39 research outputs found

    Channel Hardening-Exploiting Message Passing (CHEMP) Receiver in Large-Scale MIMO Systems

    Full text link
    In this paper, we propose a MIMO receiver algorithm that exploits {\em channel hardening} that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the HHH{\bf H}^H{\bf H} matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix H{\bf H} increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes HTHx{\bf H}^T{\bf H}{\bf x}, where x{\bf x} is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the HTH{\bf H}^T{\bf H} matrix. We also propose a simple estimation scheme which directly obtains an estimate of HTH{\bf H}^T{\bf H} (instead of an estimate of H{\bf H}), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the {\em channel hardening-exploiting message passing (CHEMP)} receiver. The proposed CHEMP receiver achieves very good performance in large-scale MIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of H{\bf H}. We also present a convergence analysis of the proposed MPD algorithm. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes

    Gibbs sampling detection for large MIMO and MTC uplinks with adaptive modulation

    Get PDF
    Wireless networks beyond 5G will mostly be serving myriads of sensors and other machine-type communications (MTC), with each device having different requirements in respect to latency, error rate, energy consumption, spectral efficiency or other specifications. Multiple-input multiple-output (MIMO) systems remain a central technology towards 6G, and in cases where massive antenna arrays or cell-free networks are not possible to deploy and only moderately large antenna arrays are allowed, the detection problem at the base-station cannot rely on zero-forcing or matched filters and more complex detection schemes have to be used. The main challenge is to find low complexity, hardware feasible methods that are able to attain near optimal performance. Randomized algorithms based on Gibbs sampling (GS) were proven to perform very close to the optimal detection, even for moderately large antenna arrays, while yielding an acceptable number of operations. However, their performance is highly dependent on the chosen “temperature” parameter (TP). In this paper, we propose and study an optimized variant of the GS method, denoted by triple mixed GS, and where three distinct values for the TP are considered. The method exhibits faster convergence rates than the existing ones in the literature, hence requiring fewer iterations to achieve a target bit error rate. The proposed detector is suitable for symmetric large MIMO systems, however the proposed fixed complexity detector is highly suitable to spectrally efficient adaptively modulated MIMO (AM-MIMO) systems where different types of devices upload information at different bit rates or have different requirements regarding spectral efficiency. The proposed receiver is shown to attain quasi-optimal performance in both scenarios.info:eu-repo/semantics/publishedVersio

    A Primer on MIMO Detection Algorithms for 5G Communication Network

    Get PDF
    In the recent past, demand for large use of mobile data has increased tremendously due to the proliferation of hand held devices which allows millions of people access to video streaming, VOIP and other internet related usage including machine to machine (M2M) communication. One of the anticipated attribute of the fifth generation (5G) network is its ability to meet this humongous data rate requirement in the order of 10s Gbps. A particular promising technology that can provide this desired performance if used in the 5G network is the massive multiple-input, multiple-output otherwise called the Massive MIMO. The use of massive MIMO in 5G cellular network where data rate of the order of 100x that of the current state of the art LTE-A is expected and high spectral efficiency with very low latency and low energy consumption, present a challenge in symbol/signal detection and parameter estimation as a result of the high dimension of the antenna elements required. One of the major bottlenecks in achieving the benefits of such massive MIMO systems is the problem of achieving detectors with realistic low complexity for such huge systems. We therefore review various MIMO detection algorithms aiming for low computational complexity with high performance and that scales well with increase in transmit antennas suitable for massive MIMO systems. We evaluate detection algorithms for small and medium dimension MIMO as well as a combination of some of them in order to achieve our above objectives. The review shows no single one detector can be said to be ideal for massive MIMO and that the low complexity with optimal performance detector suitable for 5G massive MIMO system is still an open research issue. A comprehensive review of such detection algorithms for massive MIMO was not presented in the literature which was achieved in this work

    Iterative Receiver Techniques for Data-Driven Channel Estimation and Interference Mitigation in Wireless Communications

    No full text
    Wireless mobile communications were initially a way for people to communicate through low data rate voice call connections. As data enabled devices allow users the ability to do much more with their mobile devices, so to will the demand for more reliable and pervasive wireless data. This is being addressed by so-called 4th generation wireless systems based on orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) antenna systems. Mobile wireless customers are becoming more demanding and expecting to have a great user experience over high speed broadband access at any time and anywhere, both indoor and outdoor. However, these promising improvements cannot be realized without an e±cient design of the receiver. Recently, receivers utilizing iterative detection and decoding have changed the fundamental receiver design paradigm from traditional separated parameter estimation and data detection blocks to an integrated iterative parameter estimator and data detection unit. Motivated by this iterative data driven approach, we develop low complexity iterative receivers with improved sensitivity compared to the conventional receivers, this brings potential benefits for the wireless communication system, such as improving the overall system throughput, increasing the macro cell coverage, and reducing the cost of the equipments in both the base station and mobile terminal. It is a challenge to design receivers that have good performance in a highly dynamic mobile wireless environment. One of the challenges is to minimize overhead reference signal energy (preamble, pilot symbols) without compromising the performance. We investigate this problem, and develop an iterative receiver with enhanced data-driven channel estimation. We discuss practical realizations of the iterative receiver for SISO-OFDM system. We utilize the channel estimation from soft decoded data (the a priori information) through frequency-domain combining and time-domain combining strategies in parallel with limited pilot signals. We analyze the performance and complexity of the iterative receiver, and show that the receiver's sensitivity can be improved even with this low complexity solution. Hence, seamless communications can be achieved with better macro cell coverage and mobility without compromising the overall system performance. Another challenge is that a massive amount of interference caused by MIMO transmission (spatial multiplexing MIMO) reduces the performance of the channel estimation, and further degrades data detection performance. We extend the iterative channel estimation from SISO systems to MIMO systems, and work with linear detection methods to perform joint interference mitigation and channel estimation. We further show the robustness of the iterative receivers in both indoor and outdoor environment compared to the conventional receiver approach. Finally, we develop low complexity iterative spatial multiplexed MIMO receivers for nonlinear methods based on two known techniques, that is, the Sphere Decoder (SD) method and the Markov Chain Monte Carlo (MCMC) method. These methods have superior performance, however, they typically demand a substantial increase in computational complexity, which is not favorable in practical realizations. We investigate and show for the first time how to utilize the a priori information in these methods to achieve performance enhancement while simultaneously substantially reducing the computational complexity. In our modified sphere decoder method, we introduce a new accumulated a priori metric in the tree node enumeration process. We show how we can improve the performance by obtaining the reliable tree node candidate from the joint Maximum Likelihood (ML) metric and an approximated a priori metric. We also show how we can improve the convergence speed of the sphere decoder (i.e., reduce the com- plexity) by selecting the node with the highest a priori probability as the starting node in the enumeration process. In our modified MCMC method, the a priori information is utilized for the firrst time to qualify the reliably decoded bits from the entire signal space. Two new robust MCMC methods are developed to deal with the unreliable bits by using the reliably decoded bit information to cancel the interference that they generate. We show through complexity analysis and performance comparison that these new techniques have improved performance compared to the conventional approaches, and further complexity reduction can be obtained with the assistance of the a priori information. Therefore, the complexity and performance tradeoff of these nonlinear methods can be optimized for practical realizations
    corecore