205 research outputs found

    Radar Range Deception with Time-Modulated Scatterers

    Full text link
    Modern radar systems are designed to have high Doppler tolerance to detect fast-moving targets. This means range and Doppler estimations are inevitably coupled, opening pathways to concealing objects by imprinting artificial Doppler signatures on the reflected echoes. Proper temporal control of the backscattered phase can cause the investigating radar to estimate wrong range and velocity, thus cloaking the real position and trajectory of the scatterer. This deception method is exploited here theoretically for arbitrary Doppler tolerant waveforms and then tested experimentally on an example of the linear frequency modulated radar, which is the most common waveform of that class used in practice. The method allows retaining radio silence with a semi passive (battery assisted) approach that can work well with time-dependent metasurfaces. Furthermore, as an insight into new capabilities, we demonstrate that temporally concealed objects could even be made to appear closer than they truly are without violating the laws of relativity

    Frequency Diverse Array Radar: Signal Characterization and Measurement Accuracy

    Get PDF
    Radar systems provide an important remote sensing capability, and are crucial to the layered sensing vision; a concept of operation that aims to apply the right number of the right types of sensors, in the right places, at the right times for superior battle space situational awareness. The layered sensing vision poses a range of technical challenges, including radar, that are yet to be addressed. To address the radar-specific design challenges, the research community responded with waveform diversity; a relatively new field of study which aims reduce the cost of remote sensing while improving performance. Early work suggests that the frequency diverse array radar may be able to perform several remote sensing missions simultaneously without sacrificing performance. With few techniques available for modeling and characterizing the frequency diverse array, this research aims to specify, validate and characterize a waveform diverse signal model that can be used to model a variety of traditional and contemporary radar configurations, including frequency diverse array radars. To meet the aim of the research, a generalized radar array signal model is specified. A representative hardware system is built to generate the arbitrary radar signals, then the measured and simulated signals are compared to validate the model. Using the generalized model, expressions for the average transmit signal power, angular resolution, and the ambiguity function are also derived. The range, velocity and direction-of-arrival measurement accuracies for a set of signal configurations are evaluated to determine whether the configuration improves fundamental measurement accuracy

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    Dual operative radar for vehicle to vehicle and vehicle to infrastructure communication

    Get PDF
    The research presented in this Thesis deals with the concepts of joint radar and communication system for automotive application. The novel systems developed include a joint radar and communication system based on the fractional Fourier transform (FrFT) and two interference mitigation frameworks. In the joint radar and communication system the FrFT is used to embed the data information into a radar waveform in order to obtain a signal sharing Linear Frequency Modulation (LFM) characteristics while allowing data transmission. Furthermore, in the proposed system multi user operations are allowed by assigning a specific order of the FrFT to each user. In this way, a fractional order division multiplexing can be implemented allowing the allocation of more than one user in the same frequency band with the advantage that the range resolution does not depend on the number of the users that share the same frequency band but only from the assigned of the FrFT. Remarkably, the predicted simulated radar performance of the proposed joint radar and communication system when using Binary Frequency Shift Keying (BFSK) encoding is not significantly affected by the transmitted data. In order to fully describe the proposed waveform design, the signal model when the bits of information are modulated using either BFSK or Binary Phase Shift Keying (BPSK) encoding is derived. This signal model will result also useful in the interference mitigation frameworks. In multi user scenarios to prevent mutual radar interference caused by users that share the same frequency band at the same time, each user has to transmit waveforms that are uncorrelated with those of other users. However, due to spectrum limitations, the uncorrelated property cannot always be satisfied even by using fractional order division multiplexing, thus interference is unavoidable. In order to mitigate the interference, two frameworks are introduced. In a joint radar communication system, the radar also has access to the communication data. With a near-precision reconstruction of the communication signal, this interference can be subtracted. In these two frameworks the interfering signal can be reconstructed using the derived mathematical model of the proposed FrFT waveform. In the first framework the subtraction between the received and reconstructed interference signals is carried out in a coherent manner, where the amplitude and phase of the two signals are taken into account. The performance of this framework is highly depend on the correct estimation of the Doppler frequency of the interfering user. A small error on the Doppler frequency can lead to a lack of synchronization between the received and reconstructed signal. Consequently, the subtraction will not be performed in a correct way and further interference components can be introduced. In order to solve the problem of the lack of the synchronization an alternative framework is developed where the subtraction is carried out in non-coherent manner. In the proposed framework, the subtraction is carried out after that the received radar signal and the reconstructed interference are processed, respectively. The performance is tested on simulated and real signals. The simulated and experimental results show that this framework is capable of mitigating the interference from other users successfully.The research presented in this Thesis deals with the concepts of joint radar and communication system for automotive application. The novel systems developed include a joint radar and communication system based on the fractional Fourier transform (FrFT) and two interference mitigation frameworks. In the joint radar and communication system the FrFT is used to embed the data information into a radar waveform in order to obtain a signal sharing Linear Frequency Modulation (LFM) characteristics while allowing data transmission. Furthermore, in the proposed system multi user operations are allowed by assigning a specific order of the FrFT to each user. In this way, a fractional order division multiplexing can be implemented allowing the allocation of more than one user in the same frequency band with the advantage that the range resolution does not depend on the number of the users that share the same frequency band but only from the assigned of the FrFT. Remarkably, the predicted simulated radar performance of the proposed joint radar and communication system when using Binary Frequency Shift Keying (BFSK) encoding is not significantly affected by the transmitted data. In order to fully describe the proposed waveform design, the signal model when the bits of information are modulated using either BFSK or Binary Phase Shift Keying (BPSK) encoding is derived. This signal model will result also useful in the interference mitigation frameworks. In multi user scenarios to prevent mutual radar interference caused by users that share the same frequency band at the same time, each user has to transmit waveforms that are uncorrelated with those of other users. However, due to spectrum limitations, the uncorrelated property cannot always be satisfied even by using fractional order division multiplexing, thus interference is unavoidable. In order to mitigate the interference, two frameworks are introduced. In a joint radar communication system, the radar also has access to the communication data. With a near-precision reconstruction of the communication signal, this interference can be subtracted. In these two frameworks the interfering signal can be reconstructed using the derived mathematical model of the proposed FrFT waveform. In the first framework the subtraction between the received and reconstructed interference signals is carried out in a coherent manner, where the amplitude and phase of the two signals are taken into account. The performance of this framework is highly depend on the correct estimation of the Doppler frequency of the interfering user. A small error on the Doppler frequency can lead to a lack of synchronization between the received and reconstructed signal. Consequently, the subtraction will not be performed in a correct way and further interference components can be introduced. In order to solve the problem of the lack of the synchronization an alternative framework is developed where the subtraction is carried out in non-coherent manner. In the proposed framework, the subtraction is carried out after that the received radar signal and the reconstructed interference are processed, respectively. The performance is tested on simulated and real signals. The simulated and experimental results show that this framework is capable of mitigating the interference from other users successfully

    Detecting and locating electronic devices using their unintended electromagnetic emissions

    Get PDF
    Electronically-initiated explosives can have unintended electromagnetic emissions which propagate through walls and sealed containers. These emissions, if properly characterized, enable the prompt and accurate detection of explosive threats. The following dissertation develops and evaluates techniques for detecting and locating common electronic initiators. The unintended emissions of radio receivers and microcontrollers are analyzed. These emissions are low-power radio signals that result from the device\u27s normal operation. In the first section, it is demonstrated that arbitrary signals can be injected into a radio receiver\u27s unintended emissions using a relatively weak stimulation signal. This effect is called stimulated emissions. The performance of stimulated emissions is compared to passive detection techniques. The novel technique offers a 5 to 10 dB sensitivity improvement over passive methods for detecting radio receivers. The second section develops a radar-like technique for accurately locating radio receivers. The radar utilizes the stimulated emissions technique with wideband signals. A radar-like system is designed and implemented in hardware. Its accuracy tested in a noisy, multipath-rich, indoor environment. The proposed radar can locate superheterodyne radio receivers with a root mean square position error less than 5 meters when the SNR is 15 dB or above. In the third section, an analytic model is developed for the unintended emissions of microcontrollers. It is demonstrated that these emissions consist of a periodic train of impulses. Measurements of an 8051 microcontroller validate this model. The model is used to evaluate the noise performance of several existing algorithms. Results indicate that the pitch estimation techniques have a 4 dB sensitivity improvement over epoch folding algorithms --Abstract, page iii

    Millimetre-Resolution Photonics-Assisted Radar

    Get PDF
    Radar is essential in applications such as anti-collision systems for driving, airport security screening, and contactless vital sign detection. The demand for high-resolution and real-time recognition in radar applications is growing, driving the development of electronic radars with increased bandwidth, higher frequency, and improved reconfigurability. However, conventional electronic approaches are challenging due to limitations in synthesising radar signals, limiting performance. In contrast, microwave photonics-enabled radars have gained interest because they offer numerous benefits compared to traditional electronic methods. Photonics-assisted techniques provide a broad fractional bandwidth at the optical carrier frequency and enable spectrum manipulation, producing wideband and high-resolution radar signals in various formats. However, photonic-based methods face limitations like low time-frequency linearity due to the inherent nonlinearity of lasers, restricted RF bandwidth, limited stability of the photonic frequency multipliers, and difficulties in achieving extended sensing with dispersion-based techniques. In response to these challenges, this thesis presents approaches for generating broadband radar signals with high time-frequency linearity using recirculated unidirectional optical frequency-shifted modulation. The photonics-assisted system allows flexible bandwidth tuning from sub-GHz to over 30 GHz and requires only MHz-level electronics. Such a system offers millimetre-level range resolution and a high imaging refresh rate, detecting fast-moving objects using the ISAR technique. With millimetre-level resolution and micrometre accuracy, this system supports contactless vital sign detection, capturing precise respiratory patterns from simulators and a living body using a cane toad. In the end, we highlight the promise of merging radar and LiDAR, foreshadowing future advancements in sensor fusion for enhanced sensing performance and resilience

    Frequency Diversity for Improving Synthetic Aperture Radar Imaging

    Get PDF
    In this work, a novel theoretical framework is presented for using recent advances in frequency diversity arrays (FDAs). Unlike a conventional array, the FDA simultaneously transmits a unique frequency from each element in the array. As a result, special time and space properties of the radiation pattern are exploited to improve cross-range resolution. The idealized FDA radiation pattern is compared with and validated against a full-wave electromagnetic solver, and it is shown that the conventional array is a special case of the FDA. A new signal model, based on the FDA, is used to simulate SAR imagery of ideal point mass targets and the new model is used to derive the impulse response function of the SAR system, which is rarely achievable with other analytic methods. This work also presents an innovative solution for using the convolution back-projection algorithm, the gold standard in SAR image processing, and is a significant advantage of the proposed FDA model. The new FDA model and novel SAR system concept of operation are shown to reduce collection time by 33 percent while achieving a 4.5 dB improvement in cross-range resolution as compared to traditional imaging systems

    Waveform design and processing techniques in OFDM radar

    Get PDF
    Includes bibliographical referencesWith the advent of powerful digital hardware, software defined radio and radar have become an active area of research and development. This in turn has given rise to many new research directions in the radar community, which were previously not comprehensible. One such direction is the recently investigated OFDM radar, which uses OFDM waveforms instead of the classic linear frequency mod- ulated waveforms. Being a wideband signal, the OFDM symbol offers spectral efficiency along with improved range resolution, two enticing characteristics for radar. Historically a communication signal, OFDM is a special form of multi- carrier modulation, where a single data stream is transmitted over a number of lower rate carriers. The information is conveyed via sets of complex phase codes modulating the phase of the carriers. At the receiver, a demodulation stage estimates the transmitted phase codes and the information in the form of binary words is finally retrieved. In radar, the primary goal is to detect the presence of targets and possibly estimate some of their features through measurable quantities, e.g. range, Doppler, etc. Yet, being a young waveform in radar, more understanding is required to turn it into a standard radar waveform. Our goal, with this thesis, is to mature our comprehension of OFDM for radar and contribute to the realm of OFDM radar. First, we develop two processing alternatives for the case of a train of wideband OFDM pulses. In this, our first so-called time domain solution consists in applying a matched filter to compress the received echoes in the fast time before applying a fast Fourier transform in the slow time to form the range Doppler image. We motivate this approach after demonstrating that short OFDM pulses are Doppler tolerant. The merit of this approach is to conserve existing radar architectures while operating OFDM waveforms. The second so-called frequency domain solution that we propose is inspired from communication engineering research since the received echoes are tumbled in the frequency domain. After several manipulations, the range Doppler image is formed. We explain how this approach allows to retrieve an estimate of the unambiguous radial velocity, and propose two methods for that. The first method requires the use of identical sequence (IS) for the phase codes and is, as such, binding, while the other method works irrespective of the phase codes. Like the previous technique, this processing solution accommodates high Doppler frequencies and the degradation in the range Doppler image is negligible provided that the spacing between consecutive subcarriers is sufficient. Unfortunately, it suffers from the issue of intersymbol interference (ISI). After observing that both solutions provide the same processing gain, we clarify the constraints that shall apply to the OFDM signals in either of these solutions. In the first solution, special care has been employed to design OFDM pulses with low peak-to-mean power ratio (PMEPR) and low sidelobe level in the autocorrelation function. In the second solution, on the other hand, only the constraint of low PMEPR applies since the sidelobes of the scatterer characteristic function in the range Doppler image are Fourier based. Then, we develop a waveform-processing concept for OFDM based stepped frequency waveforms. This approach is intended for high resolution radar with improved low probability of detection (LPD) characteristics, as we propose to employ a frequency hopping scheme from pulse to pulse other than the conventional linear one. In the same way we treated our second alternative earlier, we derive our high range resolution processing in matrix terms and assess the degradation caused by high Doppler on the range profile. We propose using a bank of range migration filters to retrieve the radial velocity of the scatterer and realise that the issue of classical ambiguity in Doppler can be alleviated provided that the relative bandwidth, i.e. the total bandwidth covered by the train of pulses divided by the carrier frequency, is chosen carefully. After discussing a deterministic artefact caused by frequency hopping and the means to reduce it at the waveform design or processing level, we discuss the benefit offered by our concept in comparison to other standard wideband methods and emphasize on its LPD characteristics at the waveform and pulse level. In our subsequent analysis, we investigate genetic algorithm (GA) based techniques to finetune OFDM pulses in terms of radar requirements viz., low PMEPR only or low PMEPR and low sidelobe level together, as evoked earlier. To motivate the use of genetic algorithms, we establish that existing techniques are not exible in terms of the OFDM structure (the assumption that all carriers are present is always made). Besides, the use of advanced objective functions suited to particular configurations (e.g. low sidelobe level in proximity of the main autocorrelation peak) as well as the combination of multiple objective functions can be done elegantly with GA based techniques. To justify that solely phase codes are used for our optimisation(s), we stress that the weights applied to the carriers composing the OFDM signal can be spared to cope with other radar related challenges and we give an example with a case of enhanced detection. Next, we develop a technique where we exploit the instantaneous wideband trans- mission to characterise the type of the canonical scatterers that compose a target. Our idea is based on the well-established results from the geometrical theory of diffraction (GTD), where the scattered energy varies with frequency. We present the problem related to ISI, stress the need to design the transmitted pulse so as to reduce this risk and suggest having prior knowledge over the scatterers relative positions. Subsequently, we develop a performance analysis to assess the behaviour of our technique in the presence of additive white Gaussian noise (AWGN). Then, we demonstrate the merit of integrating over several pulses to improve the characterisation rate of the scatterers. Because the scattering centres of a target resonate variably at different frequencies, frequency diversity is another enticing property which can be used to enhance the sensing performance. Here, we exploit this element of diversity to improve the classification function. We develop a technique where the classification takes place at the waveform design when few targets are present. In our case study, we have three simple targets. Each is composed of perfectly electrically conducting spheres for which we have exact models of the scattered field. We develop a GA based search to find optimal OFDM symbols that best discriminate one target against any other. Thereafter, the OFDM pulse used for probing the target in the scene is constructed by stacking the resulting symbols in time. After discussing the problem of finding the best frequency window to sense the target, we develop a performance analysis where our figure of merit is the overall probability of correct classification. Again, we prove the merit of integrating over several pulses to reach classification rates above 95%. In turn, this study opens onto new challenges in the realm of OFDM radar. We leave for future research the demonstration of the practical applicability of our novel concepts and mention manifold research axes, viz., a signal processing axis that would include methods to cope with inter symbol interference, range migration issues, methods to raise the ambiguity in Doppler when several echoes from distinct scatterers overlap in the case of our frequency domain processing solutions; an algorithmic axis that would concern the heuristic techniques employed in the design of our OFDM pulses. We foresee that further tuning might help speeding up our GA based algorithms and we expect that constrained multi- objective optimisation GA (MOO-GA) based techniques shall benefit the OFDM pulse design problem in radar. A system design axis that would account for the hardware components' behaviours, when possible, directly at the waveform design stage and would include implementation of the OFDM radar system
    • …
    corecore