8,901 research outputs found

    Location prediction based on a sector snapshot for location-based services

    Get PDF
    In location-based services (LBSs), the service is provided based on the users' locations through location determination and mobility realization. Most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shaped cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. Such techniques are the new Markov-based mobility prediction (NMMP) and prediction location model (PLM) that deal with inner cell structure and different levels of prediction, respectively. The NMMP and PLM techniques suffer from complex computation, accuracy rate regression, and insufficient accuracy. In this paper, a novel cell splitting algorithm is proposed. Also, a new prediction technique is introduced. The cell splitting is universal so it can be applied to all types of cells. Meanwhile, this algorithm is implemented to the Micro cell in parallel with the new prediction technique. The prediction technique, compared with two classic prediction techniques and the experimental results, show the effectiveness and robustness of the new splitting algorithm and prediction technique

    A new splitting-based displacement prediction approach for location-based services

    Get PDF
    In location-based services (LBSs), the service is provided based on the users' locations through location determination and mobility realization. Several location prediction models have been proposed to enhance and increase the relevance of the information retrieved by users of mobile information systems, but none of them studied the relationship between accuracy rate of prediction and the performance of the model in terms of consuming resources and constraints of mobile devices. Most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shape cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. One such technique is the Prediction Location Model (PLM), which deals with inner cell structure. The PLM technique suffers from memory usage and poor accuracy. The main goal of this paper is to propose a new path prediction technique for Location-Based Services. The new approach is competitive and more efficient compared to PLM regarding measurements such as accuracy rate of location prediction and memory usage

    3D Transition Matrix Solution for a Path Dependency Problem of Markov Chains-Based Prediction in Cellular Networks

    Get PDF
    Handover (HO) management is one of the critical challenges in current and future mobile communication systems due to new technologies being deployed at a network level, such as small and femtocells. Because of the smaller sizes of cells, users are expected to perform more frequent HOs, which can increase signaling costs and also decrease user's performance, if a HO is performed poorly. In order to address this issue, predictive HO techniques, such as Markov chains (MC), have been introduced in the literature due to their simplicity and generality. This technique, however, experiences a path dependency problem, specially when a user performs a HO to the same cell, also known as a re-visit. In this paper, the path dependency problem of this kind of predictors is tackled by introducing a new 3D transition matrix, which has an additional dimension representing the orders of HOs, instead of a conventional 2D one. Results show that the proposed algorithm outperforms the classical MC based predictors both in terms of accuracy and HO cost when re-visits are considered

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    An Intelligent Mobility Prediction Scheme for Location-Based Service over Cellular Communications Network

    Get PDF
    One of the trickiest challenges introduced by cellular communications networks is mobility prediction for Location Based-Services (LBSs). Hence, an accurate and efficient mobility prediction technique is particularly needed for these networks. The mobility prediction technique incurs overheads on the transmission process. These overheads affect properties of the cellular communications network such as delay, denial of services, manual filtering and bandwidth. The main goal of this research is to enhance a mobility prediction scheme in cellular communications networks through three phases. Firstly, current mobility prediction techniques will be investigated. Secondly, innovation and examination of new mobility prediction techniques will be based on three hypothesises that are suitable for cellular communications network and mobile user (MU) resources with low computation cost and high prediction success rate without using MU resources in the prediction process. Thirdly, a new mobility prediction scheme will be generated that is based on different levels of mobility prediction. In this thesis, a new mobility prediction scheme for LBSs is proposed. It could be considered as a combination of the cell and routing area (RA) prediction levels. For cell level prediction, most of the current location prediction research is focused on generalized location models, where the geographic extent is divided into regular-shape cells. These models are not suitable for certain LBSs where the objectives are to compute and present on-road services. Such techniques are the New Markov-Based Mobility Prediction (NMMP) and Prediction Location Model (PLM) that deal with inner cell structure and different levels of prediction, respectively. The NMMP and PLM techniques suffer from complex computation, accuracy rate regression and insufficient accuracy. In this thesis, Location Prediction based on a Sector Snapshot (LPSS) is introduced, which is based on a Novel Cell Splitting Algorithm (NCPA). This algorithm is implemented in a micro cell in parallel with the new prediction technique. The LPSS technique, compared with two classic prediction techniques and the experimental results, shows the effectiveness and robustness of the new splitting algorithm and prediction technique. In the cell side, the proposed approach reduces the complexity cost and prevents the cell level prediction technique from performing in time slots that are too close. For these reasons, the RA avoids cell-side problems. This research discusses a New Routing Area Displacement Prediction for Location-Based Services (NRADP) which is based on developed Ant Colony Optimization (ACO). The NRADP, compared with Mobility Prediction based on an Ant System (MPAS) and the experimental results, shows the effectiveness, higher prediction rate, reduced search stagnation ratio, and reduced computation cost of the new prediction technique

    Predictive and core-network efficient RRC signalling for active state handover in RANs with control/data separation

    Get PDF
    Frequent handovers (HOs) in dense small cell deployment scenarios could lead to a dramatic increase in signalling overhead. This suggests a paradigm shift towards a signalling conscious cellular architecture with intelligent mobility management. In this direction, a futuristic radio access network with a logical separation between control and data planes has been proposed in research community. It aims to overcome limitations of the conventional architecture by providing high data rate services under the umbrella of a coverage layer in a dual connection mode. This approach enables signalling efficient HO procedures, since the control plane remains unchanged when the users move within the footprint of the same umbrella. Considering this configuration, we propose a core-network efficient radio resource control (RRC) signalling scheme for active state HO and develop an analytical framework to evaluate its signalling load as a function of network density, user mobility and session characteristics. In addition, we propose an intelligent HO prediction scheme with advance resource preparation in order to minimise the HO signalling latency. Numerical and simulation results show promising gains in terms of reduction in HO latency and signalling load as compared with conventional approaches
    • …
    corecore