293 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Computationally Intelligent Techniques for Resource Management in MmWave Small Cell Networks

    Get PDF
    Ultra densification in HetNets and the advent of mmWave technology for 5G networks have led researchers to redesign the existing resource management techniques. A salient feature of this activity is to accentuate the importance of CI resource allocation schemes offering less complexity and overhead. This article overviews the existing literature on resource management in mmWave-based Het- Nets with a special emphasis on CI techniques and further proposes frameworks that ensure quality of service requirements for all network entities. More specifically, HetNets with mmWave-based small cells pose different challenges compared to an all-microwave- based system. Similarly, various modes of small cell access policies and operations of base stations in dual mode, that is, operating both mmWave and microwave links simultaneously, offer unique challenges to resource allocation. Furthermore, the use of multi-slope path loss models becomes inevitable for analysis due to irregular cell patterns and blocking characteristics of mmWave communications. This article amalgamates the unique challenges posed because of the aforementioned recent developments and proposes various CI-based techniques, including game theory and optimization routines, to perform efficient resource management

    Distributed optimisation techniques for wireless networks

    Get PDF
    Alongside the ever increasing traffic demand, the fifth generation (5G) cellular network architecture is being proposed to provide better quality of service, increased data rate, decreased latency, and increased capacity. Without any doubt, the 5G cellular network will comprise of ultra-dense networks and multiple input multiple output technologies. This will make the current centralised solutions impractical due to increased complexity. Moreover, the amount of coordination information that needs to be transported over the backhaul links will be increased. Distributed or decentralised solutions are promising to provide better alternatives. This thesis proposes new distributed algorithms for wireless networks which aim to reduce the amount of system overheads in the backhaul links and the system complexity. The analysis of conflicts amongst transmitters, and resource allocation are conducted via the use of game theory, convex optimisation, and auction theory. Firstly, game-theoretic model is used to analyse a mixed quality of service (QoS) strategic non-cooperative game (SNG), for a two-user multiple-input single-output (MISO) interference channel. The players are considered to have different objectives. Following this, the mixed QoS SNG is extended to a multicell multiuser network in terms of signal-to-interference-and-noise ratio (SINR) requirement. In the multicell multiuser setting, each transmitter is assumed to be serving real time users (RTUs) and non-real time users (NRTUs), simultaneously. A novel mixed QoS SNG algorithm is proposed, with its operating point identified as the Nash equilibrium-mixed QoS (NE-mixed QoS). Nash, Kalai-Smorodinsky, and Egalitarian bargain solutions are then proposed to improve the performance of the NE-mixed QoS. The performance of the bargain solutions are observed to be comparable to the centralised solutions. Secondly, user offloading and user association problems are addressed for small cells using auction theory. The main base station wishes to offload some of its users to privately owned small cell access points. A novel bid-wait-auction (BWA) algorithm, which allows single-item bidding at each auction round, is designed to decompose the combinatorial mathematical nature of the problem. An analysis on the existence and uniqueness of the dominant strategy equilibrium is conducted. The BWA is then used to form the forward BWA (FBWA) and the backward BWA (BBWA). It is observed that the BBWA allows more users to be admitted as compared to the FBWA. Finally, simultaneous multiple-round ascending auction (SMRA), altered SMRA (ASMRA), sequential combinatorial auction with item bidding (SCAIB), and repetitive combinatorial auction with item bidding (RCAIB) algorithms are proposed to perform user offloading and user association for small cells. These algorithms are able to allow bundle bidding. It is then proven that, truthful bidding is individually rational and leads to Walrasian equilibrium. The performance of the proposed auction based algorithms is evaluated. It is observed that the proposed algorithms match the performance of the centralised solutions when the guest users have low target rates. The SCAIB algorithm is shown to be the most preferred as it provides high admission rate and competitive revenue to the bidders

    Efficient radio resource management for future generation heterogeneous wireless networks

    Get PDF
    The heterogeneous deployment of small cells (e.g., femtocells) in the coverage area of the traditional macrocells is a cost-efficient solution to provide network capacity, indoor coverage and green communications towards sustainable environments in the future fifth generation (5G) wireless networks. However, the unplanned and ultra-dense deployment of femtocells with their uncoordinated operations will result in technical challenges such as severe interference, a significant increase in total energy consumption, unfairness in radio resource sharing and inadequate quality of service provisioning. Therefore, there is a need to develop efficient radio resource management algorithms that will address the above-mentioned technical challenges. The aim of this thesis is to develop and evaluate new efficient radio resource management algorithms that will be implemented in cognitive radio enabled femtocells to guarantee the economical sustainability of broadband wireless communications and users' quality of service in terms of throughput and fairness. Cognitive Radio (CR) technology with the Dynamic Spectrum Access (DSA) and stochastic process are the key technologies utilized in this research to increase the spectrum efficiency and energy efficiency at limited interference. This thesis essentially investigates three research issues relating to the efficient radio resource management: Firstly, a self-organizing radio resource management algorithm for radio resource allocation and interference management is proposed. The algorithm considers the effect of imperfect spectrum sensing in detecting the available transmission opportunities to maximize the throughput of femtocell users while keeping interference below pre-determined thresholds and ensuring fairness in radio resource sharing among users. Secondly, the effect of maximizing the energy efficiency and the spectrum efficiency individually on radio resource management is investigated. Then, an energy-efficient radio resource management algorithm and a spectrum-efficient radio resource management algorithm are proposed for green communication, to improve the probabilities of spectrum access and further increase the network capacity for sustainable environments. Also, a joint maximization of the energy efficiency and spectrum efficiency of the overall networks is considered since joint optimization of energy efficiency and spectrum efficiency is one of the goals of 5G wireless networks. Unfortunately, maximizing the energy efficiency results in low performance of the spectrum efficiency and vice versa. Therefore, there is an investigation on how to balance the trade-off that arises when maximizing both the energy efficiency and the spectrum efficiency simultaneously. Hence, a joint energy efficiency and spectrum efficiency trade-off algorithm is proposed for radio resource allocation in ultra-dense heterogeneous networks based on orthogonal frequency division multiple access. Lastly, a joint radio resource allocation with adaptive modulation and coding scheme is proposed to minimize the total transmit power across femtocells by considering the location and the service requirements of each user in the network. The performance of the proposed algorithms is evaluated by simulation and numerical analysis to demonstrate the impact of ultra-dense deployment of femtocells on the macrocell networks. The results show that the proposed algorithms offer improved performance in terms of throughput, fairness, power control, spectrum efficiency and energy efficiency. Also, the proposed algorithms display excellent performance in dynamic wireless environments

    Optimising energy efficiency and spectral efficiency in multi-tier heterogeneous networks:performance and tradeoffs

    Get PDF
    The exponential growth in the number of cellular users along with their increasing demand of higher transmission rate and lower power consumption is a dilemma for the design of future generation networks. The spectral efficiency (SE) can be improved by better utilisation of the network resources at the cost of reduction in the energy efficiency (EE) due to the enormous increase in the network power expenditure arising from the densification of the network. One of the possible solutions is to deploy Heterogeneous Networks (HetNets) consisting of several tiers of small cell BSs overlaid within the coverage area of the macrocells. The HetNets can provide better coverage and data rate to the cell edge users in comparison to the macrocells only deployment. One of the key requirements for the next generation networks is to maintain acceptable levels of both EE and SE. In order to tackle these challenges, this thesis focuses on the analysis of the EE, SE and their tradeoff for different scenarios of HetNets. First, a joint network and user adaptive selection mechanism in two-tier HetNets is proposed to improve the SE using game theory to dynamically re-configure the network while satisfying the user's quality-of-service (QoS) requirements. In this work, the proposed scheme tries to offload the traffic from the heavily loaded small cells to the macrocell. The user can only be admitted to a network which satisfies the call admission control procedures for both the uplink and downlink transmission scheme. Second, an energy efficient resource allocation scheme is designed for a two-tier HetNets. The proposed scheme uses a low-complexity user association and power allocation algorithm to improve the uplink system EE performance in comparison to the traditional cellular systems. In addition, an opportunistic joint user association and power allocation algorithm is proposed in an uplink transmission scheme of device to device (D2D) enabled HetNets. In this scheme, each user tries to maximise its own Area Spectral Efficiency (ASE) subject to the required Area Energy Efficiency (AEE) requirements. Further, a near-optimal joint user association and power allocation approach is proposed to investigate the tradeoff between the two conflicting objectives such as achievable throughput and minimising the power consumption in two-tier HetNets for the downlink transmission scheme. Finally, a multi-objective optimization problem is formulated that jointly maximizes the EE and SE in two-tier HetNets. In this context, a joint user association and power allocation algorithm is proposed to analyse the tradeoff between the achievable EE and SE in two-tier HetNets. The formulated problem is solved using convex optimisation methods to obtain the Pareto-optimal solution for the various network parameters

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial
    corecore