7,050 research outputs found

    STWalk: Learning Trajectory Representations in Temporal Graphs

    Full text link
    Analyzing the temporal behavior of nodes in time-varying graphs is useful for many applications such as targeted advertising, community evolution and outlier detection. In this paper, we present a novel approach, STWalk, for learning trajectory representations of nodes in temporal graphs. The proposed framework makes use of structural properties of graphs at current and previous time-steps to learn effective node trajectory representations. STWalk performs random walks on a graph at a given time step (called space-walk) as well as on graphs from past time-steps (called time-walk) to capture the spatio-temporal behavior of nodes. We propose two variants of STWalk to learn trajectory representations. In one algorithm, we perform space-walk and time-walk as part of a single step. In the other variant, we perform space-walk and time-walk separately and combine the learned representations to get the final trajectory embedding. Extensive experiments on three real-world temporal graph datasets validate the effectiveness of the learned representations when compared to three baseline methods. We also show the goodness of the learned trajectory embeddings for change point detection, as well as demonstrate that arithmetic operations on these trajectory representations yield interesting and interpretable results.Comment: 10 pages, 5 figures, 2 table

    Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy

    Get PDF
    BRCA1, a key factor in homologous recombination repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n=1602 sporadic and n=50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n=1952 and n=249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p<0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol β expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol β expressing BRCA1 negative tumours (ps<0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol β. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy

    Automatic camera selection for activity monitoring in a multi-camera system for tennis

    Get PDF
    In professional tennis training matches, the coach needs to be able to view play from the most appropriate angle in order to monitor players' activities. In this paper, we describe and evaluate a system for automatic camera selection from a network of synchronised cameras within a tennis sporting arena. This work combines synchronised video streams from multiple cameras into a single summary video suitable for critical review by both tennis players and coaches. Using an overhead camera view, our system automatically determines the 2D tennis-court calibration resulting in a mapping that relates a player's position in the overhead camera to their position and size in another camera view in the network. This allows the system to determine the appearance of a player in each of the other cameras and thereby choose the best view for each player via a novel technique. The video summaries are evaluated in end-user studies and shown to provide an efficient means of multi-stream visualisation for tennis player activity monitoring

    Intelligent Foreign Particle Inspection Machine for Injection Liquid Examination Based on Modified Pulse-Coupled Neural Networks

    Get PDF
    A biologically inspired spiking neural network model, called pulse-coupled neural networks (PCNN), has been applied in an automatic inspection machine to detect visible foreign particles intermingled in glucose or sodium chloride injection liquids. Proper mechanisms and improved spin/stop techniques are proposed to avoid the appearance of air bubbles, which increases the algorithms' complexity. Modified PCNN is adopted to segment the difference images, judging the existence of foreign particles according to the continuity and smoothness properties of their moving traces. Preliminarily experimental results indicate that the inspection machine can detect the visible foreign particles effectively and the detection speed, accuracy and correct detection rate also satisfying the needs of medicine preparation

    Block Chain Technology Assisted Privacy Preserving Resource Allocation Scheme for Internet of Things Based Cloud Computing

    Get PDF
    Resource scheduling in cloud environments is a complex task, as it involves allocating suitable resources based on Quality of Service (QoS) requirements. Existing resource allocation policies face challenges due to resource dispersion, heterogeneity, and uncertainty. In this research, the authors propose a novel approach called Quasi-Oppositional Artificial Jellyfish Optimization Algorithm (QO-AJFOA) for resource scheduling in cloud computing (CC) environments. The QO-AJFOA model aims to optimize the allocation of computing power and bandwidth resources in servers, with the goal of maximizing long-term utility. The technique combines quasi-oppositional based learning (QOBL) with traditional AJFOA. Additionally, a blockchain-assisted Smart Contract protocol is used to distribute resource allocation, ensuring agreement on wireless channel utilization. Experimental validation of the QO-AJFOA technique demonstrates its promising performance compared to recent models, as tested with varying numbers of tasks and iterations. The proposed approach addresses the challenges of resource scheduling in cloud environments and contributes to the existing literature on resource allocation policies

    Non-Local Compressive Sensing Based SAR Tomography

    Get PDF
    Tomographic SAR (TomoSAR) inversion of urban areas is an inherently sparse reconstruction problem and, hence, can be solved using compressive sensing (CS) algorithms. This paper proposes solutions for two notorious problems in this field: 1) TomoSAR requires a high number of data sets, which makes the technique expensive. However, it can be shown that the number of acquisitions and the signal-to-noise ratio (SNR) can be traded off against each other, because it is asymptotically only the product of the number of acquisitions and SNR that determines the reconstruction quality. We propose to increase SNR by integrating non-local estimation into the inversion and show that a reasonable reconstruction of buildings from only seven interferograms is feasible. 2) CS-based inversion is computationally expensive and therefore barely suitable for large-scale applications. We introduce a new fast and accurate algorithm for solving the non-local L1-L2-minimization problem, central to CS-based reconstruction algorithms. The applicability of the algorithm is demonstrated using simulated data and TerraSAR-X high-resolution spotlight images over an area in Munich, Germany.Comment: 10 page
    corecore