718 research outputs found

    A Novel Improved Probability-Guided RANSAC Algorithm for Robot 3D Map Building

    Get PDF
    This paper presents a novel improved RANSAC algorithm based on probability and DS evidence theory to deal with the robust pose estimation in robot 3D map building. In this proposed RANSAC algorithm, a parameter model is estimated by using a random sampling test set. Based on this estimated model, all points are tested to evaluate the fitness of current parameter model and their probabilities are updated by using a total probability formula during the iterations. The maximum size of inlier set containing the test point is taken into account to get a more reliable evaluation for test points by using DS evidence theory. Furthermore, the theories of forgetting are utilized to filter out the unstable inliers and improve the stability of the proposed algorithm. In order to boost a high performance, an inverse mapping sampling strategy is adopted based on the updated probabilities of points. Both the simulations and real experimental results demonstrate the feasibility and effectiveness of the proposed algorithm

    RANSAC for Robotic Applications: A Survey

    Get PDF
    Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.This work has been partially funded by the Basque Government, Spain, under Research Teams Grant number IT1427-22 and under ELKARTEK LANVERSO Grant number KK-2022/00065; the Spanish Ministry of Science (MCIU), the State Research Agency (AEI), the European Regional Development Fund (FEDER), under Grant number PID2021-122402OB-C21 (MCIU/AEI/FEDER, UE); and the Spanish Ministry of Science, Innovation and Universities, under Grant FPU18/04737

    Plane-based 3D Mapping for Structured Indoor Environment

    Get PDF
    Three-dimensional (3D) mapping deals with the problem of building a map of the unknown environments explored by a mobile robot. In contrast to 2D maps, 3D maps contain richer information of the visited places. Besides enabling robot navigation in 3D, a 3D map of the robot surroundings could be of great importance for higher-level robotic tasks, like scene interpretation and object interaction or manipulation, as well as for visualization purposes in general, which are required in surveillance, urban search and rescue, surveying, and others. Hence, the goal of this thesis is to develop a system which is capable of reconstructing the surrounding environment of a mobile robot as a three-dimensional map. Microsoft Kinect camera is a novel sensing sensor that captures dense depth images along with RGB images at high frame rate. Recently, it has dominated the stage of 3D robotic sensing, as it is low-cost, low-power. For this work, it is used as the exteroceptive sensor and obtains 3D point clouds of the surrounding environment. Meanwhile, the wheel odometry of the robot is used to initialize the search for correspondences between different observations. As a single 3D point cloud generated by the Microsoft Kinect sensor is composed of many tens of thousands of data points, it is necessary to compress the raw data to process them efficiently. The method chosen in this work is to use a feature-based representation which simplifies the 3D mapping procedure. The chosen features are planar surfaces and orthogonal corners, which is based on the fact that indoor environments are designed such that walls, ground floors, pillars, and other major parts of the building structures can be modeled as planar surface patches, which are parallel or perpendicular to each other. While orthogonal corners are presented as higher features which are more distinguishable in indoor environment. In this thesis, the main idea is to obtain spatial constraints between pairwise frames by building correspondences between the extracted vertical plane features and corner features. A plane matching algorithm is presented that maximizes the similarity metric between a pair of planes within a search space to determine correspondences between planes. The corner matching result is based on the plane matching results. The estimated spatial constraints form the edges of a pose graph, referred to as graph-based SLAM front-end. In order to build a map, however, a robot must be able to recognize places that it has previously visited. Limitations in sensor processing problem, coupled with environmental ambiguity, make this difficult. In this thesis, we describe a loop closure detection algorithm by compressing point clouds into viewpoint feature histograms, inspired by their strong recognition ability. The estimated roto-translation between detected loop frames is added to the graph representing this newly discovered constraint. Due to the estimation errors, the estimated edges form a non-globally consistent trajectory. With the aid of a linear pose graph optimizing algorithm, the most likely configuration of the robot poses can be estimated given the edges of the graph, referred to as SLAM back-end. Finally, the 3D map is retrieved by attaching each acquired point cloud to the corresponding pose estimate. The approach is validated through different experiments with a mobile robot in an indoor environment

    Row-sensing Templates: A Generic 3D Sensor-based Approach to Robot Localization with Respect to Orchard Row Centerlines

    Full text link
    Accurate robot localization relative to orchard row centerlines is essential for autonomous guidance where satellite signals are often obstructed by foliage. Existing sensor-based approaches rely on various features extracted from images and point clouds. However, any selected features are not available consistently, because the visual and geometrical characteristics of orchard rows change drastically when tree types, growth stages, canopy management practices, seasons, and weather conditions change. In this work, we introduce a novel localization method that doesn't rely on features; instead, it relies on the concept of a row-sensing template, which is the expected observation of a 3D sensor traveling in an orchard row, when the sensor is anywhere on the centerline and perfectly aligned with it. First, the template is built using a few measurements, provided that the sensor's true pose with respect to the centerline is available. Then, during navigation, the best pose estimate (and its confidence) is estimated by maximizing the match between the template and the sensed point cloud using particle-filtering. The method can adapt to various orchards and conditions by re-building the template. Experiments were performed in a vineyard, and in an orchard in different seasons. Results showed that the lateral mean absolute error (MAE) was less than 3.6% of the row width, and the heading MAE was less than 1.72 degrees. Localization was robust, as errors didn't increase when less than 75% of measurement points were missing. The results indicate that template-based localization can provide a generic approach for accurate and robust localization in real-world orchards
    corecore