10,375 research outputs found

    A Novel Family of Adaptive Filtering Algorithms Based on The Logarithmic Cost

    Get PDF
    We introduce a novel family of adaptive filtering algorithms based on a relative logarithmic cost. The new family intrinsically combines the higher and lower order measures of the error into a single continuous update based on the error amount. We introduce important members of this family of algorithms such as the least mean logarithmic square (LMLS) and least logarithmic absolute difference (LLAD) algorithms that improve the convergence performance of the conventional algorithms. However, our approach and analysis are generic such that they cover other well-known cost functions as described in the paper. The LMLS algorithm achieves comparable convergence performance with the least mean fourth (LMF) algorithm and extends the stability bound on the step size. The LLAD and least mean square (LMS) algorithms demonstrate similar convergence performance in impulse-free noise environments while the LLAD algorithm is robust against impulsive interferences and outperforms the sign algorithm (SA). We analyze the transient, steady state and tracking performance of the introduced algorithms and demonstrate the match of the theoretical analyzes and simulation results. We show the extended stability bound of the LMLS algorithm and analyze the robustness of the LLAD algorithm against impulsive interferences. Finally, we demonstrate the performance of our algorithms in different scenarios through numerical examples.Comment: Submitted to IEEE Transactions on Signal Processin

    Improved convergence performance of adaptive algorithms through logarithmic cost

    Get PDF
    We present a novel family of adaptive filtering algorithms based on a relative logarithmic cost. The new family intrinsically combines the higher and lower order measures of the error into a single continuous update based on the error amount. We introduce the least mean logarithmic square (LMLS) algorithm that achieves comparable convergence performance with the least mean fourth (LMF) algorithm and overcomes the stability issues of the LMF algorithm. In addition, we introduce the least logarithmic absolute difference (LLAD) algorithm. The LLAD and least mean square (LMS) algorithms demonstrate similar convergence performance in impulse-free noise environments while the LLAD algorithm is robust against impulsive interference and outperforms the sign algorithm (SA). © 2014 IEEE

    Robust adaptive algorithms for underwater acoustic channel estimation and their performance analysis

    Get PDF
    We introduce a novel family of adaptive robust channel estimators for highly challenging underwater acoustic (UWA) channels. Since the underwater environment is highly non-stationary and subjected to impulsive noise, we use adaptive filtering techniques based on minimization of a logarithmic cost function, which results in a better trade-off between the convergence rate and the steady state performance of the algorithm. To improve the convergence performance of the conventional first and second order linear estimation methods while mitigating the stability issues related to impulsive noise, we intrinsically combine different norms of the error in the cost function using a logarithmic term. Hence, we achieve a comparable convergence rate to the faster algorithms, while significantly enhancing the stability against impulsive noise in such an adverse communication medium. Furthermore, we provide a thorough analysis for the tracking and steady-state performances of our proposed methods in the presence of impulsive noise. In our analysis, we not only consider the impulsive noise, but also take into account the frequency and phase offsets commonly experienced in real life experiments. We demonstrate the performance of our algorithms through highly realistic experiments performed on accurately simulated underwater acoustic channels. © 2017 Elsevier Inc

    Nonlinear Attitude Filtering: A Comparison Study

    Get PDF
    This paper contains a concise comparison of a number of nonlinear attitude filtering methods that have attracted attention in the robotics and aviation literature. With the help of previously published surveys and comparison studies, the vast literature on the subject is narrowed down to a small pool of competitive attitude filters. Amongst these filters is a second-order optimal minimum-energy filter recently proposed by the authors. Easily comparable discretized unit quaternion implementations of the selected filters are provided. We conduct a simulation study and compare the transient behaviour and asymptotic convergence of these filters in two scenarios with different initialization and measurement errors inspired by applications in unmanned aerial robotics and space flight. The second-order optimal minimum-energy filter is shown to have the best performance of all filters, including the industry standard multiplicative extended Kalman filter (MEKF)
    corecore