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Efficient Bit Rate Transcoding for
High Efficiency Video Coding

Luong Pham Van, Student Member, IEEE, Johan De Praeter, Student Member, IEEE, Glenn Van Wallendael,
Sebastiaan Van Leuven, Jan De Cock, Member, IEEE, and Rik Van de Walle, Member, IEEE

Abstract—High efficiency video coding (HEVC) shows a
significant advance in compression efficiency and is considered
to be the successor of H.264/AVC. To incorporate the HEVC
standard into real-life network applications and a diversity of
other applications, efficient bit rate adaptation (transrating)
algorithms are required. A current problem of transrating for
HEVC is the high computational complexity associated with the
encoder part of such a cascaded pixel domain transcoder. This
paper focuses on deriving an optimal strategy for reducing the
transcoding complexity with a complexity-scalable scheme. We
propose different transcoding techniques which are able to reduce
the transcoding complexity in both CU and PU optimization
levels. At the CU level, CUs can be evaluated in top-to-bottom
or bottom-to-top flows, in which the coding information of the
input video stream is utilized to reduce the number of evaluations
or to early terminate certain evaluations. At the PU level, the
PU candidates are adaptively selected based on the probability
of PU sizes and the co-located input PU partitioning. Moreover,
with the use of different proposed methods, a complexity-scalable
transrating scheme can be achieved. Furthermore, the transcoding
complexity can be effectively controlled by the machine learning
based approach. Simulations show that the proposed techniques
provide a superior transcoding performance compared to the
state-of-the-art related works. Additionally, the proposed methods
can achieve a range of trade-offs between transrating complexity
and coding performance. From the proposed schemes, the fastest
approach is able to reduce the complexity by 82% while keeping
the bitrate loss below 3%.

Index Terms—Bit rate adaptation, complexity scalable
transcoding, high efficiency video coding (HEVC), machine
learning.

I. INTRODUCTION

THE recently finalized High Efficiency Video Coding
(HEVC) standard [1], jointly developed by the ITU-T

Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group (MPEG), has shown significant advances
in compression efficiency [2], [3] compared to the prevalent
H.264/AVC coding standard. At the same subjective quality,
HEVC saves approximately 50% bit rate. Due to its high com-
pression efficiency, HEVC is expected to be widely used for

Manuscript received April 3, 2015; revised September 25, 2015; accepted
December 14, 2015. Date of publication December 24, 2015; date of current
version February 18, 2016. This work was supported by Ghent University—
iMinds, Agency for Innovation by Science and Technology (IWT) Ph.D. and
post-doctoral fellow grants, the Fund for Scientific Research-Flanders (FWO-
Flanders), and the European Union. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Yap-Peng Tan.

The authors are with the Department of Electronics and Information Systems,
Ghent University—iMinds, Ghent 9000 Belgium (e-mail: luong.phamvan@
ugent.be; johan.depraeter@ugent.be; glenn.vanwallendael@ugent.be; sebasti-
aan.vanleuven@ugent.be; jan.decock@ugent.be; rik.vandewalle@ugent.be).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2015.2512231

many applications. These include high quality digital video ap-
plications such as the distribution of (ultra) high definition TV
signals over satellite, cable, and terrestrial transmission sys-
tems; low bit rate applications such as video delivery to mobile
devices; and video conferencing. To incorporate the newly de-
veloped HEVC standard in such a diversity of use cases where a
single video stream cannot match the requirements of all devices
and networks, efficient transcoding algorithms are required.

Transrating, which refers to bit rate transcoding within the
same video format, is widely used for digital video adapta-
tion and distribution. Transrating allows a video bitstream (i)
to adjust to network bandwidth constraints and/or (ii) to meet
constraints of the receiver terminal. In the first case, when video
is transmitted over networks with fluctuating bandwidth, tempo-
rary capacity problems can occur. Having a video bitrate higher
than the network bandwidth results in visual artifacts caused by
packet loss. To reduce such visual distortions, the video stream
has to be scaled to a lower rate in a controlled manner. Using
transrating, such bitrate adaptation can follow the constraints
of the network in an optimal way. In the second case, a video
stream might be stored and/or streamed to various devices with
different playback capabilities. With such a diversity of devices,
a single copy of encoded video cannot match the requirements
of all devices. A possible solution is to store several copies of
the video on the server and to send the bitstream that best sat-
isfies the requirements of the user. However, the storage cost of
the server would be very high and the pre-encoded video stream
may still not exactly match the user requirements. To tackle this
problem, the video may be encoded at a high bitrate followed by
an online transrating step to meet the requirements of the user
device.

Transcoding operations can be categorized into either
open-loop transcoding or closed-loop cascaded pixel domain
transcoding. For the open-loop transcoder, typically only trans-
formed coefficients in the frequency domain are requantized
while the motion parameters are not re-evaluated. Therefore,
a mismatch between encoder and decoder reference frames
occurs, which results in drift. Several solutions for bit rate
scaling by requantization have been investigated for MPEG-1/2
and H.264/AVC bitstreams [4]–[9]. In [5], the variable-length
code words corresponding to the quantized DCT coefficients are
extracted from the video bitstream. These quantized coefficients
are inverse quantized and then simply requantized to match the
new bit rate. An alternative to requantization, which is called
DCT coefficient dropping or dynamic rate shaping, directly cuts
high-frequency coefficients from each macroblock [6]. More
recently, different bit rate adaption methods have been pro-
posed for H.264/AVC bitstreams [7]–[10]. An efficient mixed
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transrating architecture containing a low complexity scheme
combined with a drift cancelling closed-loop scheme was
proposed in [8]. A model-based transrating scheme using
requantization of the transform coefficients, which is integrated
in a rate control mechanism, has been examined in [9]. The ad-
vantage of an open-loop transcoder is its low complexity, but the
drift effects result in visual quality losses due to the error propa-
gation. This drift can be reduced in a closed-loop cascaded pixel
domain transcoder where the video bitstream is decoded and re-
encoded to match the target bit rate. However, a high complexity
is required due to extensive re-encoding computations.

In this paper, we propose several techniques to reduce the
computational complexity of closed-loop transrating for HEVC.
A high bit rate input bitstream is decoded and the reconstructed
sequence is then re-encoded at a lower bit rate. In this cascade of
decoder and encoder, the complexity of transrating is high due
to the flexibility of HEVC and the resulting large search space
that is evaluated by the encoder. The basic block in HEVC,
which is 64× 64 pixels in size and is known as the coding
tree unit (CTU), is recursively split into coding units (CUs) for
which three prediction modes (i.e., skip, inter, and intra modes)
are supported [11], [12]. This splitting process is performed for
CUs from depth 0 (64× 64 pixel CU) to depth 3 (8× 8 pixel
CU). Each CU is the root for further evaluation of the prediction
unit (PU), and transform units. Depending on the mode, for each
2Nx2N block, eight PU sizes can be chosen (four symmetric par-
titions: 2Nx2N, Nx2N, 2NxN, and NxN and four asymmetric
partitions: nLx2N, nRxN, 2NxnD, and 2NxnU). To obtain the
most efficient mode for a CU at depth d, all PU partitions and all
Residual Quad-Tree (RQT) configurations are evaluated during
the rate-distortion optimization (RDO) process. This RDO eval-
uation decides the most optimal mode by minimizing the RD
cost function (J) given by (1) where D is the distortion of the
reconstructed CU, λ the Lagrangian multiplier and R the rate
required to signal the prediction and the residual information of
the CU

J = D + λR. (1)

This RDO process is recursively performed in the four sub-CUs
at the depth d + 1 [1]. After evaluating the RD cost of a CU at
depth d and the combined RD costs of its sub-CUs, splitting of
the CU is decided and signalled by a split-flag.

The proposed techniques reduce the transrating complex-
ity at the CU and PU levels. For the CU evaluation, four fast
approaches, which are classified into two classes, i.e., top-to-
bottom (T2B) and bottom-to-top (B2T), are proposed. In the
first class, where CUs are evaluated from lower depths (d = 0)
to higher depths (d = 3), two techniques are proposed. The first
technique (T2B) simply re-uses the CU structure from the input
bitstream and modifies the structure by evaluating CUs at lower
depths. In addition, a machine learning based method (T2BML),
which requires a training phase to implement, makes use of ma-
chine learning tools to exploit the correlation between coding
information of the input CUs and coding information of the
co-located output CUs. In the second class, which includes two
methods B2T and B2TTLP , the flow of evaluating CUs moves
upwards from higher depths to lower depths. These methods

utilize the coding information of CUs from the incoming bit-
stream and splitting of neighboring CUs. In the PU evaluation,
the number of PU candidates is minimized by referring to the
PU size of the input video stream.

The rest of this paper is organized as follows. In Section II, we
introduce related works and the novel contributions of this pa-
per. The transrating architecture and methodology are described
in Section III. Section IV presents the proposed fast transrat-
ing techniques. In Section V, the experimental results of the
proposed method are presented, showing 82% complexity re-
duction compared to an unmodified cascaded decoder-encoder
approach. Finally, Section VI provides conclusions and future
work.

II. RELATED WORKS AND CONTRIBUTIONS OF OUR WORK

A. Fast Transcoding Techniques

The complexity of a closed-loop transcoder is essentially
caused by the huge computation in the encoder part. In order
to reduce the computational complexity of the transcoder, many
approaches have been proposed to optimize the encoding pro-
cess. Most of these techniques focus on predicting the coding
modes in the output video to early terminate encoding. There
are two main directions of optimizing the encoder: 1) fast en-
coding without considering the coding information of the input
video, and 2) utilizing the coding information in the input video
to accelerate the encoding.

In the first direction, various techniques have been proposed
to accelerate the HEVC encoder [13]–[22]. These techniques
use the texture characteristics of video and/or utilize the tempo-
ral/spatial correlation in the video to predict the coding informa-
tion of a CU. In [13], the splitting of a CU in intra-coded frames
is decided based on the texture homogeneity of the video in the
pixel domain and the splitting of its neighboring CUs. A method
based on k nearest neighbors has been proposed to determine
the CU splittings [15]. In [16], the depth range of a CU is deter-
mined to achieve early termination of CU evaluations. On the
other hand, early skip mode and merge mode detection methods
have been proposed in [17] . Currently, some researchers have
started using machine learning to accelerate the HEVC encoder.
Support vector machines have been used in [18]. More recently,
a decision tree based method has been proposed to reduce the
complexity of the HEVC encoder [19] . Although it is reported
that the complexity of the HEVC encoder is reduced by the
aforementioned techniques, the reduction is still limited.

An alternative direction which can provide a higher complex-
ity reduction for transcoding is to utilize the correlation between
coding information of the input and output video. In [23], the
statistical properties of the mode distribution are utilized for
fast mode refinement of intra prediction. Similarly, in [24] the
statistical properties of the mode distribution and motion vec-
tor refinement were exploited to reduce the complexity of inter
prediction. Given the differences between HEVC and previous
video coding standards in their block structure, motion esti-
mation and residual information coding, traditional transrating
techniques cannot be directly applied to HEVC. Therefore, sev-
eral techniques using machine learning for fast transcoding from
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MPEG-2 or H.264/AVC to HEVC have been proposed [25],
[26]. Notice that the machine learning based techniques in [25],
[26] are used in heterogeneous video transcoding, in which the
input and output video are encoded using different standards.
More recently, a fast machine learning based transcoding tech-
nique has been proposed for transcoding in HEVC [27]. This
transcoding technique is used for video composition of multiple
HEVC bit streams.

In [28], an alternative to fast transcoding for HEVC has been
proposed by means of a control stream. In other words, the
sender encodes a video at different qualities. The high quality
encoded version is sent to the user. When an adaptation pro-
cess is needed, the sender sends the encoder decisions of one
of the other streams without residual information to support
the transcoding process. The major downside of this technique
is the limitation of flexibility since the number of encoded ver-
sions is fixed. Moreover, this technique results in network over-
head for transmitting the extra stream.

Finally, a transrating technique for HEVC based on machine
learning has been proposed in [29] . In this transcoder, the quan-
tization parameters in the input HEVC video stream is changed
to create a lower bit rate video. A gain of 64% in complexity on
average is shown, with a loss of 1.76% in coding performance.
However, this method is only optimized for predicting the CU
structure.

B. Contribution of This Paper

In this paper, we further optimize the performance of the
transcoder proposed in [29] with the following contributions.

Firstly, in order to figure out an efficient method for transrat-
ing, we propose several techniques which exploit the coding
information correlation to speed up transrating. The correla-
tion can be utilized by using machine learning or non-machine
learning approaches to predict the CU structure of output video.
Besides that, the spatial and temporal correlation is also used to
support this prediction. The complexity of the transcoder can be
reduced at the CU and/or PU evaluation level, contrary to only
the CU level in [29] .

Secondly, we propose a complexity-scalable transrating
scheme for particular practical use cases. Different proposed
algorithms provide different complexity reductions and bit rate
losses. Moreover, the machine learning based algorithm ef-
ficiently controls the complexity of the transcoder with two
thresholds. The performance of these proposed techniques is
evaluated and compared with the state-of-the-art fast HEVC
transcoding approaches in terms of complexity reduction and
bit rate penalty. Based on this analysis, our proposed methods
outperform these algorithms.

Finally, we propose a novel approach for CU evaluation.
This approach recursively merges CUs from smaller CUs to
larger CUs. In the traditional evaluation flow, the CUs are eval-
uated from lower depths to higher depths. In contrast, our
proposed method evaluates CU in a reverse way. By using
this approach, the optimal splitting behavior of CUs at higher
depth is known before evaluating the RD cost at the current
depth. This prior-known information may be used for an early

Fig. 1. Proposed transrating architecture.

termination of CU evaluation. Hence, the complexity of
transcoder is reduced.

III. TRANSRATING ARCHITECTURE AND METHODOLOGY

The proposed pixel domain transrating architecture is de-
picted in Fig. 1. The input HEVC bit stream at high quality
is first reconstructed. This reconstructed sequence is then re-
encoded at the target bit rate. The transrating process focuses on
reducing the bit rate of the input bit stream. Therefore, the out-
put bit rate is lower than the input rate. The proposed transrating
techniques support both variable bit rate (VBR) and constant bit
rate (CBR) schemes.

In the VBR scenario, the input video is encoded using a
constant quantization parameter (QP1). The video is re-encoded
using the new quantization parameter QP2 which is higher than
the original QP1 . Therefore, a ΔQP is introduced such that
ΔQP = QP2 − QP1 . On the other hand, in the CBR scenario,
both input and output video streams are encoded at a constant
bit rate. The quantization parameters for each CTU in a frame
might be different. They are decided by a rate control algorithm
to achieve the target bit rate.

The proposed algorithms optimize the re-encoding process
by exploiting the coding information from the input bit stream
to limit the amount of CUs and PUs that are evaluated by the
encoder. This is indicated in Fig. 1 by the ‘Fast CU splitting
decision, adaptive PU selection’ block. However, it should be
noted that in this paper we do not optimize motion estimation.

In order to analyze the correlation (bit rate, CU structure, and
PU partition size) between the input and output video streams,
conditions for evaluation are specified as follows. The HEVC
test model (HM) 7 reference software [30] is used for encoding
and decoding. The default common test conditions as defined in
[31] are used with the low delay P main configuration (LP) and
the VBR scheme. The input and output video streams are both
encoded using a coding structure of IPPP . . . with 4 reference
frames. The quantization parameter is chosen such that QP1
∈ {22, 27, 32, 37} while ΔQP ∈ {2, 4, 6}.

The impact of different values of ΔQP on the bitrate of
the video stream is measured and shown in Table I. As can be
expected, there is a larger relative bitrate reduction at higher bit
rates (lower QP1) than at lower bitrates for an equal ΔQP. In the
proposed transrating scheme, we limit the ΔQP to 6, resulting
in a bit rate reduction by a factor of 2 to 3. As recommended in
[32] , further reductions in bit rate should be achieved by other
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TABLE I
BIT RATE REDUCTION BY CHANGING QP

Sequence
Bitrate [kbps] Bit rate reduction[%]

(QP1 )

ΔQP = 2 ΔQP = 4 ΔQP = 6

8365 (22) -35.16 -54.92 -68.24
ParkScene 3264 (27) -32.96 -52.37 -65.65
(1080p) 1380 (32) -33.90 -51.63 -64.84

604 (37) -34.50 -52.30 -64.62

1788 (22) -27.11 -44.55 -57.63
BasketballPass 899 (27) -27.93 -44.90 -57.19
WQVGA (240p) 453 (32) -27.29 -42.30 -54.14

243 (37) -25.81 -40.20 -50.28

2149 (22) -30.92 -51.25 -65.25
BlowingBubbles 880 (27) -28.71 -48.87 -63.04
WQVGA (240p) 386 (32) -29.44 -47.91 -61.04

179 (37) -28.68 -45.84 -56.59

2465 (22) -38.46 -56.51 -67.87
FourPeople 935 (27) -27.75 -44.34 -56.54
(720p) 469 (32) -25.15 -39.80 -51.60

260 (37) -23.93 -37.93 -48.84

Average -29.86 -47.23 -59.59

TABLE II
PROBABILITY OF CU DEPTH IN THE OUTPUT VIDEO STREAM GIVEN

THE CU DEPTH OF THE INPUT VIDEO STREAM (P {do |di}[%])

di

ΔQP = 2 ΔQP = 6

do = 0 do = 1 do = 2 do = 3 do = 0 do = 1 do = 2 do = 3

0 97 3 0 0 98 2 0 0
1 20 76 4 0 43 53 3 0
2 4 20 71 5 16 35 45 4
3 1 7 26 65 6 21 36 36

transcoding methods (e.g., temporal transcoding and/or spatial
transcoding).

IV. PROPOSED TRANSCODING SCHEME

In the following subsection the correlation between the cod-
ing block sizes (reflected by the depth d of a CU) of the input and
output video stream of a cascaded decoder-encoder is evaluated.
Afterwards, in Section IV.B, this analysis is used as a starting
point for the proposed fast CU splitting techniques. The corre-
lation between the input and output PU sizes is then analyzed in
Section IV.C. Section IV.D proposes further accelerations based
on adaptive PU evaluation using this PU correlation. Finally, the
prediction performance of the proposed methods is evaluated in
Section IV.E.

A. Correlation Between Coding Block Depths in Input and
Output Streams

In order to evaluate the correlation between the coding block
sizes, five video sequences (ParkScene, BasketballDrill, BQ-
Mall, BQSquare, and FourPeople) are used. The information of
the coding depth of CUs encoded at QP1 and at QP2 is ex-
tracted and shown in Table II, where P{do | di} indicates the

conditional probability that a CU is re-encoded using depth do

while it was originally encoded at depth di .
In order to obtain the conditional probability, a frame is di-

vided into 8× 8 (smallest CU size) blocks. The depth of such an
8× 8 block is the depth of the CU covering this block. P{do | di}
is given by the probability of the output depth of an 8× 8 block
given the input depth of this 8× 8 block.

Table II shows that, when the QP increases for a given di ,
the CU is typically re-encoded at this depth or at a lower depth,
corresponding to a larger partition. For instance, when a CU
in the input bit stream is encoded using depth 1, there is a
probability of 76% that the CU is re-encoded using the same
depth and there is a 20% probability that the CU is merged to
depth 0, in case of ΔQP = 2. This observation will be exploited
in the rest of this paper to reduce the complexity of transrating.
When ΔQP is high, the probability that input CUs are merged
into CUs at lower depths is high as well. On the other hand, the
correlation between coding information of the input and output
stream is low when the difference in QP is high.

B. Fast CU Splitting Decision

In this section, four fast transrating techniques are proposed
to reduce the complexity of the CU (RDO) evaluation. These
methods are classified into two main categories, namely T2B
and B2T approaches. In the T2B category, the CU evaluation is
performed by a recursive splitting process, where CUs are split
from lower depths to higher depths. The trivial T2B applies
the CU structure from the input video stream to the output
video. An improved T2B approach is a machine learning based
method (T2BML). T2BML exploits the correlation of coding
information of the co-located CUs to build split-flag decision
trees. In the B2T category, CUs are merged from smaller sizes to
higher sizes. A first bottom-to-top method is B2T, which applies
the CU structure from the input video as the initial structure of
the CU in the output video. B2T then merges smaller CUs into a
larger CU. To further reduce the complexity of the B2T method,
B2TTLP is proposed. B2TTLP considers the splitting behavior
of the top and left CUs of the current frame, and of the co-located
CU in the previously encoded frame.

1) Top to Bottom (T2B) CU Decision: Motivated by the ob-
servation in Table II that the CUs in the output video typically
have an equal or lower depth compared to the co-located CUs in
the input video, the T2B method uses the CTU structure of the
input stream to determine the maximum depth it should evaluate
for each CU in the output stream.

The T2B technique evaluates the RD cost for CUs from depth
0 to the maximum depth of the initial CTU (iCTu). At each
depth of iCTU, the RD cost for every CU of iCTU is evaluated.
After checking the RD cost of a CU, the decision to check higher
depths is based on the input split flag. If the input CU is split, the
split of the output CU is also performed for further evaluation.
When the split-flag of the input CU is 0, further splitting of this
CU is stopped. It should noted that the RD cost of a CU in iCTU
is always evaluated even when the input co-located CU is split.
This RD cost evaluation is performed since there is a notable
probability that an input CU is re-encoded using a lower depth
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Algorithm 1 Pseudo-code for T2B CU evaluation algorithm
1: Input: initial CTU iCTU = the CTU structure in the

input video stream, dmax = maximum depth of iCTU
2: for d = 0 to dmax do
3: for all CUd ∈ CUs at depth d of iCTU do
4: RDnotsplit = ∞, RDd = ∞, SFd = 0
5: RDnotsplit ← Encode(CUd), RDsplit = ∞
6: if CUd is split in iCTU then
7: Go to 4 CUs at depth d + 1
8: RDsplit ←

∑i=3
i=0 RD(d+1)i

9: end if
10: SFd ← (RDnotsplit < RDsplit)?0 : 1
11: RDd ← (SFd = 0)?RDnotsplit : RDsplit

12: end for
13: end for
14: Process the next CTU

TABLE III
DECODED INFORMATION AS INPUT TO DECISION TREES

Parameters Domain Meaning

split_flag 0, 1 Split-flag of CU in QP1

delta_depth 0-3 Difference between the current
depth and the max depth of CUs

sum_depth Number Sum of depths of CUs
num_pu Number Number of PUs
cbf 0, 1 0: If none of the CUs (luminance component)

are encoded 1: Otherwise

in the output stream. The RDO process of a CTU in the output
video is summarized in Algorithm 1.

2) Machine Learning-Based T2B (T2BM L ) CU Decision:
This method exploits the correlation of coding information of the
incoming bit stream and the split-flag of the output CUs. Coding
information of co-located CUs from the input bit stream, as listed
in Table III, is extracted during transrating. This information
is used as the input for machine learning (resulting in decision
trees). Out of the decision tree, a split-flag and the corresponding
confidence ratio are given. Based on these results, the RDO
process for the CU can be controlled.

Decision trees: For each ΔQP, three decision trees indicated
as T0 , T1 , and T2 were constructed. These decision trees predict
whether the CUs at depth 0, depth 1, and depth 2, respectively,
should be split.

The decision trees have been constructed with machine learn-
ing using decoded information (listed in Table III) from four
training sequences. These selected four sequences can be clas-
sified into three categories: low motion and low complexity
(FourPeople), medium activity (ParkScene, and BQSquare) and
high motion (BasketballDrill). Originally, the motion vector and
residual information in the input video (the variance of the input
motion vectors, the means and variances of the residual) have
been taken into account for building these decision trees. As
these features appear in end-nodes of these trees, the impor-
tance of these features is low. Furthermore, these features make
the trees more complex. Therefore, these features are ignored to

Fig. 2. Splitting ofa CTU using decision trees (pSF = predicted split flag).

simplify these trees. Table III shows the decoded information,
which is used for generating the decision trees. This selected
coding information is used as the input of the WEKA data min-
ing tool [33] .

The tool used for generating decision trees is J48, an im-
plementation of the C4.5 [34] algorithm in WEKA. This C4.5
algorithm is a well-known algorithm in the literature for build-
ing decision trees and has been widely used in classification
applications.

An example of splitting a CU from depth 0 to depth 3 based
on decision trees is shown in Fig. 2. The split-flag of the CU
at depth 0 (CU0) is predicted by T0 . The input for this tree
is the decoded information from the CUs within a co-located
area of 64× 64 pixels of this CU0 . The output of this tree is a
predicted split-flag (0 or 1), and the probability of the prediction.
In this example, CU0 is decided to be split into four CUs. The
splitting of the sub-CUs is decided by tree T1 using the coded
information from CUs at the co-located 32× 32 pixels. At depth
1, only CU1 1 is decided to be split further while the others are
not split. The prediction of the split-flags of the four sub-CUs
at depth 2 arising from CU1 1 is performed using T2 . This tree
predicts a split-flag of 1 for CU2 2 and 0 for the other CUs.

RDO evaluation for the transrating process: Based on the de-
coded syntax information, the decision tree obtained by offline
training results in a predicted split-flag. The probability P of the
prediction is defined as the ratio of the correctly predicted in-
stances to the total number of instances, and is used here to steer
the RDO process. The probability is classified as high, medium,
or low by comparing it with two proposed thresholds Thr1 and
Thr2 , in which Thr2 > Thr1 . The summary of classification
is given in (2)

P is

⎧
⎪⎨

⎪⎩

High, if P >= Thr2

Low, if P < Thr1

Medium, otherwise.
(2)

Based on the probability of the prediction, the RDO evalu-
ation is controlled to further refine the predicted split-flag. If
P is high, the confidence in the prediction is high. Therefore,
the predicted split-flag is directly used as the optimal splitting
behavior for the CU. Otherwise, when P is low, the accuracy of
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TABLE IV
RD EVALUATION FOR A CU AT DEPTH d [YES (Y) / NO (N)]

Predicted split-flag P Check at depth d Check at depth d + 1 End recursion

High Y N Y
0 Medium Y Y Y

Low Y - N

High N - N
1 Medium Y - N

Low Y Y Y

Fig. 3. Flowchart of T2BM L PU algorithm. The “end Recursion”(eRecur) is
signalled from depth d to depth d + 1. Therecursive process is terminated until
depth d = 3 or eRecur = 1.

the prediction is low and the predicted split-flag is re-evaluated.
By adjusting Thr1 and Thr2 , the transcoding complexity can
be controlled and a tradeoff between complexity and coding
performance can be achieved. The details of the proposed RDO
process are depicted in Table IV and the overall algorithm is
summarized in Fig. 3. In this table, ‘end recursion’ indicates
whether the recursive splitting process is terminated after the

RD evaluation at depth d and/or d + 1. When ‘end recursion’
is ‘N’, the split flag is predicted again and the RD evaluation
process is recursively implemented at depth d + 1. Otherwise,
the RD evaluation process is terminated.

For instance, if the predicted split-flag is 0 and P is high,
the CU should not be split and the RD cost evaluation is only
performed at the current depth d. When P is medium, the RD
cost is evaluated at both depth d and depth d + 1. However,
the CU at depth d + 1 should not be split, and the recursion is
ended. When P is low, the RD cost calculation is performed at
depth d and depth d + 1 without splitting further.

For a predicted split-flag of 1, if P is high, the CU is im-
mediately split to depth d + 1. Else, the RD cost is evaluated at
depth d when P is either medium or low. If P is low, the CU
is evaluated at depth d + 1 and the split recursion is terminated.
If P is medium, at depth d + 1, the split-flag prediction is per-
formed and the RD evaluation process is controlled based on
the new predicted split-flag.

3) Bottom-to-Top (B2T) CU Decision: In the top to bottom
approach, the evaluation is performed for CUs from lower depths
to higher depths. In other words, the RD cost of the CU is
normally obtained at lower depths first. Then the RD cost of
CUs at higher depths is derived. The splitting of a CU at a lower
depth is only decided when both its own RD cost and those of all
CUs at higher depths are obtained. As a result, the RD costs at
lower depths are always calculated even if the CU will be split.
The B2T method is proposed to address this problem. In this
approach, the CUs are evaluated from higher depths to lower
depths. The optimal splitting behavior of CUs at higher depths
is utilized to decide whether the RD cost of CUs at lower depth
is obtained and the evaluation is terminated. The details of the
proposed method for transcoding are presented as follows.

The co-located CU structure in the input video serves as an
initial starting point for the CU structure in the output video. Af-
ter all, as seen in Section IV.A, the depth of CUs after transrating
is usually higher or equal to the depth of the CUs before tran-
srating. The RDO process is recursively performed by merging
sub-CUs from the initial depth dmax to depth 0. The CU size at
the maximum depth (dmax) is always evaluated. The merging
process is performed conditionally: if all 4 sub-CUs at depth
d + 1 are not split, it might be more optimal to use a larger CU
size. Therefore, the RD cost for this CU at depth d is obtained.
Otherwise, the CU is not re-evaluated and considered as split.
The algorithm of the B2T approach is summarized in Algorithm
2, in which SFndi and RDndi are respectively the optimal split
flag and RD cost of the ith CU of the four child CUs at depth
d + 1.

An example of splitting a CTU using B2T is given in Fig. 4. At
depth 3, RD costs for only 8 CUs, indicated as shaded circles,
are obtained, whereas an unmodified encoder might evaluate
the costs of 64 CUs. When evaluating at depth 2, B2T evaluates
RD costs for 8 CUs. After these RD costs are calculated, RD
costs of CU2 1 and CU2 7 are compared to the sum of the RD
costs of their previously evaluated sub-CUs at depth 3. Assume
that CU2 1 is decided not to be split while the best decision
for CU2 7 is to split. At depth 1, the RD cost of CU1 4 is
not evaluated since the decision has already been made to split
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Algorithm 2 Pseudo-code for B2T CU evaluation algorithm
1: Input: initial CTU iCTU = the CTU structure in the

input video stream, dmax = maximum depth of iCTU
2: for d = dmax to 0 do
3: for all CUd ∈ CUs at depth d of iCTU do
4: RDnotsplit = ∞, RDd = ∞, SFd = 0
5: RDsplit = ∞
6: if CUd is not split in iCTU then
7: RDnotsplit ← Encode(CUd)
8: else
9: nd ← d + 1
10: Ckd ← (SFnd 0‖SFnd 1‖SFnd 2‖SFnd 3)
11: if Ckd = 0 then
12: RDnotsplit ← Encode(CUd)
13: RDsplit ←

∑i=3
i=0 RDnd i

14: end if
15: end if
16: SFd ← (RDnotsplit < RDsplit)?0 : 1
17: RDd ← (SFd = 0)?RDnotsplit : RDsplit

18: end for
19: end for
20: Process the next CTU

Fig. 4. Example of splitting a CTU based on B2T. iSF and oSF are the split
flags of the input andoutput CUs, respectively.

CU2 7 . Only the RD cost of CU1 1 is evaluated since all of 4
corresponding sub-CUs are not split. The two shaded CUs at
this depth are also evaluated. Finally, the RD calculation for the
root CU at depth 0 is also skipped since not all sub-CUs can be
merged.

4) B2T CU Decision Based on Top, Left CUs, and Co-
Located CU in Previous Frame (B2TT LP ): This method works
similar to B2T. However, it considers not only the CU structure
from the incoming bit stream but also the splitting behavior of
neighboring CUs (namely top and left CUs) and the co-located
CU in the previously encoded frame. The RD cost of a CU at a
lower depth is obtained if all CUs at higher depths can be merged
and the top, left, and co-located CU are not split. Otherwise, the
RD cost for this CU is not evaluated.

C. Correlation Between Prediction Unit Sizes in Input and
Output Streams

The complexity of selecting the optimal CU size is reduced
by the proposed fast CU splitting techniques, which exploit the

Algorithm 3 Pseudo-code for predictive PU evaluation of a
CU algorithm using T2B, B2T, and B2TTLP

1: Input: Split flag iSF of the co-located CU in the input
video

2: if iSF = 0 then
3: Get PU iPU of the co-located CU in the input video
4: Evaluate the output CU with iPU and 2Nx2N
5: else
6: Evaluate the output CU with all possible PU sizes
7: end if
8: Process the next CU

correlation between CU structures of co-located CUs. However,
the correlation between PU sizes in the input and output video
bit stream was not utilized yet. Here, we first analyze this corre-
lation. Then we propose an adaptive PU selection method which
utilizes this correlation to reduce the complexity of the optimal
PU partition selection (which is a subprocess of the CU selection
process). This proposed method reduces the number of evalu-
ated PU partitions by referring to the PU partition in the input
bit stream. Table V shows the correlation between the PU size
of co-located CUs in the input and output bit stream. PUi and
PUo are PU sizes of a CU in the input CU and the co-located CU
in the output stream, respectively. The five sequences indicated
in Section IV.A are analyzed. P{PUo |PUi} is the conditional
probability that a CU is encoded using PUo given PUi when
both CUs in the input and output bit streams have the same depth.

It can be clearly seen in Table V that, for any given PUi ,
there is a significant probability that PUo has either the same
partitioning or a 2Nx2N partitioning.

D. Predictive PU Selection

The proposed adaptive PU selection only evaluates PU parti-
tions having a high probability given the input PU size. For three
methods (T2B, B2T, and B2TTLP ), if the CU in the input bit
stream is not split, only PU sizes 2Nx2N and PUi are evaluated.
Consequently, the number of PU candidates is reduced from 8
to 2. Otherwise if the input CU is split, all possible PU sizes are
evaluated for the output CU. The selection algorithm for these
hree approaches is summarized in Algorithm 3.

The PU size candidates for a CU in the T2BML method
depend on the predicted split-flag and the split-flag of the CU in
the input. These candidates of CUs at depth d and sub-CUs at
depth d + 1 are jointly controlled by following the RDO model
proposed in Table IV. At depth d, if the predicted split flag
(pSF ) is 0 or pSF = 1 with a low or medium accuracy, the
PU selection is controlled by the splitting of the input CU. If
the input CU is not split, the output CU is evaluated using the
input PU (iPU) and 2Nx2N. Else, the CU is evaluated with all
possible PU sizes. At depth d + 1, if the recursion is decided as
stop, only the three largest PU sizes including 2Nx2N, 2NxN,
and Nx2N are evaluated. Else, the split flag is newly predicted
and the PU selection process is recursively performed for depths
d + 1 and d + 2. The overall flow chart of T2BML PU is given
in Fig. 3.
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TABLE V
PROBABILITY OF PU PARTITIONING MODE OF THE OUTPUT VIDEO STREAM GIVEN THE PU PARTITIONING OF THE INPUT VIDEO STREAM

PUi P {PUi }[%]
P {PUo |PUi }[%]

2Nx2N 2NxN Nx2N NxN 2NxnU 2NxnD nLx2N nRx2N

2Nx2N 78.67 92.47 2.01 2.65 0.21 0.54 0.61 0.71 0.79
2NxN 5.57 59.40 30.54 4.38 0.20 2.34 1.26 0.99 0.90
Nx2N 7.06 54.97 2.99 36.26 0.19 0.70 0.67 2.68 1.53
NxN 1.26 45.92 2.91 4.00 44.32 0.86 0.40 1.09 0.50
2NxnU 1.78 61.45 7.48 3.62 0.10 23.93 1.14 1.14 1.14
2NxnD 1.63 61.94 5.48 3.55 0.06 1.23 25.62 1.10 1.03
nLx2N 2.27 57.83 2.38 9.14 0.07 0.73 0.77 27.78 1.29
nRx2N 2.07 61.27 2.37 7.39 0.05 0.74 0.75 1.58 25.84

TABLE VI
SPLIT-FLAG PREDICTION ACCURACY AND THE PU SIZE MATCHING RATE

CFG Seq Resolution
Split flag prediction accuracy [%] PU size matching rate [%]

Trivial T2B T2BML B2TTLP Trivial T2B T2BML B2TTLP

BQSquare* 416x240 67.55 84.75 82.83 83.21 78.67 87.20 87.62 87.43
FourPeople* 1280x720 61.27 83.90 82.62 81.80 86.87 91.54 91.31 91.76

BQMall 832x480 63.46 81.56 80.46 79.55 80.92 88.12 87.99 88.43
LP PartyScene 832x480 62.83 81.13 79.48 79.64 72.34 83.37 83.65 83.62

Kimono 1920x1080 57.42 79.73 79.12 76.87 83.34 90.61 90.21 90.93
BasketballDrive 1920x1080 60.96 81.66 80.14 79.29 83.86 89.82 89.68 90.09

Average 64.08 83.60 81.63 81.10 82.51 89.32 89.30 89.58

BQSquare* 416x240 64.08 90.76 88.86 87.48 85.20 94.30 94.35 93.71
FourPeople* 1280x720 65.85 90.89 89.77 87.01 89.09 95.29 95.00 94.55

BQMall 832x480 65.09 87.47 86.33 83.42 83.51 91.94 91.71 91.45
RA PartyScene 832x480 60.94 86.99 85.02 83.07 80.24 91.21 91.23 90.19

Kimono 1920x1080 60.04 86.20 85.39 81.96 87.09 93.81 93.50 93.64
BasketballDrive 1920x1080 63.37 85.81 84.31 81.80 86.58 92.65 92.44 92.50

Average 65.34 88.66 86.93 84.57 85.38 93.04 92.88 92.54

* The sequences in the training set for modelling of T2BML.

E. Prediction Accuracy of the Proposed Techniques

The prediction performance of the proposed methods has
been evaluated for the use of VBR as indicated in Section III
with a ΔQP of 6. In the CU evaluation, the prediction accu-
racy is measured for three CU depth levels. At each CU depth,
the accuracy of prediction is given by the probability that the
split-flags predicted by the proposed methods and an anchor
transcoder are the same. In the anchor transcoder, the CU size is
decided by the regular HM reference software. At the PU level,
the PU size matching rate is the probability that the PU sizes of
the proposed methods and the anchor transcoder are the same
given that the CU sizes of the proposed and anchor method are
the same.

The results are shown in Table VI where the trivial method
copies the input coding structure to the output video stream.
As can be seen in Table VI, the proposed methods have a high
prediction accuracy. There is a remarkable improvement in
accuracy of about 20% of our proposed methods compared to
the trivial transcoder. Among the proposed methods, T2B pro-
vides the best prediction performance with 83.60% and 88.66%
for LP and RA configurations, respectively. The prediction
accuracy of T2B is high since the CU is always evaluated
whenever the input CU is split or not. At the PU evaluation level,

the proposed adaptively PU size selection achieves a matching
rate of 90% which is about 7% higher than the trivial method.

The result in Table VI shows that the off-line trained model
used in T2BML is generalized enough. The prediction accura-
cies for training sequences and test sequences are almost similar.
The advantage of using the off-line training model is that a re-
training phase is not needed during transcoding. Therefore, the
off-line training approach is used in T2BML .

V. EXPERIMENTAL RESULTS

The proposed methods are evaluated by comparing the per-
formance with several transcoders. These include an unmodi-
fied decoder-encoder cascade transrater, the trivial methods and
various fast encoding and transcoding algorithms. These triv-
ial methods copy the CU size and/or PU size from the input bit
stream to the output bit stream. Firstly, the evaluation conditions
are described. Thereafter, the experimental results of Trivial,
T2BML , and B2TTLP at both the CU and PU levels are ana-
lyzed in terms of bit rate increasing and transcoding time. These
methods are evaluated in both the variable bit rate (VBR) and
constant bit rate (CBR) scenarios. Finally, coding performance
of our proposed methods are compared with two state-of-the-art
fast HEVC encoding and transcoding algorithms.
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A. Evaluating Conditions

In the experiments, all sequences of classes B, C, D, and
E listed in [31] excluding the training sequences have been
tested. The experiments are tested based on a platform using
64-bit Scientific Linux 6 operating system running on a PC
with an integrated Intel dual-socket quad-core 2.27 GHz and
12 GB RAM. The proposed algorithms are implemented in the
HEVC test model (HM) 7 reference software [30] under the
test conditions as defined in [31]. Search mode “TZSearch” and
“FEN” (fast encoder decision) are enabled. In other words, the
proposed algorithms are compared with the best speed perfor-
mance of HM. The CU structure is set with a max CU size of
64× 64 pixels and a maximum depth of 4. The performance
of the proposed scheme is evaluated in terms of Bjøntegaard
Delta Bit rate (BDBR) [35] for both low delay P main (LP) and
random access (RA) configurations. For LP, only the first frame
is intra-coded while the intra period is set to 32 for RA. In the
BDBR measurement, Peak Signal to Noise Ratio (PSNR) cal-
culations between the re-encoded and the original sequence are
used. Additionally, complexity reduction, which is measured by
the time saving (TS), is given by

TS(%) =
TOriginal(ms) − TProposed(ms)

TOriginal(ms)
. (3)

Here, TProposed is the total transrating time using the proposed
method while TOriginal is the total transrating time using an
unmodified cascaded decoder-encoder setup. Since the same
code base is used for the original encoder, the Trivial methods,
and all proposed techniques, the difference in time saving gives
an indication of the complexity reductions.

B. Coding Performance Under the VBR Scenario

In the VBR scheme, the input video stream is encoded using
a constant QP1 ∈ {22, 27, 32, 37}. This video is reconstructed
and coded at a lower bit rate using a higher constant QP2 . The
difference of the input and output quantization parameter ΔQP
is set as {2, 4, 6}. Firstly, an analyses on the flexible transcoding
complexity of T2BML using thresholds is provided. Then, the
experimental results of all described algorithms are elaborated
on.

1) Complexity-Scalable Transcoder Using the Machine
Learning Based Method: A trade-off between transcoding
complexity and bit rate loss can be achieved by the T2BML
method with the use of two thresholds. It is clear that, when the
proposed thresholds increase, the number of RD evaluations
increases accordingly. Consequently, the rate-distortion com-
plexity trade-off of the transrating architecture can be varied
with these thresholds. Different pairs of (Thr1 , Thr2) have
been evaluated to come to a usable trade-off. Experimental
results using different relevant values are presented in Table VII.
When both of these thresholds are high (0.85, 0.90),, the bit
rate penalty is very small (0.77%). However, the transrating
complexity reduction is then small (53.00%) as well. In contrast,
when these two thresholds are small (0.50, 0.75), the bit rate
penalty is high with an increase of 2.78% and the complexity
reduction is also high (67.36%). When Thr1 is 0.75 and Thr2

TABLE VII
CODING PERFORMANCE OF T2BML WITH DIFFERENT THRESHOLDS

CFG T hr1 [%] T hr2 [%] BDBR[%] TS[%]

85 90 0.77 53.00
LP 75 90 1.14 54.50

75 85 1.49 64.14
50 75 2.78 67.36

85 90 0.40 57.20
RA 75 90 0.65 59.40

75 85 0.88 63.99
50 75 1.69 69.00

is 0.85, this method achieves 64.14% complexity reduction with
a slight increase of BDBR (1.49%). In the following evaluation,
these thresholds (0.75, 0.85) are used as a default for T2BML .

2) Coding Performance Analyses: The experiment under the
LP configuration is analysed first. Then, the performance with
the use of the RA configuration is elaborated on.

For the LP configuration, detailed experimental results for
each class of the Trivial, T2BML and B2TTLP architectures that
optimize the evaluation at both CU and PU level are presented
in Table VIII. The comparison of the average performance of
these methods is presented in Table IX and visualized in Fig. 5.

As can be seen in Table VIII, the Trivial methods can achieve
a low complexity for both CU (Trivial) and PU (TrivialPU)
evaluations. On average, Trivial and TrivialPU can reduce the
transrating complexity by 75.65% and 91.12%, respectively.
The low complexity of these methods is achieved by directly
copying the CU and PU structures from the input bit stream to
the output bit stream. However, the simple re-use of the input
CU and PU structures results in BDBR losses which strongly
increase with rising ΔQP values. This could be expected from
the probabilities in Tables II and V, which indicate that the CU
and PU sizes in the output streams typically become larger for
increasing ΔQP values. The Trivial methods, however, only
evaluate the CUs at the depths of the input CUs and skip the
evaluation at lower depths. As a result, the Trivial method
increases the bit rate on average by 7.49% while an increase
of 15.23% is measured for the TrivialPU method.

The complexity reductions of T2BML and B2TTLP are
smaller than those of the Trivial method. However, these pro-
posed methods significantly outperform the Trivial method in
terms of coding performance. The proposed method T2BML
reduces the complexity of transrating by 64.14% with a 1.49%
penalty in bit rate. When the PU evaluation is optimized, the
complexity reduction increases to 76.22% with a negligible
bit rate increase of about 2.23%. The complexity reduction of
B2TTLP is higher than T2BML (66.18% and 79.65% for CU
and PU evaluations). B2TTLP has a loss of coding perfor-
mance with 1.93% for CU and 2.65% bit rate increase for PU
evaluations.

Fig. 6 shows examples of the CU size results obtained by
applying our proposed algorithms and the Trivial method. We
defined the difference between coding depths (dCU) of a frame
obtained by a method and this frame obtained by HEVCAnchor
transrating as the average of absolute depth differences between
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TABLE VIII
PERFORMANCE OF DIFFERENT DESCRIBED TECHNIQUES TO A DECODER-ENCODER CASCADE WITH THE VBR SCHEME UNDER THE LP CONFIGURATION

Method Class
BDBR increase[%] Time Saving (TS)[%] Average

ΔQP = 2 ΔQP = 4 ΔQP = 6 ΔQP = 2 ΔQP = 4 ΔQP = 6 BDBR TS

B 3.74 7.01 10.94 74.51 75.10 77.01 7.23 75.54
C 2.88 6.68 11.16 71.98 73.34 73.93 6.90 73.08

Trivial D 2.89 6.11 9.71 72.18 72.00 72.20 6.24 72.13
E 5.64 9.64 13.89 76.41 78.90 78.69 9.72 78.00

Avg. 3.78 7.32 11.37 74.52 75.48 76.94 7.49 75.65

B 2.11 1.73 1.38 67.54 63.30 59.38 1.74 63.41
C 1.36 1.57 1.19 63.95 59.34 53.16 1.27 58.62

T2BML D 1.12 1.29 1.04 61.19 55.72 48.98 1.22 55.30
E 3.28 1.46 0.71 72.94 72.84 71.43 1.82 72.40

Avg. 1.85 1.52 1.11 67.60 63.96 60.03 1.49 64.14

B 1.45 2.29 2.97 65.89 65.59 64.96 2.24 65.48
C 1.04 2.08 2.93 61.91 62.30 60.71 2.02 61.64

B2TTLP D 1.09 1.86 2.45 61.43 59.53 58.11 1.80 59.69
E 1.11 1.57 1.87 71.73 73.90 73.36 1.52 73.00

Avg. 1.20 1.99 2.60 66.27 66.47 65.81 1.93 66.18

B 6.39 12.75 19.98 90.78 91.08 91.25 13.04 91.04
C 6.14 14.78 24.94 90.00 90.36 90.79 15.29 90.39

TrivialPU D 5.86 13.30 22.20 89.85 89.56 89.99 13.79 89.80
E 10.72 19.77 29.27 91.56 92.38 92.33 19.92 92.09

Avg. 7.18 14.88 23.64 90.80 91.19 91.36 15.23 91.12

B 1.49 2.30 2.88 76.74 75.28 74.39 2.23 75.47
C 1.78 2.60 2.23 77.73 72.67 65.76 2.20 72.02

T2BML PU D 1.45 2.25 2.04 74.97 69.77 62.92 1.91 69.10
E 3.76 2.46 2.02 87.13 84.91 83.51 2.75 85.19

Avg. 1.97 2.40 2.32 78.13 76.17 74.36 2.23 76.22

B 1.68 2.84 3.60 79.53 79.50 78.42 2.71 79.15
C 1.63 3.16 3.93 76.20 76.22 70.76 2.91 74.40

B2TTLP PU D 1.58 2.78 3.52 75.54 73.79 72.19 2.63 73.84
E 1.71 2.43 2.81 85.29 86.24 85.68 2.31 85.74

Avg. 1.65 2.80 3.48 79.96 80.15 78.84 2.65 79.65

TABLE IX
PERFORMANCE OF ALL DESCRIBED TECHNIQUES COMPARED TO A DECODER-ENCODER CASCADE UNDER THE VBR CONDITION

CFG Method
BDBR increase[%] Time Saving (TS)[%] Average

ΔQP = 2 ΔQP = 4 ΔQP = 4 ΔQP = 2 ΔQP = 4 ΔQP = 6 BDBR TS

Trivial 3.78 7.32 11.37 74.52 75.48 76.94 7.49 75.65
T2B 0.45 0.65 0.62 47.99 50.54 51.34 0.57 49.96

T2BML 1.85 1.52 1.11 68.00 64.20 60.23 1.49 64.14
B2T 0.93 1.41 1.81 63.24 61.50 61.79 1.38 62.18

LP TrivialPU 7.18 14.88 23.64 90.82 91.19 91.36 15.23 91.12
T2BPU 0.99 1.45 1.51 62.82 64.04 64.96 1.32 63.94

T2BML PU 1.97 2.40 2.32 78.13 76.17 74.36 2.23 76.22
B2TPU 1.42 2.27 2.73 77.23 76.31 75.37 2.14 76.30

B2TTLP PU 1.65 2.80 3.48 79.96 80.15 78.84 2.65 79.65

Trivial 2.13 4.57 7.29 74.18 74.42 74.63 4.66 74.41
T2B 0.27 0.32 0.29 50.99 51.66 52.38 0.29 51.67

T2BML 1.05 0.95 0.64 68.46 63.47 60.04 0.88 63.99
B2T 0.57 0.95 1.21 64.68 63.51 62.79 0.91 63.66

RA TrivialPU 3.70 8.62 14.23 90.15 90.24 90.31 8.85 90.24
T2BPU 0.44 0.68 0.66 65.75 66.14 66.76 0.59 66.22

T2BML PU 2.51 2.21 1.48 80.39 80.71 79.22 2.07 80.11
B2TPU 0.72 1.43 1.63 79.15 77.89 76.85 1.26 77.96

B2TTLP PU 1.04 2.03 2.77 83.07 82.40 81.71 1.95 82.39

pixels. As can be observed from Fig. 6, the CU structures of
B2TTLP and T2BML are very similar to the CU structure
obtained by HEVCAnchor transrating. The TrivialPU method
encodes CUs using higher depths compared to HEVCAnchor
transrating.

When the ΔQP increases, we see different effects on the
complexity reduction and coding performance of the T2BML
and B2T methods.

The correlation between coding information of CUs in the
input and output bit stream is reduced when ΔQP increases.
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Fig. 5. RD performancefor transrating with a ΔQP = 6 using the CBR scheme and the LP configuration. The RD performances of our proposed methods very
close to the performance of the HEVCAnchor transcoder and significantly outperform the performance of the TrivialPU transcoder. (a) The Johnny sequence.
(b) The BQSquare sequence. (c) The PartyScene sequence. (d) The Basketball Drive sequence.

Fig. 6. CU structures generated by the different algorithms for the 200th frame in the PartyScene sequence, QP1 = 32, ΔQP = 6. The VBR and LP configuration
are used in this experiment. The CU structures obtained by our proposed methods are similar to one obtained by the HEVCAnchor transcoder. (a) Original.
(b) Anchor. (c) TrivialPU dCU = 0.52. (d) T2BM L PU dCU = 0.33. (e) B2TTLP PU dCU = 0.27.
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Fig. 7. BDBR increase and time saving of T2BM L and B2T when ΔQP
increase with the use of VBR and the LP configuration.

Consequently, the probability of correct predictions in T2BML
is reduced. Therefore, the number of CU re-evaluations
increases, resulting in a higher transrating complexity (and
a reduction of the bit rate penalty). However, the initial CU
structure for evaluating a CU in B2T is unchanged when ΔQP
increases. As a result, the transrating complexity reduction of
B2T is only slightly reduced (and remains around 63%).

Since the difference between the initial CU structure and the
optimized CU structure is larger when ΔQP increases, the bit
rate penalty of B2T increases with ΔQP. The coding perfor-
mance comparison of these two methods when ΔQP increases
is depicted in Fig. 7. The rate-distortion plots for the methods op-
timizing the PU evaluation are depicted in Fig. 5. As can be seen,
the RD performance of the proposed methods is similar to an
unmodified HEVC cascaded decoder-encoder (HEVCAnchor)
and clearly better than the TrivialPU method.

Table IX shows the coding performance of all proposed meth-
ods and the Trivial methods. Notice that the difference in per-
formance for each class is not remarkable as demonstrated in
Table VIII. Therefore, the average performance of all classes
is given in the remainder analysis. The results are summarized
visually in Fig. 8.

As can be seen in Fig. 8, a trade-off between coding per-
formance and transrating complexity can be achieved by the
proposed methods. Depending on the required complexity re-
duction, one of the above techniques can be used, such that the
highest RD is guaranteed.

For the experiment under the RA configuration, the results
is presented in Table XI. These results demonstrate that the
proposed algorithm can significantly reduce the transcoding
complexity with a negligible bit rate penalty. With a complexity
reduction of 51.67%, the T2B method results in a bit rate in-
crease of only 0.29%. For a higher complexity reduction of about
64%, B2T and T2BML show the same coding performance with
a bit rate increase of 0.9%. At the PU level, T2B can reduce 66%
complexity with a bit rate error of only 0.59%, which is smaller
than the error of B2T and T2BML in the CU evaluation level.
Therefore, with the complexity reduction target of 66% (2/3
reduction), T2BP U is the most advisable solution. However,

Fig. 8. BDBR increaseand time saving of all described techniques compared
to cascaded decoder-encoderwith the use of VBR under the LP configuration.

TABLE X
INPUT BIT RATE SETUP FOR CBR

Class Resolution
Bit rate of the input video Ri [kbps]

Ri 0 Ri 1 Ri 2 Ri 3

B 1920x1080 12000 5000 2500 1500
C 832x480 2300 1000 500 300
D 416x240 600 250 100 75
E 1280x720 5000 2000 1000 600

when the transcoding complexity needs to be reduced further,
B2TTLP PU and T2BML PU are more reliable. These methods
are able to reduce a notable amount of 80% to 82.4% transcod-
ing complexity with about a 2% bit rate increase. Between these
two algorithms, B2TTLP PU is preferred over T2BML PU
regarding the implementation performance since a model and
a complex prediction need to be integrated in T2BML PU .

It should be noticed that the proposed algorithms are applied
for only inter frames. Doing so, the coding performance loss is
recovered at intra frames. As a result, the performance of using
RA is better than using LP. For instance, B2TTLP PU under
RA results in a higher complexity reduction (82.4%) compared
to using LP. However, the bit rate penalty under RA is lower
(1.95% compared to 2.65%).

C. Coding Performance Under the CBR Scenario

In practical scenarios, when streamed over the internet, the
video may be switched between networks with different band-
width limitations. In such scenarios, the video is transcoded
with the use of a constant bit rate encoder. In this section, the
proposed algorithms are evaluated in the following scheme. The
input video is encoded at a constant bit rate of Ri (kbps). Af-
terwards, the video is reconstructed and transcoded to a lower
bit rate Ro (kbps) given by (4) where α is the bit rate reduction
factor and 0 < α < 0.5. For higher bit rate reductions, other
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TABLE XI
PERFORMANCE OF ALL DESCRIBED TECHNIQUES COMPARED TO A DECODER-ENCODER CASCADE UNDER THE CBR CONDITION

CFG Method
BDBR increase[%] Time Saving (TS)[%] Average

α = 0.85 α = 0.70 α = 0.55 α = 0.85 α = 0.70 α = 0.55 BDBR TS

Trivial 3.87 5.49 9.75 74.31 74.59 74.49 6.37 74.46
T2B 1.40 1.27 1.89 49.89 50.32 50.64 1.52 50.28

T2B_ML 2.40 2.12 3.04 68.12 61.84 56.58 2.52 62.18
B2T 1.81 1.95 0.92 63.80 62.94 61.47 1.56 62.74

LP Trivial_PU 5.67 10.58 16.55 90.77 90.97 90.96 10.93 90.90
T2B_PU 1.70 2.06 2.94 62.64 62.80 62.76 2.24 62.73

T2BML_PU 2.57 3.82 3.92 81.97 75.34 69.40 3.44 75.57
B2T_PU 2.22 2.68 2.18 78.12 77.20 75.74 2.36 77.02

B2TTLP_PU 2.16 3.14 2.33 81.07 80.39 79.23 2.54 80.23

Trivial 5.75 7.01 7.80 73.57 73.59 73.69 6.85 73.61
T2B 3.00 0.20 0.94 55.45 55.80 56.57 1.38 55.94

T2B_ML 1.70 2.15 1.82 68.61 62.58 59.84 1.89 63.68
B2T 2.03 2.64 0.58 64.01 63.02 62.03 1.75 63.02

RA Trivial_PU 8.79 12.04 15.48 90.17 90.19 90.23 12.10 90.20
T2B_PU 1.78 2.70 1.46 68.72 68.70 68.49 1.98 68.64

T2BML_PU 2.73 3.61 2.45 82.68 76.99 73.34 2.93 77.67
B2T_PU 1.95 3.30 2.21 78.05 77.87 76.36 2.48 77.43

B2TTLP_PU 2.80 3.01 2.47 81.81 81.47 80.90 2.76 81.40

transcoding approaches (spatial or temporal transcoding) are
suggested

Ro = (1 − α) ∗ Ri. (4)

Both LP and RA configurations are tested. For BDBR evalua-
tion, the experiment is carried out for four input bit rate values
(Ri0 ,Ri1 ,Ri2 ,Ri3) as defined in Table X.

Table XI presents the performance of the proposed algorithms
under the CBR test condition. In comparison with the use of
VBR, the proposed algorithms yield the same complexity re-
duction. In contrast, the performance is slightly worse in terms
of bit rate loss. This loss is generated due to a large range of QP
differences between the input and output video. This large QP
difference may appear since QPs of the input and output video
are independently derived to achieve the input and output rates.
Note that the difference in bit rate loss between CBR and VBR
is below 1%.

Again, the proposed methods demonstrate a superior per-
formance over the trivial approaches. Among these proposed
algorithms, the B2TTLP PU shows the best performance with
a remarkable complexity reduction of about 80% with bit rate
losses of 2.54% and 2.76% for LP and RA, respectively.

D. Performance Comparison With the State-of-the-Art

Since transrating for HEVC is a novel topic, to evaluate
the performance of the proposed methods, these methods are
compared with various fast encoding algorithms [15], [16],
[18]–[22], and an HEVC composition transcoder [27] in terms
of transrating complexity and bit rate increases. The bit rates
are set using a VBR scheme. These fast encoding algorithms
are used to encode the reconstructed video of the input stream.
It should be noted that, the input coding information is not uti-
lized in these fast encoding references except De Praeter [27].
Therefore, the comparison is not entirely fair. However, the
significant performance improvement of our proposed meth-

TABLE XII
PERFORMANCE COMPARISON WITH RELATED WORKS UNDER

VBR IN TERMS OF TIME SAVING (TS) AND BDBR/TS (B/T)

CFG Optimization Method BDBR[%] TS[%] B/T

Shen[18] 1.66 42 3.95
Xiong[15] 1.90 42 4.52

Lee[20] 1.22 61 2.00
CU Ahn[21] 1.00 43 2.33

De Praeter[27] 2.01 65 3.09
T2B 0.57 50 1.14

T2BML 1.49 64 2.33
LP B2T 1.38 62 2.23

Liquan[16] 1.15 41 2.80
Liquan[22] 0.88 52 1.69

CU + PU T2B 1.32 64 2.06
T2BML 2.23 76 2.93

B2T 2.14 76 2.82

Correa[19] 0.28 37 0.77
Shen[18] 1.40 45 3.11

Xiong[15] 2.21 40 5.53
Lee[20] 1.43 62 2.31

CU Ahn[21] 1.40 49 2.86
T2B 0.29 52 0.59

T2BML 0.88 64 1.38
RA B2T 0.91 64 1.42

Correa[19] 1.33 63 2.11
Liquan[16] 1.50 42 3.57
Liquan[22] 0.68 49 1.39

CU + PU T2B 0.59 66 0.89
T2BML 2.07 80 2.59

B2T 1.26 78 1.62

ods implies that the proposed methods are notably efficient in
reducing the complexity of an HEVC transcoder. Since each ref-
erence work yields different values of BDBR and time saving,
we obtain the ratio between BDBR and time saving (B/T) [19].
This parameter shows the amount of BDBR loss per time sav-
ing. The lower of B/T means a better performance. The coding
performance comparison is shown in Table XII.

In general, time saving of our proposed methods is no-
tably higher than the other methods in both the CU and PU
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optimization levels. In terms of B/T evaluation, the bit rate
loss of our proposed methods is usually lower than or equal
to other methods for the same complexity reduction. There are
a few exceptions, such as for joint CU and PU optimization
under the LP configuration where Liquan [22] yields a lowest
B/T. However, this method achieves a complexity reduction of
52% which is much lower than the complexity of T2BML and
B2T (76%).

VI. CONCLUSION

In this paper, we proposed several optimized transrating tech-
niques for HEVC. The correlation of coding information of co-
located CUs in the input and output video streams was exploited
to reduce the complexity of CU and PU evaluations. At the CU
level, two options for recursing through the split tree are con-
sidered, namely top (lower depths) to bottom (higher depths) or
bottom to top. The top to bottom approach (T2B) accelerates the
RD cost calculation of a CU by immediate splitting to smaller
sizes or by early termination of the recursion, depending on the
input CU structure. A more advanced method (T2BML) predicts
the splitting behavior of a CU by using decision trees generated
with machine learning techniques. On the other hand, in the
bottom to top approach (B2T), the CU structure of input CUs
is re-used and recursively evaluated by merging sub-CUs into
larger CUs. Additionally, the splitting behavior of neighboring
CUs is also considered to reduce the number of RD evaluations
in the B2TTLP method.

Furthermore, during the PU evaluation process, the number
of PU candidates is reduced by exploiting information from
the input video stream. Experimental results show that the pro-
posed transrating methods maintain the coding efficiency of an
unmodified cascaded decoder-encoder, while significantly re-
ducing the transcoder complexity. On the PU evaluation level,
B2TTLP can reduce the complexity of transrating by 82% with
a bit rate increase of 1.95%. In addition, by considering all the
proposed techniques, trade-offs between transrating complexity
and coding performance can be made.
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