615 research outputs found

    Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids

    Get PDF

    Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids

    Get PDF

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part

    An Enhanced Power Sharing Scheme for Voltage unbalance and harmonics compensation in an islanded AC microgrid

    Get PDF

    Coordinated Control of Distributed Energy Resources in Islanded Microgrids

    Get PDF
    As the penetration of the distributed energy resources (DERs) in the power grid increases,new challenges are revealed, including: stability issues, frequency fluctuations, voltage control, protection system coordination, etc. A systematic approach for dealing with those issues is to view the DERs and associated loads as a subsystem or a microgrid (MG). MGs can operate either in the grid connected or islanded modes. As opposed to the grid connected mode, the voltage and frequency regulation and load/generation balancing during islanded mode is solely dependent on the local generation units. Therefore, stable and reliable operation of islanded MGs requires a real time coordinated control scheme. Conventionally, such coordination is achieved by means of the active power-frequency and reactive powervoltage droop control schemes. The conventional droop method, which is based on P-f droop concept in power systems, lacks compatibility with the resistive nature of networks as well as the low inertia of electronically interfaced DER units in MGs. As a result, it features a slow dynamic response but also a low power quality due to frequency and voltage fluctuations. This PhD research proposes a novel droop concept based on the global positioning system (GPS) and voltage-current (V-I) droop characteristics for coordination of inverter-based DER units in islanded MGs. The concept of V-I droop control is introduced in Chapter 2. In this control approach, each DER is equipped with a GPS receiver, which produces a pulse at frequency of 1Hz (1PPS). Since all GPS receivers are locked to atomic clocks of the GPS satellites, the 1PPS signal can be utilized to synchronize the time reference of the DER units. Using the common time reference and fixing the frequency at the nominal value, all of the units can share a common synchronous rotating reference frame (SRRF). Furthermore, proportional load sharing is achieved by drooping the d and q axis components of the reference voltage with respect to the d and q axis components of current, respectively. The proposed scheme not only circumvents the issue of frequency fluctuations but also is in accordance with the fast dynamics of inverter-based DER units and resistive nature of the networks in islanded MGs. The V-I droop scheme, in its basic form, relies on availability of GPS signals at each of the DER units. With the intention of improving the MG robustness with respect to GPS signal failure, a new control strategy based on V-I droop concept is presented Chapter 3. In this method, an adaptive reactive power-frequency droop scheme is used as a backup for the V-I droop controller to ensure synchronization in case of a GPS signal failure. Droop control schemes in general, and the proposed V-I droop strategy in particular are characterized by non-ideal sharing of current among the DER units due to the variations of voltage along the MGs. In order to improve the sharing accuracy of the V-I droop scheme iv while regulating the average voltage at the nominal value, a new distributed secondary control method based on consensus protocol is proposed in Chapter 4. In this method, the daxis droop characteristics is altered so as to regulate the average microgrid voltage to the rated value but also guarantee proper sharing of active power among the DERs. Additionally, the q-axis component of voltage is adjusted to perform proper sharing of current. Generally, DERs might be supplied from different energy sources, including renewables and storage systems. The intermittency of renewable energy resources on one hand and the limited capacity of the energy storage systems on the other hand, necessitate modification of droop characteristics based on an energy management plan. In Chapter 5, a novel distributed secondary control strategy is introduced for power management of integrated photovoltaicbattery DER units in islanded MGs. The distributed secondary controllers are coordinated based on a leader-follower framework, where the leader restores the MG voltage to the rated value and the followers pursue energy management. Unbalanced and nonlinear loads, which are quite common in MGs, adversely affect the power quality and sharing accuracy. In order to mitigate those issues, two new solutions are proposed in this thesis. In the first approach (Chapter 6), a new supplementary droop control scheme is added to the V-I droop controller to reduce the voltage unbalance while preventing current and power overload under unbalanced loading conditions. In the second approach (Chapter 7), a hierarchical control scheme, consisting of primary (modified V-I droop) and distributed secondary control levels is introduced to mitigate harmonic distortions and prevent overcurrent stresses under nonlinear and unbalanced loading conditions. Finally, the conclusions and possible future work are addressed in Chapter 8

    Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    Get PDF

    Applicability of Droop Regulation Technique in Microgrid - A Survey

    Get PDF
    Currently, the worth of power generation on the basis of renewable sources is rapidly growing. Correspondingly the microgrids and the DG units are impressed the researchers for their peculiar features. Power sharing is the major concern when various DGs are connected to the microgrid via power electronic converters. It is mandatory to achieve an appropriate power sharing when the manifold DGs are activated in parallel. For that, the two ultimate quantities - power angle δ and voltage magnitude V are regulated to acquire the real and reactive power sharing correspondingly. Many innovative control techniques have been used for load sharing. The most common method of local load sharing is the droop characteristics. Subsequently, there is a swift momentum in the advancement of researchers to meet the challenges of the droop control techniques in the power sharing concerns, an extensive literature review on active and reactive power sharing, voltage and frequency control in microgrid has been emphasized. The various conventional and modified droop control techniques/strategies that relates to power sharing issues have been highlighted in this work
    • …
    corecore