6,521 research outputs found

    Semi-automatic semantic enrichment of raw sensor data

    Get PDF
    One of the more recent sources of large volumes of generated data is sensor devices, where dedicated sensing equipment is used to monitor events and happenings in a wide range of domains, including monitoring human biometrics. In recent trials to examine the effects that key moments in movies have on the human body, we fitted fitted with a number of biometric sensor devices and monitored them as they watched a range of dierent movies in groups. The purpose of these experiments was to examine the correlation between humans' highlights in movies as observed from biometric sensors, and highlights in the same movies as identified by our automatic movie analysis techniques. However,the problem with this type of experiment is that both the analysis of the video stream and the sensor data readings are not directly usable in their raw form because of the sheer volume of low-level data values generated both from the sensors and from the movie analysis. This work describes the semi-automated enrichment of both video analysis and sensor data and the mechanism used to query the data in both centralised environments, and in a peer-to-peer architecture when the number of sensor devices grows to large numbers. We present and validate a scalable means of semi-automating the semantic enrichment of sensor data, thereby providing a means of large-scale sensor management

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Visualization, Exploration and Data Analysis of Complex Astrophysical Data

    Full text link
    In this paper we show how advanced visualization tools can help the researcher in investigating and extracting information from data. The focus is on VisIVO, a novel open source graphics application, which blends high performance multidimensional visualization techniques and up-to-date technologies to cooperate with other applications and to access remote, distributed data archives. VisIVO supports the standards defined by the International Virtual Observatory Alliance in order to make it interoperable with VO data repositories. The paper describes the basic technical details and features of the software and it dedicates a large section to show how VisIVO can be used in several scientific cases.Comment: 32 pages, 15 figures, accepted by PAS

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs
    corecore