3,208 research outputs found

    Optimal scheduling for refueling multiple autonomous aerial vehicles

    Get PDF
    The scheduling, for autonomous refueling, of multiple unmanned aerial vehicles (UAVs) is posed as a combinatorial optimization problem. An efficient dynamic programming (DP) algorithm is introduced for finding the optimal initial refueling sequence. The optimal sequence needs to be recalculated when conditions change, such as when UAVs join or leave the queue unexpectedly. We develop a systematic shuffle scheme to reconfigure the UAV sequence using the least amount of shuffle steps. A similarity metric over UAV sequences is introduced to quantify the reconfiguration effort which is treated as an additional cost and is integrated into the DP algorithm. Feasibility and limitations of this novel approach are also discussed

    Algorithms for multi-robot systems on the cooperative exploration & last-mile delivery problems

    Get PDF
    La aparición de los vehículos aéreos no tripulados (UAVs) y de los vehículos terrestres no tripulados (UGVs) ha llevado a la comunidad científica a enfrentarse a problemas ideando paradigmas de cooperación con UGVs y UAVs. Sin embargo, no suele ser trivial determinar si la cooperación entre UGVs y UAVs es adecuada para un determinado problema. Por esta razón, en esta tesis, investigamos un paradigma particular de cooperación UGV-UAV en dos problemas de la literatura, y proponemos un controlador autónomo para probarlo en escenarios simulados. Primero, formulamos un problema particular de exploración cooperativa que consiste en alcanzar un conjunto de puntos de destino en un área de exploración a gran escala. Este problema define al UGV como una estación de carga móvil para transportar el UAV a través de diferentes lugares desde donde el UAV puede alcanzar los puntos de destino. Por consiguiente, proponemos el algoritmo TERRA para resolverlo. Este algoritmo se destaca por dividir el problema de exploración en cinco subproblemas, en los que cada subproblema se resuelve en una etapa particular del algoritmo. Debido a la explosión de la entrega de paquetes en las empresas de comercio electrónico, formulamos también una generalización del conocido problema de la entrega en la última milla. En este caso, el UGV actúa como una estación de carga móvil que transporta a los paquetes y a los UAVs, y estos se encargan de entregarlos. De esta manera, seguimos la estrategia de división descrita por TERRA, y proponemos el algoritmo COURIER. Este algoritmo replica las cuatro primeras etapas de TERRA, pero construye una nueva quinta etapa para producir un plan de tareas que resuelva el problema. Para evaluar el paradigma de cooperación UGV-UAV en escenarios simulados, proponemos el controlador autónomo ARIES. Este controlador sigue un enfoque jerárquico descentralizado de líder-seguidor para integrar cualquier paradigma de cooperación de manera distribuida. Ambos algoritmos han sido caracterizados para identificar los aspectos relevantes del paradigma de cooperación en los problemas relacionados. Además, ambos demuestran un gran rendimiento del paradigma de cooperación en tales problemas, y al igual que el controlador autónomo, revelan un gran potencial para futuras aplicaciones reales.The emergence of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) has conducted the research community to face historical complex problems by devising UGV-UAV cooperation paradigms. However, it is usually not a trivial task to determine whether or not a UGV-UAV cooperation is suitable for a particular problem. For this reason, in this thesis, we investigate a particular UGV-UAV cooperation paradigm over two problems in the literature, and we propose an autonomous controller to test it on simulated scenarios. Driven by the planetary exploration, we formulate a particular cooperative exploration problem consisting of reaching a set of target points in a large-scale exploration area. This problem defines the UGV as a moving charging station to carry the UAV through different locations from where the UAV can reach the target points. Consequently, we propose the cooperaTive ExploRation Routing Algorithm (TERRA) to solve it. This algorithm stands out for splitting up the exploration problem into five sub-problems, in which each sub-problem is solved in a particular stage of the algorithm. In the same way, driven by the explosion of parcels delivery in e-commerce companies, we formulate a generalization of the well-known last-mile delivery problem. This generalization defines the same UGV’s and UAV’s rol as the exploration problem. That is, the UGV acts as a moving charging station which carries the parcels along several UAVs to deliver them. In this way, we follow the split strategy depicted by TERRA to propose the COoperative Unmanned deliveRIEs planning algoRithm (COURIER). This algorithm replicates the first four TERRA’s stages, but it builds a new fifth stage to produce a task plan solving the problem. In order to evaluate the UGV-UAV cooperation paradigm on simulated scenarios, we propose the Autonomous coopeRatIve Execution System (ARIES). This controller follows a hierarchical decentralized leader-follower approach to integrate any cooperation paradigm in a distributed manner. Both algorithms have been characterized to identify the relevant aspects of the cooperation paradigm in the related problems. Also, both of them demonstrate a great performance of the cooperation paradigm in such problems, and as well as the autonomous controller, reveal a great potential for future real applications

    A review of artificial intelligence applied to path planning in UAV swarms

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/ s00521-021-06569-4This is the accepted version of: A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernández-Blanco, "A review of artificial intelligence applied to path planning in UAV swarms", Neural Computing and Applications, vol. 34, pp. 153–170, 2022. https://doi.org/10.1007/s00521-021-06569-4[Abstract]: Path Planning problems with Unmanned Aerial Vehicles (UAVs) are among the most studied knowledge areas in the related literature. However, few of them have been applied to groups of UAVs. The use of swarms allows to speed up the flight time and, thus, reducing the operational costs. When combined with Artificial Intelligence (AI) algorithms, a single system or operator can control all aircraft while optimal paths for each one can be computed. In order to introduce the current situation of these AI-based systems, a review of the most novel and relevant articles was carried out. This review was performed in two steps: first, a summary of the found articles; second, a quantitative analysis of the publications found based on different factors, such as the temporal evolution or the number of articles found based on different criteria. Therefore, this review provides not only a summary of the most recent work but it gives an overview of the trend in the use of AI algorithms in UAV swarms for Path Planning problems. The AI techniques of the articles found can be separated into four main groups based on their technique: reinforcement Learning techniques, Evolutive Computing techniques, Swarm Intelligence techniques, and, Graph Neural Networks. The final results show an increase in publications in recent years and that there is a change in the predominance of the most widely used techniques.This work is supported by Instituto de Salud Carlos III, grant number PI17/01826 (Collaborative Project in Genomic Data Integration (CICLOGEN) funded by the Instituto de Salud Carlos III from the Spanish National plan for Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Funds (FEDER)—“A way to build Europe.”. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and “Drug Discovery Galician Network” Ref. ED431G/01 and the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23). This work was also funded by the grant for the consolidation and structuring of competitive research units (ED431C 2018/49) from the General Directorate of Culture, Education and University Management of Xunta de Galicia, and the CYTED network (PCI2018_093284) funded by the Spanish Ministry of Ministry of Innovation and Science. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia “PRACTICUM DIRECT” Ref. IN845D-2020/03.Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/49Xunta de Galicia; IN845D-2020/0

    Multiple UAV systems: a survey

    Get PDF
    Nowadays, Unmanned Aerial Vehicles (UAVs) are used in many different applications. Using systems of multiple UAVs is the next obvious step in the process of applying this technology for variety of tasks. There are few research works that cover the applications of these systems and they are all highly specialized. The goal of this survey is to fill this gap by providing a generic review on different applications of multiple UAV systems that have been developed in recent years. We also present a nomenclature and architecture taxonomy for these systems. In the end, a discussion on current trends and challenges is provided.This work was funded by the Ministry of Economy, Industryand Competitiveness of Spain under Grant Nos. TRA2016-77012-R and BES-2017-079798Peer ReviewedPostprint (published version

    Vision-based Learning for Drones: A Survey

    Full text link
    Drones as advanced cyber-physical systems are undergoing a transformative shift with the advent of vision-based learning, a field that is rapidly gaining prominence due to its profound impact on drone autonomy and functionality. Different from existing task-specific surveys, this review offers a comprehensive overview of vision-based learning in drones, emphasizing its pivotal role in enhancing their operational capabilities under various scenarios. We start by elucidating the fundamental principles of vision-based learning, highlighting how it significantly improves drones' visual perception and decision-making processes. We then categorize vision-based control methods into indirect, semi-direct, and end-to-end approaches from the perception-control perspective. We further explore various applications of vision-based drones with learning capabilities, ranging from single-agent systems to more complex multi-agent and heterogeneous system scenarios, and underscore the challenges and innovations characterizing each area. Finally, we explore open questions and potential solutions, paving the way for ongoing research and development in this dynamic and rapidly evolving field. With growing large language models (LLMs) and embodied intelligence, vision-based learning for drones provides a promising but challenging road towards artificial general intelligence (AGI) in 3D physical world
    corecore