10,671 research outputs found

    Personalized Purchase Prediction of Market Baskets with Wasserstein-Based Sequence Matching

    Full text link
    Personalization in marketing aims at improving the shopping experience of customers by tailoring services to individuals. In order to achieve this, businesses must be able to make personalized predictions regarding the next purchase. That is, one must forecast the exact list of items that will comprise the next purchase, i.e., the so-called market basket. Despite its relevance to firm operations, this problem has received surprisingly little attention in prior research, largely due to its inherent complexity. In fact, state-of-the-art approaches are limited to intuitive decision rules for pattern extraction. However, the simplicity of the pre-coded rules impedes performance, since decision rules operate in an autoregressive fashion: the rules can only make inferences from past purchases of a single customer without taking into account the knowledge transfer that takes place between customers. In contrast, our research overcomes the limitations of pre-set rules by contributing a novel predictor of market baskets from sequential purchase histories: our predictions are based on similarity matching in order to identify similar purchase habits among the complete shopping histories of all customers. Our contributions are as follows: (1) We propose similarity matching based on subsequential dynamic time warping (SDTW) as a novel predictor of market baskets. Thereby, we can effectively identify cross-customer patterns. (2) We leverage the Wasserstein distance for measuring the similarity among embedded purchase histories. (3) We develop a fast approximation algorithm for computing a lower bound of the Wasserstein distance in our setting. An extensive series of computational experiments demonstrates the effectiveness of our approach. The accuracy of identifying the exact market baskets based on state-of-the-art decision rules from the literature is outperformed by a factor of 4.0.Comment: Accepted for oral presentation at 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2019

    Encoding Seasonal Climate Predictions for Demand Forecasting with Modular Neural Network

    Full text link
    Current time-series forecasting problems use short-term weather attributes as exogenous inputs. However, in specific time-series forecasting solutions (e.g., demand prediction in the supply chain), seasonal climate predictions are crucial to improve its resilience. Representing mid to long-term seasonal climate forecasts is challenging as seasonal climate predictions are uncertain, and encoding spatio-temporal relationship of climate forecasts with demand is complex. We propose a novel modeling framework that efficiently encodes seasonal climate predictions to provide robust and reliable time-series forecasting for supply chain functions. The encoding framework enables effective learning of latent representations -- be it uncertain seasonal climate prediction or other time-series data (e.g., buyer patterns) -- via a modular neural network architecture. Our extensive experiments indicate that learning such representations to model seasonal climate forecast results in an error reduction of approximately 13\% to 17\% across multiple real-world data sets compared to existing demand forecasting methods.Comment: 15 page

    The impact of macroeconomic leading indicators on inventory management

    Get PDF
    Forecasting tactical sales is important for long term decisions such as procurement and informing lower level inventory management decisions. Macroeconomic indicators have been shown to improve the forecast accuracy at tactical level, as these indicators can provide early warnings of changing markets while at the same time tactical sales are sufficiently aggregated to facilitate the identification of useful leading indicators. Past research has shown that we can achieve significant gains by incorporating such information. However, at lower levels, that inventory decisions are taken, this is often not feasible due to the level of noise in the data. To take advantage of macroeconomic leading indicators at this level we need to translate the tactical forecasts into operational level ones. In this research we investigate how to best assimilate top level forecasts that incorporate such exogenous information with bottom level (at Stock Keeping Unit level) extrapolative forecasts. The aim is to demonstrate whether incorporating these variables has a positive impact on bottom level planning and eventually inventory levels. We construct appropriate hierarchies of sales and use that structure to reconcile the forecasts, and in turn the different available information, across levels. We are interested both at the point forecast and the prediction intervals, as the latter inform safety stock decisions. Therefore the contribution of this research is twofold. We investigate the usefulness of macroeconomic leading indicators for SKU level forecasts and alternative ways to estimate the variance of hierarchically reconciled forecasts. We provide evidence using a real case study
    corecore