5 research outputs found

    Sensor Signal and Information Processing II [Editorial]

    Get PDF
    This Special Issue compiles a set of innovative developments on the use of sensor signals and information processing. In particular, these contributions report original studies on a wide variety of sensor signals including wireless communication, machinery, ultrasound, imaging, and internet data, and information processing methodologies such as deep learning, machine learning, compressive sensing, and variational Bayesian. All these devices have one point in common: These algorithms have incorporated some form of computational intelligence as part of their core framework in problem solving. They have the capacity to generalize and discover knowledge for themselves, learning to learn new information whenever unseen data are captured

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    A review on deep learning applications in prognostics and health management

    Get PDF
    Deep learning has attracted intense interest in Prognostics and Health Management (PHM), because of its enormous representing power, automated feature learning capability and best-in-class performance in solving complex problems. This paper surveys recent advancements in PHM methodologies using deep learning with the aim of identifying research gaps and suggesting further improvements. After a brief introduction to several deep learning models, we review and analyze applications of fault detection, diagnosis and prognosis using deep learning. The survey validates the universal applicability of deep learning to various types of input in PHM, including vibration, imagery, time-series and structured data. It also reveals that deep learning provides a one-fits-all framework for the primary PHM subfields: fault detection uses either reconstruction error or stacks a binary classifier on top of the network to detect anomalies; fault diagnosis typically adds a soft-max layer to perform multi-class classification; prognosis adds a continuous regression layer to predict remaining useful life. The general framework suggests the possibility of transfer learning across PHM applications. The survey reveals some common properties and identifies the research gaps in each PHM subfield. It concludes by summarizing some major challenges and potential opportunities in the domain

    A Novel Method for Early Gear Pitting Fault Diagnosis Using Stacked SAE and GBRBM

    No full text
    Research on data-driven fault diagnosis methods has received much attention in recent years. The deep belief network (DBN) is a commonly used deep learning method for fault diagnosis. In the past, when people used DBN to diagnose gear pitting faults, it was found that the diagnosis result was not good with continuous time domain vibration signals as direct inputs into DBN. Therefore, most researchers extracted features from time domain vibration signals as inputs into DBN. However, it is desirable to use raw vibration signals as direct inputs to achieve good fault diagnosis results. Therefore, this paper proposes a novel method by stacking spare autoencoder (SAE) and Gauss-Binary restricted Boltzmann machine (GBRBM) for early gear pitting faults diagnosis with raw vibration signals as direct inputs. The SAE layer is used to compress the raw vibration data and the GBRBM layer is used to effectively process continuous time domain vibration signals. Vibration signals of seven early gear pitting faults collected from a gear test rig are used to validate the proposed method. The validation results show that the proposed method maintains a good diagnosis performance under different working conditions and gives higher diagnosis accuracy compared to other traditional methods
    corecore