2,804 research outputs found

    Pseudo derivative evolutionary algorithm and convergence analysis

    Get PDF

    When the path is never shortest: a reality check on shortest path biocomputation

    Full text link
    Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.Comment: To appear in: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    A novel hybrid bacteria-chemotaxis spiral-dynamic algorithm with application to modelling of flexible systems

    Get PDF
    This paper presents a novel hybrid optimisation algorithm namely HBCSD, which synergises a bacterial foraging algorithm (BFA) and spiral dynamics algorithm (SDA). The main objective of this strategy is to develop an algorithm that is capable to reach a global optimum point at the end of the final solution with a faster convergence speed compared to its predecessor algorithms. The BFA is incorporated into the algorithm to act as a global search or exploration phase. The solutions from the exploration phase then feed into SDA, which acts as a local search or exploitation phase. The proposed algorithm is used in dynamic modelling of two types of flexible systems, namely a flexible robot manipulator and a twin rotor system. The results obtained show that the proposed algorithm outperforms its predecessor algorithms in terms of fitness accuracy, convergence speed, and time-domain and frequency-domain dynamic characterisation of the two flexible systems. © 2014 Elsevier Ltd

    A Hybrid Bacterial Swarming Methodology for Job Shop Scheduling Environment

    Get PDF
    Optimized utilization of resources is the need of the hour in any manufacturing system. A properly planned schedule is often required to facilitate optimization. This makes scheduling a significant phase in any manufacturing scenario. The Job Shop Scheduling Problem is an operation sequencing problem on multiple machines with some operation and machine precedence constraints, aimed to find the best sequence of operations on each machine in order to optimize a set of objectives. Bacterial Foraging algorithm is a relatively new biologically inspired optimization technique proposed based on the foraging behaviour of E.coli bacteria. Harmony Search is a phenomenon mimicking algorithm devised by the improvisation process of musicians. In this research paper, Harmony Search is hybridized with bacterial foraging to improve its scheduling strategies. A proposed Harmony Bacterial Swarming Algorithm is developed and tested with benchmark Job Shop instances. Computational results have clearly shown the competence of our method in obtaining the best schedule

    Comparison of DCT, SVD and BFOA based multimodal biometric watermarking systems

    Get PDF
    AbstractDigital image watermarking is a major domain for hiding the biometric information, in which the watermark data are made to be concealed inside a host image imposing imperceptible change in the picture. Due to the advance in digital image watermarking, the majority of research aims to make a reliable improvement in robustness to prevent the attack. The reversible invisible watermarking scheme is used for fingerprint and iris multimodal biometric system. A novel approach is used for fusing different biometric modalities. Individual unique modalities of fingerprint and iris biometric are extracted and fused using different fusion techniques. The performance of different fusion techniques is evaluated and the Discrete Wavelet Transform fusion method is identified as the best. Then the best fused biometric template is watermarked into a cover image. The various watermarking techniques such as the Discrete Cosine Transform (DCT), Singular Value Decomposition (SVD) and Bacterial Foraging Optimization Algorithm (BFOA) are implemented to the fused biometric feature image. Performance of watermarking systems is compared using different metrics. It is found that the watermarked images are found robust over different attacks and they are able to reverse the biometric template for Bacterial Foraging Optimization Algorithm (BFOA) watermarking technique

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page
    • …
    corecore