CR in general allows secondary node (SN) users to access the licensed or primary users’ (PU) band without disrupting their activities. In CR cooperative spectrum sensing (CSS), a group of SNs share their spectrum sensing information to provide a better picture of the spectrum usage over the area where the SNs are located. In centralised CCS approach, all the SNs report their sensing information to a master node (MN) through a control reporting channel before the MN decides the spectrum bands that can be used by the SNs. To reduce unnecessary reporting information by the cooperating nodes, orthogonal frequency division multiplexing (OFDM) Subcarrier Mapping (SCM) spectrum exchange information was proposed. In this technique, the detection power level from each secondary SN user is quantized and mapped into a single OFDM subcarrier number before delivering it to the MN. Most researches in cooperative spectrum sensing often stated that the SNs are absolutely in stationary condition. So far, the mobility effect on OFDM based SCM spectrum exchange information has not been addressed before. In this thesis, the benchmarking of SCM in mobility environment is carried out. The results showed that during mobility, the performance of OFDM-based SCM spectrum exchange information degraded significantly. To alleviate the degradation, OFDM-based spectrum exchange information using adaptive quantization is proposed, which is known as Dynamic Subcarrier Mapping (DSM). The method is proposed to adapt to changes in detected power level during mobility. This new nonuniform subcarrier mapping considers the range of received power, threshold level and dynamic subcarrier width. The range of received power is first compressed or expanded depending on the intensity of the received power against a pre-determined threshold level before the OFDM subcarrier number is computed. The results showed that OFDM-based DSM spectrum exchange information is able to enhance the probability of detection for cooperative sensing by up to 43% and reduce false alarm by up to 28%. The DSM spectrum exchange information method has the potential to improve cooperative spectrum sensing for future CR mobile wireless networks

    Advanced Statistical Signal Processing Methods in Sensing, Detection, and Estimation for Communication Applications

    Get PDF
    The applications of wireless communications and digital signal processing have dramatically changed the way we live, work, and learn over decades. The requirement of higher throughput and ubiquitous connectivity for wireless communication systems has become prevalent nowadays. Signal sensing, detection and estimation have been prevalent in signal processing and communications for many years. The relevant studies deal with the processing of information-bearing signals for the purpose of information extraction. Nevertheless, new robust and efficient signal sensing, detection and estimation techniques are still in demand since there emerge more and more practical applications which rely on them. In this dissertation work, we proposed several novel signal sensing, detection and estimation schemes for wireless communications applications, such as spectrum sensing, symbol-detection/channel-estimation, and encoder identification. The associated theories and practice in robustness, computational complexity, and overall system performance evaluation are also provided
    corecore