10,313 research outputs found

    A Candour-based Trust and Reputation Management System for Mobile Ad Hoc Networks

    Get PDF
    The decentralized administrative controlled-nature of mobile ad hoc networks (MANETs) presents security vulnerabilities which can lead to attacks such as malicious modification of packets. To enhance security in MANETs, Trust and Reputation Management systems (TRM) have been developed to serve as measures in mitigating threats arising from unusual behaviours of nodes. In this paper we propose a candour-based trust and reputation system which measures and models reputation and trust propagation in MANETs. In the proposed model Dirichlet Probability Distribution is employed in modelling the individual reputation of nodes and the trust of each node is computed based on the node’s actual network performance and the quality of the recommendations it gives about other nodes. Cooperative nodes in our model will be rewarded for expanding their energy in forwarding packets for other nodes or for disseminating genuine recommenda-tions. Uncooperative nodes are isolated and denied the available network resources. We employed the Ruffle algorithm which will ensure that cooperative nodes are allowed to activate sleep mode when their service is not required in forwarding packets for its neighbouring trustworthy nodes. The proposed TRM system enshrines fairness in its mode of operation as well as creating an enabling environment free from bias. It will also ensure a connected and capacity preserving network of trustworthy node

    A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks

    Full text link
    This paper introduces a novel concept from coalitional game theory which allows the dynamic formation of coalitions among wireless nodes. A simple and distributed merge and split algorithm for coalition formation is constructed. This algorithm is applied to study the gains resulting from the cooperation among single antenna transmitters for virtual MIMO formation. The aim is to find an ultimate transmitters coalition structure that allows cooperating users to maximize their utilities while accounting for the cost of coalition formation. Through this novel game theoretical framework, the wireless network transmitters are able to self-organize and form a structured network composed of disjoint stable coalitions. Simulation results show that the proposed algorithm can improve the average individual user utility by 26.4% as well as cope with the mobility of the distributed users.Comment: This paper is accepted for publication at the IEEE ICC Workshop on Cooperative Communications and Networkin

    Impact of malicious node on secure incentive based advertisement distribution (SIBAD) in VANET

    Get PDF
    Last decade has seen an increasing demand for vehicle aided data delivery. This data delivery has proven to be beneficial for vehicular communication. The vehicular network provisions safety, warning and infotainment applications. Infotainment applications have attracted drivers and passengers as it provides location based entertainment services, a value add to the traveling experience. These infotainment messages are delivered to the nearby vehicles in the form of advertisements. For every advertisement disseminated to its neighboring vehicle, an incentive is awarded to the forwarder. The incentive based earning foresee a security threat in the form of a malicious node as it hoards the incentives, thus are greedy for earning incentives. The malicious behavior of the insider has an adverse effect on the incentive based advertisement distribution approach. In this paper, we have identified the malicious nodes and analyzed its effect on incentive based earning for drivers in vehicular networks. © 2017 IEEE

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference
    • …
    corecore