49 research outputs found

    Low-Complexity and Hardware-Friendly H.265/HEVC Encoder for Vehicular Ad-Hoc Networks

    Get PDF
    Real-time video streaming over vehicular ad-hoc networks (VANETs) has been considered as a critical challenge for road safety applications. The purpose of this paper is to reduce the computation complexity of high efficiency video coding (HEVC) encoder for VANETs. Based on a novel spatiotemporal neighborhood set, firstly the coding tree unit depth decision algorithm is presented by controlling the depth search range. Secondly, a Bayesian classifier is used for the prediction unit decision for inter-prediction, and prior probability value is calculated by Gibbs Random Field model. Simulation results show that the overall algorithm can significantly reduce encoding time with a reasonably low loss in encoding efficiency. Compared to HEVC reference software HM16.0, the encoding time is reduced by up to 63.96%, while the Bjontegaard delta bit-rate is increased by only 0.76–0.80% on average. Moreover, the proposed HEVC encoder is low-complexity and hardware-friendly for video codecs that reside on mobile vehicles for VANETs

    JND-Based Perceptual Video Coding for 4:4:4 Screen Content Data in HEVC

    Get PDF
    The JCT-VC standardized Screen Content Coding (SCC) extension in the HEVC HM RExt + SCM reference codec offers an impressive coding efficiency performance when compared with HM RExt alone; however, it is not significantly perceptually optimized. For instance, it does not include advanced HVS-based perceptual coding methods, such as JND-based spatiotemporal masking schemes. In this paper, we propose a novel JND-based perceptual video coding technique for HM RExt + SCM. The proposed method is designed to further improve the compression performance of HM RExt + SCM when applied to YCbCr 4:4:4 SC video data. In the proposed technique, luminance masking and chrominance masking are exploited to perceptually adjust the Quantization Step Size (QStep) at the Coding Block (CB) level. Compared with HM RExt 16.10 + SCM 8.0, the proposed method considerably reduces bitrates (Kbps), with a maximum reduction of 48.3%. In addition to this, the subjective evaluations reveal that SC-PAQ achieves visually lossless coding at very low bitrates.Comment: Preprint: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    A Motion Estimation based Algorithm for Encoding Time Reduction in HEVC

    Get PDF
    High Efficiency Video Coding (HEVC) is a video compression standard that offers 50% more efficiency at the expense of high encoding time contrasted with the H.264 Advanced Video Coding (AVC) standard. The encoding time must be reduced to satisfy the needs of real-time applications. This paper has proposed the Multi- Level Resolution Vertical Subsampling (MLRVS) algorithm to reduce the encoding time. The vertical subsampling minimizes the number of Sum of Absolute Difference (SAD) computations during the motion estimation process. The complexity reduction algorithm is also used for fast coding the coefficients of the quantised block using a flag decision. Two distinct search patterns are suggested: New Cross Diamond Diamond (NCDD) and New Cross Diamond Hexagonal (NCDH) search patterns, which reduce the time needed to locate the motion vectors. In this paper, the MLRVS algorithm with NCDD and MLRVS algorithm with NCDH search patterns are simulated separately and analyzed. The results show that the encoding time of the encoder is decreased by 55% with MLRVS algorithm using NCDD search pattern and 56% with MLRVS using NCDH search pattern compared to HM16.5 with Test Zone (TZ) search algorithm. These results are achieved with a slight increase in bit rate and negligible deterioration in output video quality

    Maximum-Entropy-Model-Enabled Complexity Reduction Algorithm in Modern Video Coding Standards

    Get PDF
    Symmetry considerations play a key role in modern science, and any differentiable symmetry of the action of a physical system has a corresponding conservation law. Symmetry may be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of modern video coding standards by using the maximum entropy principle. The high computational complexity of the coding unit (CU) size decision in modern video coding standards is a critical challenge for real-time applications. This problem is solved in a novel approach considering CU termination, skip, and normal decisions as three-class making problems. The maximum entropy model (MEM) is formulated to the CU size decision problem, which can optimize the conditional entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem. The classification features consist of the spatio-temporal information of the CU, including the rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC encoder significantly. Compared with the H.265/HEVC reference model, the proposed method can reduce the average encoding time by 53.27% and 56.36% under low delay and random access configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average

    Inter-Prediction Optimizations for Video Coding Using Adaptive Coding Unit Visiting Order

    Get PDF

    HEVC ENCODER OPTIMISATIONS USING ADAPTIVE CODING UNIT VISITING ORDER

    Get PDF
    This research utilised Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1

    Efficient bit rate transcoding for high efficiency video coding

    Get PDF
    High efficiency video coding (HEVC) shows a significant advance in compression efficiency and is considered to be the successor of H.264/AVC. To incorporate the HEVC standard into real-life network applications and a diversity of other applications, efficient bit rate adaptation (transrating) algorithms are required. A current problem of transrating for HEVC is the high computational complexity associated with the encoder part of such a cascaded pixel domain transcoder. This paper focuses on deriving an optimal strategy for reducing the transcoding complexity with a complexity-scalable scheme. We propose different transcoding techniques which are able to reduce the transcoding complexity in both CU and PU optimization levels. At the CU level, CUs can be evaluated in top-to-bottom or bottom-to-top flows, in which the coding information of the input video stream is utilized to reduce the number of evaluations or to early terminate certain evaluations. At the PU level, the PU candidates are adaptively selected based on the probability of PU sizes and the co-located input PU partitioning. Moreover, with the use of different proposed methods, a complexity-scalable transrating scheme can be achieved. Furthermore, the transcoding complexity can be effectively controlled by the machine learning based approach. Simulations show that the proposed techniques provide a superior transcoding performance compared to the state-of-the-art related works. Additionally, the proposed methods can achieve a range of trade-offs between transrating complexity and coding performance. From the proposed schemes, the fastest approach is able to reduce the complexity by 82% while keeping the bitrate loss below 3%

    Saliency-Enabled Coding Unit Partitioning and Quantization Control for Versatile Video Coding

    Get PDF
    The latest video coding standard, versatile video coding (VVC), has greatly improved coding efficiency over its predecessor standard high efficiency video coding (HEVC), but at the expense of sharply increased complexity. In the context of perceptual video coding (PVC), the visual saliency model that utilizes the characteristics of the human visual system to improve coding efficiency has become a reliable method due to advances in computer performance and visual algorithms. In this paper, a novel VVC optimization scheme compliant PVC framework is proposed, which consists of fast coding unit (CU) partition algorithm and quantization control algorithm. Firstly, based on the visual saliency model, we proposed a fast CU division scheme, including the redetermination of the CU division depth by calculating Scharr operator and variance, as well as the executive decision for intra sub-partitions (ISP), to reduce the coding complexity. Secondly, a quantization control algorithm is proposed by adjusting the quantization parameter based on multi-level classification of saliency values at the CU level to reduce the bitrate. In comparison with the reference model, experimental results indicate that the proposed method can reduce about 47.19% computational complexity and achieve a bitrate saving of 3.68% on average. Meanwhile, the proposed algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality
    corecore