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Abstract 
As the penetration of the distributed energy resources (DERs) in the power grid increases, 

new challenges are revealed, including: stability issues, frequency fluctuations, voltage 

control, protection system coordination, etc. A systematic approach for dealing with those 

issues is to view the DERs and associated loads as a subsystem or a microgrid (MG). MGs 

can operate either in the grid connected or islanded modes. As opposed to the grid connected 

mode, the voltage and frequency regulation and load/generation balancing during islanded 

mode is solely dependent on the local generation units. Therefore, stable and reliable 

operation of islanded MGs requires a real time coordinated control scheme. Conventionally, 

such coordination is achieved by means of the active power-frequency and reactive power-

voltage droop control schemes. The conventional droop method, which is based on P-f droop 

concept in power systems, lacks compatibility with the resistive nature of networks as well as 

the low inertia of electronically interfaced DER units in MGs. As a result, it features a slow 

dynamic response but also a low power quality due to frequency and voltage fluctuations.  

This PhD research proposes a novel droop concept based on the global positioning system 

(GPS) and voltage-current (V-I) droop characteristics for coordination of inverter-based DER 

units in islanded MGs.  The concept of V-I droop control is introduced in Chapter 2. In this 

control approach, each DER is equipped with a GPS receiver, which produces a pulse at 

frequency of 1Hz (1PPS). Since all GPS receivers are locked to atomic clocks of the GPS 

satellites, the 1PPS signal can be utilized to synchronize the time reference of the DER units. 

Using the common time reference and fixing the frequency at the nominal value, all of the 

units can share a common synchronous rotating reference frame (SRRF). Furthermore, 

proportional load sharing is achieved by drooping the d and q axis components of the 

reference voltage with respect to the d and q axis components of current, respectively. The 

proposed scheme not only circumvents the issue of frequency fluctuations but also is in 

accordance with the fast dynamics of inverter-based DER units and resistive nature of the 

networks in islanded MGs. 

The V-I droop scheme, in its basic form, relies on availability of GPS signals at each of 

the DER units. With the intention of improving the MG robustness with respect to GPS signal 

failure, a new control strategy based on V-I droop concept is presented Chapter 3. In this 

method, an adaptive reactive power-frequency droop scheme is used as a backup for the V-I 

droop controller to ensure synchronization in case of a GPS signal failure. 

Droop control schemes in general, and the proposed V-I droop strategy in particular are 

characterized by non-ideal sharing of current among the DER units due to the variations of 

voltage along the MGs. In order to improve the sharing accuracy of the V-I droop scheme 
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while regulating the average voltage at the nominal value, a new distributed secondary 

control method based on consensus protocol is proposed in Chapter 4. In this method, the d-

axis droop characteristics is altered so as to regulate the average microgrid voltage to the 

rated value but also guarantee proper sharing of active power among the DERs. Additionally, 

the q-axis component of voltage is adjusted to perform proper sharing of current. 

Generally, DERs might be supplied from different energy sources, including renewables 

and storage systems. The intermittency of renewable energy resources on one hand and the 

limited capacity of the energy storage systems on the other hand, necessitate modification of 

droop characteristics based on an energy management plan.  In Chapter 5, a novel distributed 

secondary control strategy is introduced for power management of integrated photovoltaic-

battery DER units in islanded MGs. The distributed secondary controllers are coordinated 

based on a leader-follower framework, where the leader restores the MG voltage to the rated 

value and the followers pursue energy management.  

Unbalanced and nonlinear loads, which are quite common in MGs, adversely affect the 

power quality and sharing accuracy. In order to mitigate those issues, two new solutions are 

proposed in this thesis. In the first approach (Chapter 6), a new supplementary droop control 

scheme is added to the V-I droop controller to reduce the voltage unbalance while preventing 

current and power overload under unbalanced loading conditions. In the second approach 

(Chapter 7), a hierarchical control scheme, consisting of primary (modified V-I droop) and 

distributed secondary control levels is introduced to mitigate harmonic distortions and 

prevent overcurrent stresses under nonlinear and unbalanced loading conditions. 

Finally, the conclusions and possible future work are addressed in Chapter 8. 
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Chapter  1   
Introduction  

 

1-1  Definition of the research problem 

Recently, the interest toward the use of distributed energy resources (DERs) has evolved 

as a response to significant issues, such as scarcity of fossil fuel in future, deregulation of 

electric utility industries and public awareness on environmental impact of traditional electric 

power generation. As the penetration of DERs in the power grid increases, new challenges 

are revealed, including: stability issues, frequency fluctuations, voltage control, protection 

system coordination, etc. One way to deal with the aforementioned issues is to take a system 

approach which views DERs and associated loads as a subsystem or a microgrid (MG) [1]. 

MGs may be disconnected from the rest of the power system, under emergency conditions or 

as planned, and operated as an island, providing uninterruptable power supply for the local 

loads. In this sense, the energy problems can be largely solved locally hence improving the 

system performance and reliability [2]. 

MGs might consist of several DERs, including renewable energy sources, micro-turbines 

and storage systems. Each DER has specific limitations in terms of controllability, capacity 

and response time. Moreover, the loads are more distributed compared to the conventional 

power systems. Therefore, in order to achieve stable operation as well as good voltage and 

frequency regulation, a cooperative control of the DERs is of prominent importance.  

1-1-1  Control hierarchy in MGs 

The MG control has been an active research topic in the past few years. Generally, the 

control schemes can be categorized into three control levels: 

1- Primary control, which is responsible for regulation of the voltage and frequency, 

sharing the load active and reactive power among the DERs and preventing the flow of 

circulating currents between the DERs.  

2- Secondary control, which aims to improve the power quality, adjust the power 

generation of DERs according to technical requirements and enable smooth 

connection/disconnection of the MG from the main network. 
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3- Tertiary control, which adjusts the power generation of DERs to achieve a cost effective 

operation. 

The control response time increases with the control level, i.e., the primary control is 

fastest and the tertiary control level is the slowest control level. This thesis is focused on 

primary and secondary control levels. 

1-1-1-1 Primary control level 

The most obvious solution for the primary control is utilizing a centralized control. The 

centralized controller should collect feedback signals including voltages and currents from 

the DERs and send control commands (e.g., reference voltages, currents) to the DERs. 

However, the implementation of a centralized controller at the primary level requires a high 

bandwidth communication link, which increases the system cost. In addition, this scheme is 

not reliable since even a short time interruption of communication signals or failure of the 

central controller results in instability.  

In order to prevent these problems, decentralized control strategies are adopted in practice. 

In this case each DER is controlled by a droop-based local controller. Droop control methods 

utilize some electrical parameters such as frequency (f) and voltage (E) as a signal for 

coordination of the local controllers.  

The conventional droop method, which is inspired from P-f droop method in conventional 

power systems, coordinates the active (P) and reactive power (Q) generations based on P-f 

and Q-E droop characteristics. The conventional droop is developed based on the 

assumptions of small magnitude of the voltage angle, highly inductive network impedance, 

large inertia of generation sources, and smooth variations of the load. Due to the resistive 

nature of the network impedance, utilization of power electronics interfaces at the output 

stage of the DERs, and the small size of the system, those assumptions are invalid in case of 

low voltage MGs. As a result, the conventional droop method exhibits a poor dynamic 

response, which in turn causes transient overcurrent stresses on DERs.  

1-1-1-2 Secondary control level 

In general, the droop control schemes are characterized by some important limitations. 

Firstly, the load changes give rise to voltage and/or frequency deviations. Secondly, the large 

value of the network impedance in weak low voltage MGs degrades the load sharing 

accuracy of the droop-based methods. Thirdly, the advanced energy management policies, 

such as management of the state of charge of batteries are difficult to implement at the 

primary level. 

To cope with the aforementioned issues, a secondary control level is added to the control 

structure. In its basic form, the secondary control level is comprised of a central controller, 
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which broadcasts some correction signals to the primary controllers via a low bandwidth 

communication network [3]. However, the centralized approach exposes a single point of 

failure, i.e., any failure in the central controller affects the entire system. Moreover, the 

implementation of centralized control structure requires an extensive and costly 

communication network [4]. In response to those problems, the distributed secondary control 

architecture has been proposed in the literature. The distributed control frameworks are 

comprised of local control agents, which are interconnected through a sparse communication 

network [5].  

Distributed control methods have recently gained attraction in various area of MG control, 

e.g., for the elimination of voltage and frequency deviations caused by the primary droop 

controllers [6-10], load power sharing, economic profitability [11], voltage control [12], [13], 

and state of charge balancing [14-16] as main ones. However, the existing secondary control 

schemes are mainly based on the assumption of inductive network impedance. Moreover, the 

potential of distributed control strategies for the coordination of hybrid photovoltaic-battery 

DER units has not been exploited.  

1-1-2  Power quality 

Low voltage distribution networks in general and MGs in particular, single-phase loads are 

more common than three-phase. As a consequence, the load currents are largely unbalanced. 

Unbalanced load current gives rise to negative sequence voltage [17], which degrades the 

power quality. The negative sequence voltage and current can be controlled by adjusting the 

negative sequence output impedance of DERs [18-22], or injecting a negative sequence 

compensating voltage [23], or a combination of both methods [22]. However, an increase of 

compensation effort or a decrease of negative sequence impedance alters the flow of negative 

sequence current in MGs, which in turn degrades the negative sequence current sharing 

accuracy. On top of that, the conventional current limiting mechanisms cannot function 

properly under unbalanced conditions. Therefore, some DERs might experience overcurrent 

stresses. 

Another power quality issue in MGs is the harmonic distortion caused by nonlinear loads. 

In order to enable accurate sharing of nonlinear and unbalanced loads among the DER units, 

various control methods have been developed [24-27], among which virtual impedance-based 

schemes are the most widely accepted [25]. The virtual impedance methods achieve proper 

sharing of negative sequence and harmonic currents by emulating the virtual impedance at 

the output stage of each unit. However, in weak islanded MG, where the line impedance is 

considerable, accurate load current sharing requires large virtual impedances which may 

produce a large voltage distortion [28]. Therefore, there is a trade-off between current sharing 

accuracy and power quality.  
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To compensate for the voltage drop on the lines, a virtual capacitance [29] or an adaptive 

negative virtual resistance [30] can be employed. However, those schemes require the 

knowledge of line impedances and network topology. An alternative approach is to 

compensate the voltage distortions by means of a secondary controller [31]. However, the 

method of [31] has some important limitations. Firstly, to minimize the communication 

bandwidth, a set of Park and inverse Park transformations are included in the secondary and 

primary control levels. On the other hand, the reference angles used for those transformations 

are the local voltage angles, which have a different value for each of the DER units. 

Therefore, a transformation error arises which interferes with the current sharing scheme and 

degrades voltage quality. Secondly, this method is not only complex to implement but also 

suffers from slow dynamic response.  

1-2  Objectives of the thesis 

The main objectives of the thesis are as follows. 

1-  Proposing a new droop control strategy with the following key features: 

• Fixed frequency operation 

• Fast dynamic response 

• Compatible with the resistive nature of the network impedance 

• Simple control structure 

2- Development of distributed secondary control frameworks based on the proposed droop 

strategy to 

• enhance the accuracy of power and current sharing among the DER units, and  

• enable the management of renewable energy resources as well as energy storage units 

in smart MGs. 

3- Improvement of current sharing accuracy and power quality of the MG under 

unbalanced and/or nonlinear loading conditions. 

1-3  Specific contributions of the thesis 

The thesis can be divided into three main parts, each of which is in accordance with one of 

the aforementioned objectives. 

1-3-1  Part 1 

The first stage of the conventional droop method is the active and reactive power 

calculation block. The use of low pass filters or averaging blocks in power calculation 

introduces an inherent delay in the droop control characteristics, which slows down the 

dynamic response.  
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Over the recent years, several droop-based strategies are proposed in the literature to 

enhance the dynamics of the conventional droop method [24-26, 32-37]. Despite diversity of 

the techniques, all of the existing droop based strategies use some form of power-based droop 

characteristics (P-f /Q-E, P-δ/Q-E or P-V/Q-f droop) as the core of the control scheme and 

attempt to improve the dynamic response by means of additional control functions. An 

alternative solution, which is prosed in the second chapter of the thesis, is replacement of 

power-based droop with a voltage-current (V-I) droop characteristic.  

In the proposed method, the DER units are synchronized by using a global positioning 

system (GPS) as time reference. The load current is shared between the DERs by drooping 

the d-q voltages of the DERs according to the corresponding currents. The key contributions 

of the V-I droop scheme are: 

• By using GPS timing technology, all of the DER units are synchronized to a common 

synchronous rotating reference frame. In this sense, the frequency is fixed at the nominal 

value, hence removing the frequency fluctuations caused by P-f (or Q-f) droop methods. 

• Simplifies the nonlinear control problem of P/Q sharing to linear problem of current 

sharing. This strategy is also consistent with the resistive nature of the network 

impedance in low voltage MGs. 

• Fast dynamic response gained from direct control of current instead of power. 

•  Since the inverter voltage variations are small, the active and reactive power are also 

proportionally shared among the units. 

•  In order to increase damping as well as power sharing accuracy at high loading 

conditions, when the DERs are vulnerable to overload, a piecewise linear droop function 

is adopted. 

GPS timing technology has been exploited in several MG control strategies for 

synchronization of DER units [33, 37-39]. Nevertheless, the GPS-based MG control methods 

have been studied using computer simulations. Therefore, the practical issues concerning 

GPS synchronization have been largely neglected. The most important issue is the 

interruption of the GPS signal, which might result in circulating currents between the DERs 

or instability depending on the duration of interruption. Another issue is the interfacing of the 

GPS receivers with the local controllers. 

In this thesis (Section 2-6), the GPS timing method is implemented in the intelligent MG 

lab of Aalborg University. In order to enhance the robustness of the V-I droop scheme with 

respect to GPS interruptions, a new droop control strategy is proposed in Chapter 3. In this 

method, the reference angle of each DER unit is obtained from a combination of GPS timing 

and an adaptive Q-f droop controller. In case that the GPS signal of a DER fails, the backup 

Q-f droop is activated to maintain synchronization with other DERs. The synchronization 
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scheme does not require any information about the availability of GPS signal at other DER 

units. In addition, stable operation is guaranteed regardless of the number of DERs with GPS 

failure. 

1-3-2  Part 2 

In order to improve the power and current sharing accuracy and voltage profile in low-

voltage resistive MGs, a distributed secondary control method is proposed in Chapter 4. In 

this method, the d-axis voltage is adjusted so as to regulate the average MG voltage to the 

rated value while ensuring proper active power sharing. Moreover, the q-axis voltage is 

altered such that the load current and accordingly the reactive power are proportionally 

shared between the DERs. 

The increased penetration of rooftop photovoltaic (PV) panels in low voltage distribution 

networks might cause several technical problems due to the mismatch between generation 

and demand throughout the day. Therefore, distribution system operators tend to encourage 

the installation of energy storage units (ESU) as well as controllable loads, which enable 

active participation of consumers in load/generation balance [40]. This new infrastructure 

avails providing the local consumers with a high quality and reliable power source in the 

context of smart MG.  

In Chapter 5, a distributed secondary controller is proposed for PV+ESU based MGs in the 

islanded operation mode. In this method, the leader regulates the voltage in the whole MG, 

while the followers are responsible to manage the power sharing among the ESUs in the MG. 

Furthermore, the state of charge management is directly incorporated into the distributed 

control algorithm. In contrast with the existing methods in [41, 42], where coordination of a 

single hybrid PV-ESU unit with the other DERs is studied, the proposed approach enables 

coordinated control of MGs consisting of multiple hybrid PV-ESU units. Additionally, a 

distributed load shedding and PV curtailment strategy is adapted to assure the State of Charge 

(SoC) of each ESUs is maintained within safe operating region.  

1-3-3  Part 3 

As mentioned in Section 1-1-2, unbalanced load currents not only give rise to unbalanced 

voltages but also adversely affect the performance of the conventional current limiting 

mechanisms. The later might result in over current stress on the distributed energy resources 

(DERs) or current harmonics. In order to improve the power quality and protect DERs from 

overload, a decentralized droop control scheme is presented in Chapter 6. The proposed 

controller is comprised of three parts, including: 1) V-I droop controller as the current sharing 

mechanism, 2) A gain scheduled negative sequence droop controller, which adaptively 

adjusts the negative sequence impedance of the DER, so as to enhance the sharing accuracy 
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of the negative sequence current among the DERs, and 3) A model predictive controller, 

which is responsible for minimizing the voltage unbalance, improving the current limiting 

and preventing active power overload.  

With the intention of enhancing the current sharing accuracy and power quality in 

presence of nonlinear and/or unbalanced loads, a hierarchical control strategy is presented in 

Chapter 7. This control framework is composed of: 

1- Adaptive V-I droop control scheme, which adjusts the droop coefficient according to 

the peak of the output current. This approach highlights the significance of limiting 

the peak output current of each DG unit within its current ratings. 

2- Distributed power sharing controller, which uses a consensus protocol to ensure 

proportional sharing of average power.  

3- Voltage conditioning scheme, which uses a simple integral controller to compensate 

the voltage deviations and distortions at the Sensitive Load Bus (SLB).   
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Chapter  2  

V-I droop control method 
 

2-1  Introduction 

The decentralized control methods utilize P-f and Q-E droop characteristics to control 

active and reactive power flow in MGs, respectively. The P-f / Q-E droop scheme is based on 

highly inductive networks, in which active and reactive power flow equations can be 

decoupled. Moreover, it is characterized by slow dynamics [41] and frequency and voltage 

drifts with the load change [43]. The aforementioned characteristics are in accordance with 

the high X/R ratio of the network impedance and large inertia of turbine-governor systems in 

conventional power systems.  Moreover, since the variations of aggregated loads in high 

voltage systems are smooth, the resulting frequency drifts can be compensated by a low 

bandwidth secondary controller. In MGs, however, lines impedances are mostly resistive, 

DERs have a small inertia and frequent step load changes might occur.  

Unlike the conventional power systems, the X/R ratio in MGs is not large. Therefore, the 

active and reactive power flows are highly coupled and at the same time dependent on f 

(hence δ) and E. That results in poor performance of the conventional droop method, which is 

based on decoupled P-f and Q-E control. To overcome this issue, different controllers are 

proposed [25, 26, 32, 33]. In [32] virtual PQ method has been used to simulate an inductive 

system, where the P-f and Q-E droops are decoupled. In [26] a virtual reactance is introduced 

at the inverter output to increase the X/R ratio. In [25] a virtual resistance is introduced at the 

inverter output to make the system prominently resistive, in which P and Q can be controlled 

by drooping E and f, respectively. 

The P-f/Q-E droop scheme suffers from power quality issues including frequency and 

voltage deviations. Frequency deviations can be eliminated by utilizing P-δ droop instead of 

the P-f droop [33]. In that method, global positioning system (GPS) is utilized as a time 

reference, to synchronize DER units. This allows even power sharing by directly controlling 

DERs power angle (δ). In [34] an adaptive voltage droop method has been introduced to 

improve voltage regulation at the point of common coupling (PCC) and alleviate the coupling 

between P and Q droop controllers.  

The power droop control methods are intrinsically low bandwidth controllers with slow 

dynamics. Moreover, increasing droop coefficients results in a degraded dynamic response 
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and ultimately instability [24]. The stability of the P- δ droop method can be improved by 

adding a supplementary controller, which controls the voltage amplitude based on the 

variations of P [35]. Ref [44] has replaced the linear supplementary controller by a nonlinear 

controller to maintain system stability even in case of large signal disturbances. In [24] an 

adaptive derivative term has been added to the P and Q droop controllers to decrease current 

overshoot and improve stability. 

In [36] an adaptive feed-forward control scheme is proposed to eliminate the dependency 

of MG performance and stability on droop coefficient and load dynamics. The scheme 

reshapes the conventional droop characteristics by injecting two supplementary control 

signals in the voltage control loop. However, the performance of the method is dependent on 

an identification mechanism, which is used to calculate feed-forward gain. Ref [45] has 

improved the method by using a gain scheduled scheme.     

The existing communication-less MG control methods utilize P-f(δ) and Q-E or P-E and 

Q-f(δ) droop characteristics. This chapter proposes an alternative approach, in which the 

problem of power sharing is simplified to current sharing. In this method, the DER units are 

synchronized by means of GPS timing technology. Assuming a fixed frequency, the reference 

angle of each of the units is locked to common synchronous rotating reference frame (SRRF). 

In this context, the active and reactive power generation of the DERs are coordinated through 

vd-id and vq-iq droop characteristics. This approach simplifies the nonlinear control problem of 

P/Q sharing to linear problem of current sharing. In addition, with the inherent delay of P/Q 

measurement eliminated, the controller reacts quickly subsequent to load changes. Since the 

inverter voltage variations are small, the objectives of P and Q sharing are satisfied. By 

applying the method to a MG, it is shown that the system dynamic response depends on 

droop function. A piecewise linear droop function is adopted to increase damping as well as 

power sharing accuracy at high loading conditions, when the DERs are vulnerable to 

overload. 

The majority of the content of this chapter has been published in [46] and [47]. The rest of 

the chapter is organized, as follows. A detailed literature review on the existing droop control 

schemes is presented in Section 2-2. In Section 2-3, GPS timing technology is introduced as 

an effective approach for synchronization of the DER units. The proposed V-I droop strategy 

is detailed in Section 2-4. The proposed approach is validated by computer simulations 

(Section 2-5) and experimental results (Section 2-6). Summary and conclusions are discussed 

in Section 2-7.  
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2-2  Literature review 

In this section, the application of the droop control technique for the MG control is 

detailed. The shortcomings of the conventional droop are discussed and the proposed 

solutions are provided.  

2-2-1  Droop control fundamentals 

The basic idea of the droop strategy comes from the power flow equations of a 

synchronous generator connected to an infinite bus [48]: 

 

1

s

rω

refωrωΔ

 

Fig. 2-1 Conventional P-f droop scheme 

( )sin sin cos cos
VE V

P E V
Z Z

δ θ δ θ= + −  (2-1)

( )cos sin sin cos
V VE

Q E V
Z Z

δ θ δ θ= − −  (2-2)

where, V, E and δ are the infinite bus voltage, generator emf and generator power angle and 

Z and θ are the absolute value and angle of the equivalent impedance. In case a pure 

inductive impedance (θ=90°), the second terms in the above equations are eliminated. For 

small variations of E and δ the equations can be linearized, as follows: 

0VE
P

X
δΔ = Δ  (2-3)

V
Q E

X
Δ = Δ  (2-4)

where 0E  is the rated voltage.  

Therefore, the P can be controlled by changing δ (or f) and Q can be controlled by 

changing E. This has been utilized in power systems to derive droop characteristics. Fig. (2-
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1) depicts the conventional P-f droop scheme [49]. The Droop is actually an inner feedback 

loop (R), which introduces a drop in the speed control loop of the turbine. The speed drop is 

directly proportional to the valve position, which is proportionally related to the mechanical 

power. As a result, the plant output frequency drops with the increase of the output power. 

This characteristic is known as the P-f droop. Since the frequency is constant all over the 

grid, this characteristic can be utilized for power sharing between different power plants 

without any communication requirements. 

0f

0P

fΔ

PΔ

0E

0Q

EΔ

QΔ

outP outQ

f E

        
                                       (a)                                                                        (b) 

Fig. 2-2 Conventional droop scheme: a) P-f characteristic, b) Q-E characteristic 

The idea of P-f droop has been utilized in MGs for active power sharing between the 

inverter-based DERs. In order to do so, the inertia of the synchronous machines is simulated 

by using a low pass filter and the frequency of the inverter is varied in accordance to the 

output power of the inverter. Similarly, the Q-E droop has been introduced for reactive power 

control. Therefore, we have: 

0f f m P= −  (2-5)

0E E nQ= −
 

(2-6)

in which 0f , m  and n  are the rated frequency, P-f droop coefficient and Q-E droop 

coefficient, respectively. 

2-2-2  Implementation of the conventional droop scheme 

The block diagram of Fig. 2-3  depicts a voltage-controlled DER connected to the PCC 

through a line impedance. The DER is controlled by a cascaded control mechanism, 

including droop, voltage and current controllers. While the inner voltage and current 

controllers are responsible for regulating the capacitor voltage, the droop controller 

coordinates the DER with the rest of MG. The inverter is followed by a combination of LC 

filter and transformer, which eliminates the switching harmonics and provides isolation. 
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Fig. 2-3 Schematic diagram of the DER 

The instantaneous active and reactive power are calculated from the feedback signals, as 

follows: 

cd d cq qp v i v i= +  (2-7)

cd q cq dq v i v i= −  (2-8)

in which cv and i  are the capacitor voltage and the output current, respectively. Moreover, the 

subscripts d and q refer to the d and q components of the parameters. The average powers are 

then obtained by using low pass filters, as follows: 

c

c

P p
s

ω
ω

=
+

 (2-9)

c

c

Q q
s

ω
ω

=
+

 (2-10)

in which cω is the cut off frequency of the low pass filter. The amplitude and frequency of the 

inverter voltage are obtained based on P-f and Q-E droop characteristics (equations (2-5) and 

(2-6)).  

The schematic diagram of the inner control loops is depicted in Fig. 2-4. In order to track 

the sinusoidal reference voltage with zero steady-state error, Park transform technique is 

used. Park transform converts the feedback signals from the stationary abc frame to the 

synchronous rotating reference frame (SRRF). Assuming sinusoidal and balanced abc 

components, the direct (d) and quadrature (q) components of the converted signal will be dc. 

Therefore, conventional control techniques (e.g., proportional plus integrator (PI) or lead-lag) 

can be used to track the reference with zero steady-state error. 
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Fig. 2-4 Cascaded voltage-current controller 

The angular speed of the SRRF is equal to the fundamental frequency of the MG, which is 

determined by the P-f droop mechanism. In other words, the angle of the SRRF is the integral 

of frequency: 

( )
0

2
t

f dθ π τ τ=   (2-11)

For convenience, the q axis of the SRRF is aligned with the reference voltage. So the d 

and q axis components of the reference are set to 0 and E, respectively. 

The cascaded controller is comprised of a nested control loop including the inner current 

controller and outer voltage controller. In order to decouple the dynamics of the loops, the 

inner loop is designed to have a faster dynamics compared to the outer loop. 

The voltage controller, which is comprised of a feedback control loop, a capacitor current 

compensator and a feedforward controller, obtains the reference current, as follows: 

( ) ( ){ } { } { }0Lq i v cq cq p v cq cq f cd qi k v v k v v C v Hiω∗ ∗ ∗
− −= − + − + +  (2-12)

( ) ( ){ } { } { }0Ld i v cd cd p v cd cd f cq di k v v k v v C v Hiω∗ ∗ ∗
− −= − + − + − +  (2-13)

in which  Li
∗ , H , fC  , 0ω , i vk −  and p vk −  are the filter inductor current, feedforward gain, 

filter capacitor, fundamental frequency, and PI voltage controller coefficients, respectively. 
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The first, second and third terms term in the right hand side (RHS) of (2-12) and (2-13) are 

the feedback signal, the capacitor current estimation and the feedforward signal, respectively. 

The feedback loop makes use of a proportional plus integral controller to track the reference 

with zero steady-state error. In order to improve the dynamic response following the 

disturbances, the estimated value of the fundamental component of the capacitor current and 

the measured output current are added to the feedback signal.  

Two saturation blocks are included to limit the d and q components of the reference 

current. The current limiting helps prevent the transient over currents during disturbances 

such as short circuits.  

The current controller calculates the PWM reference voltage as a combination of the 

feedback current controller signal and the inductor voltage drop signal, as follows: 

( ) ( ){ } { }0q i i Lq Lq p i Lq Lq f Ldv k i i k i i L iω∗ ∗ ∗
− −= − + − +  (2-14)

( ) ( ){ } { }0d i i Ld Ld p i Ld Ld f Lqv k i i k i i L iω∗ ∗ ∗
− −= − + − + −  (2-15)

in which fL , v∗ , i ik −  and p ik − are the filter inductor, the PWM reference voltage and the PI 

current controller coefficients, respectively. 

2-2-3  Limitations of conventional droop method  

An intrinsic feature of the conventional droop method is the dependency of the frequency 

and voltage on the loading conditions [50]. This results in unwanted frequency deviations 

which degrade the power quality. 

The conventional droop method is that it is derived based on simplifying assumption of 

inductive network impedance. However, in MGs, the network impedance is mostly resistive 

[51], which results in poor performance and stability issues. 

According to equations (2-1) and (2-2), power plant control is a highly nonlinear problem.  

Particularly in the MGs the distributed and resistive nature of the network might result in 

large variations of δ and V. Therefore, droop control, which is based on a linearised model of 

power flow, might result in poor performance and even instability especially for large load 

variations. Moreover, since the overload capacity of the inverter based DERs is limited (1.2-

1.5 cycles for less than 10ms), the MG collapse scenario is likely to happen due to the poor 

performance of the power control mechanism.  

The small signal stability of the MGs has been studied in [24, 35, 41, 44, 52, 53]. It has 

been shown that the critical eigenvalues of the MG, which correspond to the power control, 

might move toward the jω axis as a result of load increase or droop gain increase, or increase 



15 
 

of the number of DERs. On the other hand, a low value of droop gain results in poor load 

sharing.  

2-2-4  Modified droop strategies 

2-2-4-1 P-δ droop method 

One way to avoid the frequency deviation is utilizing P-δ droop instead of P-f droop 

characteristics [33]. In this method, the reference time of DER units are coordinated by pulses 

received from the global positioning system (GPS). This way, the voltage angle of each unit 

can be measured with respect to a common time reference. In order to achieve proportional 

power sharing among the DERs, the voltage angle of each unit is controlled according to the 

following active power-angle droop characteristic: 

( )rated ratedm P Pδ δ= − −  (2-16)

in which δ , ratedδ  and ratedP  refer to the voltage angle, rated angle and rated power, 

respectively. 

The replacement of the conventional P-f droop scheme with P- δ droop strategy eliminates 

the issue of dependency of the frequency on the loading conditions. Therefore, the frequency 

can be fixed at the rated value. However, P-δ droop causes large variations in the voltage 

angle, which might cause system instability. 

In order to enhance the stability of the P-δ droop method, a gain-scheduled angle droop 

controller is proposed in [37]. In this method, a derivative term is added to the droop control 

scheme, as following: 

( )rated rated d

dP
m P P m

dt
δ δ= − − +  (2-17)

where the factor md is the derivate coefficient. The droop gain, m, is scheduled based on the 

output power of the unit. However, the introduction of the derivative term in (2-17) makes 

this method vulnerable to noise. 

Inspired by the power system stabilizer (PSS) technique, ref [35] has added a 

supplementary feedback loop to the P-δ droop scheme to increase the system damping and 

improve the stability. The supplementary control introduces a change in the voltage 

amplitude (ΔV) proportional to the active power variations (ΔP). Ref [44] has replaced the 

linear supplementary controller by a nonlinear controller to ensure system stability even in 

the case of large signal disturbances. The derivation of the supplementary droop schemes is 

based on the conventional power control, where the active power must be controlled via the 

turbine and the reactive power via the excitation system. In case of the inverter-based DERs, 
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the control design can be conducted with much more flexibility by treating the DER as a 

multi input- multi output (MIMO) system, with voltage angle and amplitude as the inputs and 

active and reactive power as the outputs. This point of view eliminates the need for 

decoupling active and reactive power control and naturally encompasses the supplementary 

control. 

2-2-4-2 Droop control with line drop compensation 

An adaptive voltage droop strategy has been presented in [34]. In order to take into 

account the voltage drop from the DER to the load, two terms are added to the voltage droop, 

as follows: 

*
* *

( , )
RP XQ

V V n P Q Q
V V

 = − + + 
 

 (2-18)

In order to cancel the effect of active power on the load voltage, the droop gain is adapted 

with load variations, as follows: 

2 2( , ) Q Q pn P Q n m Q m P= + +  (2-19)

in which nQ , mQ , mp are the droop coefficients. The adaptive voltage droop improves voltage 

profile in the network, especially under heavy loading conditions. However, this method 

requires the prior knowledge of the network parameters. Moreover, it does not consider the 

issue of small signal stability. 

2-2-4-3 Decoupled P/Q droop method 

The active and reactive power flow equations can be decoupled by utilizing a rotational 

transformation, as follows [32]: 

sin cos

cos sin

P P

Q Q

θ θ
θ θ

′ −     
=     ′     

 (2-20)

Consequently P and Q can be controlled by δ and E droop as in the case inductive systems, 

respectively. However, this transformation requires the knowledge of the effective line 

impedance. In addition, this technique does not consider the negative impact of nonlinear 

loads and does not ensure frequency and voltage regulation. 

2-2-4-4 Virtual resistance strategy 

An alternative solution for improving the system damping and decoupling active and 

reactive power control is the virtual resistance control method [25]. In this method, a virtual 

resistance is emulated in the output stage of the inverter by introducing a resistive voltage 

drop in the voltage control loop. Since the line impedances are quite resistive, the system 

impedance will be approximately resistive. Therefore, the power flow equations can be 
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decoupled. In this case, P and Q will be controlled by E and δ droop, respectively. However, 

this method is not applicable to directly coupled DERs. Moreover, the resistive voltage drop 

results in the undesirable reduction of the DC bus voltage utilization ratio. 

2-2-4-5 Adaptive droop control approaches 

MG performance and stability considering energy source dynamics has been studied in 

[53]. In this paper, an islanded MG with four inverter-based distributed generations (DGs), 

including micro-turbines and fuel cells and an energy storage DER has been studied. 

Subsequent to a step load change, the output power of all DER inverters changes according to 

their droop characteristics. However, since the source power cannot follow the electrical 

power output instantaneously, the DC bus voltage of the inverters drops and the system 

becomes unstable. A variable droop scheme has been proposed to mitigate this problem. In 

this method, the droop gain of the storage based DER is increased to a high value right after 

the load change and then gradually decreased to its initial value. Consequently, the load 

change is initially carried out by the storage system and then is gradually shared between the 

other DGs. This paper does not consider the action of micro-turbine governor, which allows 

for speed variation to regulate the DC bus voltage. Moreover, the distributed nature of the 

network and the optimum size and position of the storage systems has not been discussed in 

this paper. 

The conventional droop control design is limited to selecting the droop gains. This 

restricts the design to 1 degree of freedom (1 DOF) and necessitates a tradeoff between the 

dynamic performance and power sharing. This restriction can be removed by using a 

modified droop function, as follows [24]: 

* ˆ d

dP
f f mP m

dt
= − −  (2-21)

* ˆd

dQ
V V nQ n

dt
= − −  (2-22)

The adaptive dynamic gains ˆ dm  and ˆdn  allow for adjusting the dynamic performance 

without affecting the power sharing. Furthermore, they can be adjusted with load changes to 

increase the system damping. Consequently, the critical eigenvalues can be kept away from 

the jω axis in spite of the system operating point variations. Yet other factors affecting system 

stability such as the coupling between active and reactive power and the resistive nature of 

the network has not been studied in this paper. 
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2-3  GPS technology – a new synchronization approach 

In this section, the motivation of utilizing GPS timing technology for synchronization of 

DER units is explained. Furthermore, the theoretical background of GPS timing technology 

and its application for angle synchronization are detailed. 

2-3-1  Motivation 

Consider the islanded AC MG of Fig. 2-5. The MG is supplied by N voltage-source DER 

units, which are connected to the point of common coupling (PCC) through line impedances. 

Each DER is comprised of a DC energy source, a power electronic inverter and a passive 

filter. The inverter voltage is controlled by means of a cascaded voltage-current control loop, 

which regulates the filter capacitor voltage, vck, to its reference value [54]. The output current 

of DER unit k (k = 1,2,…,N) is calculated as 

ck PCC
k

ck linek

v v
i

z z

−=
+

 (2-23)

in which vPCC, zck and zlinek are the PCC voltage, output inductor impedance and line 

impedance of  unit k, respectively.  

Equation (2-23) implies that the current of each unit is dependent on the corresponding 

capacitor voltage. Stable operation of the MG requires the reference voltages of the units to 

be in synchronism with each other. Conventionally, such synchronization is achieved by 

using droop control method. The low pass filter used for calculation of the active power 

introduces a virtual inertia in the system and the P-f droop characteristic acts like a negative 

feedback, which stabilizes the system [52]. At the same time, it enables proportional sharing 

of the load between the DERs. However, the dependency of the frequency on load makes this 

method inferior in terms of power quality [50]. 
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Fig. 2-5 Schematic diagram of an islanded ac MG 
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The frequency deviations can be compensated by Secondary control schemes. In this 

approach, which is inspired by secondary control method in power systems, a central 

controller sends a frequency compensation signal to the DERs. The signal is used by the local 

controllers to shift the local P-f droop characteristics[6]. So, the steady-state frequency is 

restored to the nominal value [3]. However, the implementation of the secondary control 

level requires communication links among the DERs. In addition, the method does not 

prevent transient frequency fluctuations subsequent to load changes. In case of power 

systems, such transients are negligible due to the smoothness of load changes. However, in 

islanded MGs the relatively larger magnitude of instantaneous load changes results in 

considerable frequency fluctuations. 

An alternative approach is fixing the frequency of the reference voltages at the rated value 

and coordinating the reference angles so as to achieve proper load sharing. This strategy 

necessitates the use of a common time reference by each of the DER units. Given the 

distributed nature of the MGs and the required timing accuracy, GPS timing technology has 

been proposed as the practical solution [33, 46]. In this approach, each DER is equipped with 

a GPS receiver, which produces a pulse at frequency of 1Hz (1PPS). Since all GPS receivers 

are locked to atomic clocks of the GPS satellites, the 1PPS signal can be utilized to 

synchronize the DERs. 

2-3-2  Theoretical background 

Although GPS is mainly known as a navigation system, it is also an accurate timing 

system. GPS time synchronization has been widely used in several applications including 

communications [55], sensor networks [56] and power systems [57].  

GPS is comprised of three functional areas, including satellites, GPS receivers and ground 

sections. Originally, the GPS constellation was composed of 24 satellites, 8 of which were 

observable at any point on earth. Currently, the number of satellites is increased to 32. Each 

satellites is equipped with four atomic clocks, which are synchronized with the Coordinated 

Universal Time (UTC). 

Each of the GPS satellites continuously broadcasts a series of information, which are 

modulated on carrier signals. The carrier signal is effectively a clock signal, which has a 

fixed frequency. The information includes clock correction factors, satellite’s current position 

and data regarding the accuracy of the satellite signals. In contrast to conventional radio 

broadcasts systems which use different frequency bands, all GPS satellites transmit at the 

same frequency bands. In order to discriminate the signals from different satellites, code 

division multiple access technique is utilized.  
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GPS block diagram of a GPS receiver is shown in Fig. 2-6. The GPS waves are received 

by the antenna and amplified using the preamplifier circuit. The carrier loop tracks the carrier 

frequency and computes the shift between the receiver clock and the satellite clock. The code 

loop decodes the signal to extract the information. The processor then uses the time shift and 

the position of the satellite to obtain the receiver position, as follows [58]: 

( ) ( ) ( ) ( )22 2

i x i y i z i bx u y u z u c t t− + − + − = Δ −  (2-24)

where, (xi , yi , zi) are the coordinates of satellite i , (ux , uy , uz) are the coordinates of the 

receiver, Δti is the time shift of the signal received from satellite i, tb is the bias of the receiver 

clock with respect to the Universal Coordinated Time (UTC), and c is the speed of light. The 

unknown variables in (2-24) are the coordinates of the receiver as well as the bias of the 

receiver clock. Expressing (2-24) for four different satellites, a system of four non-linear 

equations with four unknown variables is obtained. The equations are then solved by using an 

iterative method to obtain the receiver location as well as the receiver clock bias. The time 

bias can be used to accurately compute the UTC time.  

For the application of time synchronization in MGs, the receiver position is fixed after 

installation. Therefore, the receiver position can be calculated once and stored in the memory. 

Afterwards, only the clock bias of the receiver needs to be computed. So, only one satellite is 

sufficient for the application. Given the fact that at least eight satellites are observable at any 

point, the GPS time synchronization systems favors from a redundancy of seven, which 

makes the system highly reliable. 

It should be pointed out the clock bias is a dynamic variable, which changes over time due 

to the frequency drift of the local oscillator [59]. So, it is important to continuously update the 

clock bias. 

 

Fig. 2-6 GPS receiver 
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2-3-3  Angle synchronization 

GPS time synchronization has been widely used in several applications including 

communications [55], sensor networks [56] and power systems [57]. Commonly, accurate 

time synchronization is achieved based on a timing pulse with a period of 1s. The rise time of 

the 1 pulse per second signal (1PPS) is synchronized with the UTC time with accuracy of a 

fraction of microsecond. 

The 1PPS GPS signal is connected to one of the inputs of the digital controller. The rising 

edge of the pulse is captured by the timer module and assigned as tcap. The time offset 

between the 1PPS signal and the local clock is computed as 

mod{ ,1}offset capt t=  (2-25)

in which “mod” refers to modulus. In other words, the offset time is the fractional part of the 

captured time. It is worth mentioning that the decimal part of tcap bears no information due to 

periodic nature of the 1PPS signal. 

The SRRF phase angle is computed as following: 

( ){ }0mod ,2offsett tθ ω π= −  (2-26)

in which, 0 02 fω π=  is the fundamental angular frequency. Assuming a constant and integer 

fundamental frequency, the angle of the SRRF at the rising edge of the 1PPS signal (t = tcap) 

is zero. On the other hand, the 1PPS signal is synchronized to the global UTC time. 

Therefore, the SRRFs of the DERs are synchronized. 

The accuracy of synchronization is dependent on the GPS receiver, the timer quantization, 

and the frequency drift of the local controller oscillator. The maximum phase angle error at 

time t can be expressed as following: 

( ){ }0

t

err GPS timer dtGPS
e e F dθ ω τ τ= + +   (2-27)

where, eGPS, etimer, Fd and tGPS are the GPS receiver error, timer quantization error,  frequency 

drift of the oscillator and the instant of time at which the last GPS pulse is captured, 

respectively. 

The GPS and timer quantization errors are typically less than 1 microsecond. The 

oscillator frequency drift ranges from a few parts per billion for oven controlled crystal 

oscillators (OCXO) to 100 parts per million (ppm) for typical crystal oscillators. Therefore, 

the angle error is less than 1° with typical oscillators. 
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2-4  V-I droop method 

2-4-1  Basic concept 

The existing communication-less MG control methods are based on the conventional 

power system droop. In order to exploit the fast dynamics and high flexibility of inverters, 

while taking advantage of the recent developments in GPS communications, a new droop 

method is proposed in this chapter.  

In the proposed method, the reference frame of each local controller is aligned to a global 

synchronous rotating reference frame (SRRF) by using GPS timing technology. This 

alignment enables the local controllers to obtain the d and q components of local voltages and 

currents with respect to the global SRRF. Assuming balanced conditions, the Park transform 

of the voltage is represented by a two dimensional vector, as follows 

cd

cdq
cq

v
v

v

 
=  
 

 (2-28)

It is worth mentioning that in the conventional control methods, the local SRRF is aligned 

with the output voltage. So, based on the choice of the reference time, either vcd or vcq is zero. 

In other words, vcdq has one degree of freedom and only conveys the information about the 

voltage amplitude. In the proposed scheme, however, vcdq has two degree of freedom and 

entails information about the amplitude as well as phase angle of the output voltage. 

Therefore, it is possible to control the amplitude and angle of the voltage through adjusting 

vcd and vcq. In the proposed method the d and q components of the voltage are adjusted as a 

function of the output current: 

( )
( )

0
,

0 ,

d qcd

cq d q

f i iv E

v g i i

∗

∗

      = −          
 (2-29)

in which dv∗ , qv∗  and di , qi  are the d and q axis components of the reference voltage and 

output current, 0E  is the no load voltage, and f  and g  are the d and q axis droop functions. 

By properly selecting the the droop functions, it is possible to realize a decentralized 

coordinated control, which ensures proportional sharing of load current between the DERs. 

Assuming 1cdv pu≈  and 0cqv ≈ , iq and id approximately represent the active and reactive 

power, respectively. Therefore, even power sharing is guaranteed.  
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2-4-2  Comparison of current-based and power-based droop concepts 

As opposed to the majority of research work in the literature, which focus on proportional 

sharing of active and reactive load power among the DERs, the proposed method is centred 

on proper sharing of active (id) and reactive (iq) components of load current among the DER 

units.  

Fig. 2-7 illustrates a comparison between the conventional power sharing and proposed 

current sharing approaches. The proposed approach eliminates the inherent delay of P and Q 

measurement by simplifying the power flow control to current flow control. While the power 

sharing schemes are developed based on linearization of power flow equations (equations (2-

1) and (2-2)) with the assumption of inductive network impedance and small power angles, 

the proposed scheme is based on basic laws of KVL and KCL, which are linear in nature. 

Furthermore, unlike the conventional droop method, the proposed strategy enables fixed 

frequency operation. 

The current flow control is not only in accordance with the nature of inverters, which 

cannot tolerate large current overshoots, but also satisfies even power sharing as the voltage 

variation throughout a MG is usually small. 

Power 
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Fig. 2-7 Comparison of power and current based droop schemes 
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2-4-3  Current sharing in islanded MGs 

Fig. 2-8 illustrates a simple MG consisting of two DERs and one load. The DERs are 

assumed to be dispatchable, i.e., capable of producing active power on demand. Each DER is 

modelled as a voltage source followed by an LC filter and a transformer, which is modelled 

by an inductor. The voltage source represents the inverter, with U equal to the average 

inverter voltage. The DERs are connected to the PCC via low voltage cables. 

The capacitor voltage is regulated by a cascaded voltage-current controller. The bandwidth 

of the current controller is typically selected as ½ of the resonant frequency of the LCL filter 

( ( ) ( )/ 2res f c f c ff L L L L Cπ= + ). On the other hand, resf  must be smaller than ½ of the 

switching frequency. For a typical switching frequency of 10kHz, the current control loop 

should have a bandwidth of a few kHz. The time constant of the outer voltage control loop 

should be selected larger than the inner current control loop but smaller than the fundamental 

period (1/50Hz=20ms). Therefore, the time constant of the cascaded controller is in the order 

of a few milliseconds. To simplify the analysis, dynamics of the cascaded controller are 

neglected in this section. Hence, the system dynamics can be represented in the synchronous 

rotating reference frame by the following state space equations: 

( )1 1 1 1 1 1 1d c d PCCd q dL pi v V L i R iω= − − − +  (2-30)

( )1 1 1 1 1 1 1q c q PCCq d qL pi v V L i R iω= − − +  (2-31)

( )2 2 2 2 2 2 2d c d PCCd q dL pi v V L i R iω= − − − +  (2-32)

( )2 2 2 2 2 2 2q c q PCCq d qL pi v V L i R iω= − − +  (2-33)

and the constraints:  

1 2
Load

q d di i i+ =  (2-34)

1 2
Load

q q qi i i+ =  (2-35)

in which, Lk and Rk represent the total inductance and total resistance between DER unit 

k ( 1, 2k = ) and the PCC, respectively. Moreover, PCCdV , 1i , 2i , Loadi  correspond to the PCC 

voltage, current of unit 1 and 2 and the load in the q-d reference frame, respectively. The 

prefix “p” denotes derivative. 
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Fig. 2-8 MG model 

The load voltage can be eliminated from (2-30)-(2-33) by subtraction, as follows: 

[ ] [ ]1 2 1 2 1 2

1 2 1 2
1 2 1 2 1 2

d d c d c d d d

q q c q c q q q

i i v v i i
p L L Z Z

i i v v i i

            
− = − − +                         

 (2-36)

in which,  

[ ] ck Lk ck Lk
k

ck Lk ck Lk

R R X X
Z

X X R R

+ − − 
=  + + 

 
(2-37)

where ckX , ckR , LkX  and LkR  are the reactance and resistance of output transformer and line 

of unit k, respectively. 

Equation (2-36) shows that iq and id are related to the difference between the inverters 

voltages through linear differential equations. Therefore, it is possible to control the sharing 

of current between the DERs by adjusting the inverters voltages. 

2-4-4  Development of the control law 

By substituting (2-29) into (2-36) it can be shown that in steady-state conditions, the ratio 

of the DER currents (i1d /i2d and i1q/i2q) is dependent on the functions f and g as well as the 

system parameters. In order to eliminate the adverse effect of transformer impedance on the 

power sharing and voltage regulation, compensating terms are added to the control law, as 

follows: 

( )
( )

, 0

,

,

0 ,

k kd kqck d kdTk Tk

kqTk Tkck q k kd kq

f i iv iE R X

iX Rv g i i

∗

∗

   −       = + −                  
 

(2-38)

Therefore, steady-state power sharing is only dependent on the droop functions and the 

line impedance. Since the line impedances in the distribution system are relatively small, 

even current sharing can be realized by choosing appropriate droop functions. The droop 

functions can be chosen as a linear combination of iq and id, as follows: 

kdk k k

kqk kk

if m l

ik ng

−     
=     
    

 
(2-39)
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in which, the droop coefficients (m, n, l and k) are selected inversely proportional to the 

DERs ratings. Substituting (2-39) into (2-38) and using (2-36), the system dynamics can be 

written, as follows:   

1 2 1 21 1 1 1 2 2 2 2
1 2

1 2 1 21 1 1 1 2 2 2 2

d d d dL L L L

q q q qL L L L

i i i iR m X l R m X l
L p L p

i i i iX k R n X k R n

       − − + − − +   
− = −          − − − − − − − −          

 (2-40)

In case of equal per unit transformer and line impedances, steady-state current sharing 

error is zero and (2-40) can be simplified to the following equation: 

1 1 1 1
1

1 1 1 1

d dL L

q qL L

e eR m X l
L p

e eX k R n

   − − + 
=    − − − −    

 
(2-41)

where, e represents the current sharing error. Since line impedances are small compared to 

the droop coefficients, the system dynamic response is mostly dependent on the coefficients.  

Two extreme cases for the selection of the coefficients are considered here. In the first 

case, the diagonal coefficients (m and n) are set to zero to have iq-vd /id-vq droop 

characteristics. It is noteworthy to mention the similarity of these characteristics with the 

conventional droop (P-δ/Q-E). That choice leads to an under-damped response, with damping 

ratio decreasing with the increase of the coefficients. In the second case, the off-diagonal 

elements are set to zero. With this choice, the q and d components of the current are 

approximately decoupled thanks to the small X/R ratio of the lines. Moreover, the increase of 

coefficients m and n improves both damping and steady state current sharing. However, the 

droop action causes PCC voltage drop. Therefore, the coefficients should be chosen such that 

the PCC voltage is in the permissible range. 

From (2-40) it can be inferred that steady-state current sharing error is dependent on the 

mismatch of the line voltage drops and increases with the load rise. On the other hand, the 

system is more vulnerable under heavy loading conditions, as the DER output currents are 

strictly limited by the current rating of the inverters’ switches. In order to decrease the current 

sharing error and improve the damping under heavy loading conditions, a piece-wise linear 

droop function is adopted. Therefore, the droop control law is defined as follows: 

( )
( )

, 0

,
0

k kdck d kdTk Tk

kqTk Tkck q k kq

m f iv iE R X

iX Rv n f i

∗

∗

   −       = + −                  
 (2-42)

Fig. 2-9 illustrates a comparison between steady-state error of linear and piece-wise linear 

droop functions. As for representation, the DER ratings are assumed to be equal and the line 

2 impedance is assumed to be zero. Having i1d known, f(i2d) is calculated, as follows: 

[ ]2 1 1 1 1( ) ( )d d L L dqf i f i R X i= + −  (2-43)
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It is observed that while the maximum of both droop functions are equal, the current 

sharing error is much smaller for the piece-wise linear droop. Moreover, the higher droop 

slope at high loading conditions corresponds to an improved dynamic response.  

( )df i

maxF

1( )df i

2( )df i

di
1di

de

maxdi2di

LineV

( )df i

maxF

di
1di

de

maxdi2di

LineV
1( )df i

2( )df i

 
                                     (a)                                                                    (b) 

Fig. 2-9 Droop function: (a) linear, (b) piece-wise linear 

The power sharing accuracy at high loading conditions can be improved by using any 

piece-wise linear function with increasing slope. However, to achieve the optimum 

performance, the function is designed by solving an optimization problem. Expressing the 

current sharing error of unit k as 

,
,

j
jk

k
rated k

j rated
j

i
i

e
I I

= −



, 

(2-44)

in which ,rated kI is the rated current of DER unit k, the cost function can be defined as a 

weighted sum of average current sharing error under low, medium and high loading 

conditions: 

1 2 3min ,low medium highCf C e C e C e= + +  (2-45)

where, lowe , mediume  and highe are average current sharing error at low (0<i<0.5pu), medium 

(0.5pu<i<0.7pu) and high (i>0.7pu) loading conditions, respectively. In order to emphasize 

the vulnerability of the system at high loading conditions, the weights C1, C2 and C3 are set to 

1, 2 and 8, respectively.  The objective is to find the slope of the function at different loading 

conditions, to minimize the cost function (Cf). 

The optimization problem is solved numerically. The resulting slopes are 0.3, 1 and 2.16 

for low, medium and high loading conditions, respectively. The function f is then extended 

for negative currents and represented as a look-up table, as shown in table 2-1. 
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Table 2-1 piece-wise linear function f 

i (pu) f (i) 

-1 -1 

-0.7 -0.35 

-0.5 -0.15 

0.5 0.15 

0.7 0.35 

1 1 

2-4-5  Block diagram of the controller 

The block diagram of the proposed controller is illustrated in Fig. 2-10. The GPS 

synchronization block calculates the SRRF angle, θ, according to (2-26). The d and q 

components of the output current are calculated using a park transformation (abc/dq) block. 

The inverter reference voltage is then obtained according to the droop control law (equation 

(2-42)).  
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Fig. 2-10 Block diagram of the proposed control scheme 

The reference voltage is then fed to inner control loops, which are detailed in Fig. 2-11. 

The inner loops are a cascaded combination of voltage and current controllers, which are also 

implemented in SRRF. The voltage controller uses a combination of feedback and 

feedforward control to obtain the reference current. A current limiter along with an anti-

windup feedback is used in the voltage controller to protect the inverter from over-current 

during transient or fault conditions. The DER operating mode is selected by the automatic 

switches S1 and S2. When the MG is connected to the grid, the current reference is set to a 
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constant value (upper state). If a disturbance occurs in the upstream network, the MG is 

islanded and the controller is switched to the droop control mode. The current controller 

output is fed to the PWM module to control the switching duty cycle.  

From the implementation standpoint, the proposed controller is quite similar to the 

conventional P-f/Q-E droop methods, except utilizing the output transformer impedance in 

the droop control law. The effect of the impedance variations on the controller performance is 

discussed in Section 2-5. 
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Fig. 2-11 Block diagram of the inner control loops 

2-4-6  Small-signal analysis of the proposed method 

The derivation of the proposed controller is based on the simplified model, which neglects 

the dynamics of the cascaded voltage regulator. In this section, small-signal behavior of the 

proposed control considering the dynamics of the cascaded voltage regulator as well as the 

LC filter are investigated. 

The proposed controller is applied to the MG of Fig. 2-8 and the system is modelled in the 

synchronous rotating reference frame. The model is formulated in the state-space form with 

20 independent states, including filter capacitors voltages, filter inductors currents, voltage 

and current regulator integrators, DER output currents and load voltage. The system is 

linearised around the operating point which is calculated by time-domain simulation. The 

dynamic response and stability is then investigated by eigenvalue analysis using MATLAB 

Control Design Toolbox. 
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The system parameters are listed in table 2-2. Each DER has a power rating of 30kW. 

Lines 1 and 2 are standard low voltage XLPE-16 overhead cables with lengths of 35m and 

105m, respectively. The system load is set to 50kW at 0.7 PF lagging to replicate heavy 

loading conditions. According to EN50160, the 10 minute rms voltage of low voltage 

networks should remain in the range of 90% to 110% of the nominal value [60]. With the 

power electronic controllers, the voltage can be maintained in a narrow range. In this thesis, 

the permissible voltage deviations at the DERs terminals is ±4%. In order to maintain the 

voltage within the permissible range, the q axis droop coefficient (m) is set to 0.08 and E0 is 

set to 1.04pu. The system eigenvalues are then calculated for different values of d axis droop 

coefficient (n). 

Table 2-2 System parameters 

Discription Parameter Value Unit 

System parameters 
frated 50 Hz 

VLrated 400 V 

DER 1 and 2 rating 
P 30 kW 

S 45 kVA 

DERs filter impedance Zf 0.05+j0.16 pu 

DER1 and 2 Transformers’ 
impedances 

ZT1 0.03 + j0.09 pu 

ZT2 0.02 + j0.06 pu 

Line 1 length 35 m 

Line 2 length 105 m 

Current controller parameters 
kpi 10 - 

kii 15000 - 

Voltage controller 
parameters 

kpv 0.025 - 

kiv 200 - 

Feedforward gain H 0.7 - 

 
 

Fig. 2-12 depicts the loci of the dominant eigenvalues with n increasing from 0.01 to 0.15. 

As n is increased from 0.01 to 0.06, the dominant eigenvalue (number 1) quickly shifts away 

from the imaginary axis, but the high frequency eigenvalues slowly move towards the 

imaginary axis. At n=0.06, the eigenvalue number 2, which moves slowly with increase of n, 

becomes dominant. This implies a trade-off between power sharing accuracy and dynamic 

response. However, as n is varied in the range (0.06, 0.15) the high frequency eigenvalues 

remain far away from the dominant eigenvalue, the real part of which is smaller than -2π*50 

rad/s. Therefore, the droop controller has a time constant of less than 1 cycle, i.e., it reacts to 

load changes in the first cycle after the disturbance. The fast coordinated reaction of local 

controllers ensures that the load change is picked up by all DERs, hence preventing current 

overshoot. It is worthwhile to mention that the loci of the system eigenvalues with variation 

of m are similar to Fig. 2-12 and are not shown here for conciseness.  
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Fig. 2-12 Eigenvalue loci of the proposed method 
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Fig. 2-13 Eigenvalue loci of conventional P-δ droop method 

As for comparison, the loci of the dominant eigenvalues with conventional P-δ/Q-E droop 

are shown in Fig. 2-13. The Q-E droop coefficient is set to 0.08 and the P-δ droop coefficient 

is varied from 0.05 to 0.5. It can be observed that as the droop coefficient is increased, the 

dominant eigenvalues shift towards the imaginary axis until the system becomes unstable. 

This behavior is consistent with the mathematical analysis of Section 2-4-4. Similar results 

have been reported for P-f/Q-E droop control method [24]. 

2-5  Simulation results 

In order to verify the efficacy of the proposed control method, it is applied to the CIGRE 

benchmark MG proposed in [61]. The benchmark schematic diagram is depicted in Fig. 2-14. 

It simulates common low voltage distribution feeders with variety of load types. Five DER 

units are integrated into the feeder to provide an uninterruptable energy supply. The overhead 

lines and loads parameters are shown on the diagram. The load power factor is set to 0.7 to 

replicate worst case conditions in a residential area. The DERs 1 and 2 have the same 

parameters as listed in Table 2-3. The rest of the parameters are shown in table 2-3. Droop 

coefficients m and n are set to 0.08 and 0.15, respectively. While m is limited by the 

permissible voltage deviations ( 4%± ), n is selected based on a trade-off between dynamic 

response and Q sharing accuracy. 
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Table 2-3 Benchmark Parameters 

Discription Parameter Value Unit 

DER 3-5 ratings S 22.5 kVA 

P 15 kW 

DERs Transformers’ 
impedances 

ZT3 0.025 + j0.075 pu 

ZT4 0.02 + j0.06 pu 

ZT5 0.03 + j0.09 pu 

Proposed method droop 
coefficients 

m 0.08 - 

n 0.15 - 

Conventional droop 
coefficients 

kp 0.1 - 

kq 0.04 - 

 

 

Fig. 2-14 Benchmark MG 
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The benchmark MG is modelled in MATLAB/Simulink and time-domain simulations are 

conducted to study the system dynamic response to step load change and fault triggered 

islanding scenarios.  

The first scenario is a step load change at the apartment building. The apartment load is 

raised from 13.5kW to 45 kW at 0.2s and then reduced back to 13.5kW at 0.7s. The active 

and reactive powers, output currents and voltages of the DERs with the conventional P-δ 

droop method are illustrated in Fig. 2-15-(a) to (d), respectively. It is worthwhile to mention 

that the system response with the P-f droop is quite similar to the P-δ droop and is not shown 

here for conciseness. It is observed that the system response undergoes several oscillations 

until settling to the steady-state conditions. Moreover, the reactive power sharing is quite 

poor due to the small Q-E droop coefficient and unequal pu impedance of DERs 

transformers. The current sharing is hence poor and the output current of DER2, which is 

located close to the apartment building, rises up to 1.03 in the first cycle after the disturbance. 

This overshoot might stress the inverter switches and threat the system security. The voltages 

are almost equal due to the low line impedances. The voltage drops from 0.94pu to 0.92pu 

after the load increase. The poor voltage regulation is caused by a combination of the Q-E 

droop control action and the voltage drop on the DER transformers.  

The system response with the proposed method is depicted in Fig. 2-16. With a time 

constant of less than 1 cycle, all local controllers react to the load increase in the first cycle 

after the disturbance. Therefore, the DERs currents rise smoothly and without overshoot. The 

maximum current of DER2 is 0.88pu, which is 0.15pu lower than the conventional method 

case. The active and reactive powers also rise smoothly. Steady-state errors of active and 

reactive power sharing are initially within 6%± and 3%± , respectively. The errors reduce to 

half after the load increase, ensuring the DERs will not be overloaded during heavy loading 

conditions. With the load increase the voltage decreases from 1.02pu to 0.98pu, which is in 

the permissible range ( 0.95 1.05− ). It is worth mentioning that in Figs. 2-15(d) and 2-16 (d), 

the waveforms of the voltages are overlapped and hence only the voltage of DER4 is 

observable. 

In the second scenario, the MG initially operates in the grid connected mode, until a fault 

occurs at the upstream network. The main circuit breaker then opens and the MG is switched 

to the islanding mode. The simulation results are illustrated in Fig. 2-17. During the fault 

conditions, the voltage is nearly zero so are the active and reactive powers. At t=0.05 the MG 

is islanded and the local controllers are switched to the droop control mode. Subsequently, 

the voltage is raised by the coordinated action of the local controllers. It is observed that the 

controller responds equally well to islanding, which is a large signal disturbance.   
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(d) 

Fig. 2-15 System response due to a step load change in the apartment building with the conventional 
droop control method: a) active power, b) reactive power c) current and d) voltage of DER units 
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(d) 

Fig. 2-16 System response due to a step load change in the apartment building with the proposed 
control method: a) active power, b) reactive power c) current and d) voltage of different DER units
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Fig. 2-17 System response due to a fault triggered islanding with the proposed control method: a) 
active power, b) reactive power c) current and d) voltage of different DER units 

As described in Section 2-2-4, the transformer impedance is utilized in the droop control 

law to compensate the transformer voltage drop. The impedance might change slightly as a 
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result of temperature variations or aging. In order to evaluate the sensitivity of the proposed 

method to the transformer parameters variations, the impedance of DER1 transformer is 

changed in the range of 90% to 110% of its original value. Scenario 1 is repeated for several 

different values of the impedance and power sharing error for each DER is calculated as 

follows: 

5

1
, 5

r ,
,

1

P

i
x i

error x
ated x

i rated
i

P
P

P
P

=

=

= −



 (2-46)

The reactive power and current sharing errors are calculated similarly. The maximum 

power and current sharing errors for the proposed method (denoted as P) along with the 

conventional method (denoted as C) are listed in table 2-4. It is observed that although the 

variations of the transformer parameters results in an increase of errors, they are still smaller 

than those of the conventional droop method. 

Table 2-4 Power and current sharing error with altered transformer parameters   

 Description 
Initial load Increased Load 

P C P C 

Maximum P sharing error 7.9% 9.2% 5.4% 19.8% 

Maximum Q sharing error 3.2% 13.5% 2.3% 21.5% 

Maximum current sharing error 4.9% 10.1% 3.9% 20.1% 

 

Simulation results show the effectiveness of the proposed method in improving the system 

dynamic response hence alleviating the current overshoots and stress on the inverter switches. 

The steady state error of active power sharing can be justified by the fact that perfect even 

sharing of P is usually neither economic nor necessary. Nonzero error might only result in 

some DERs reaching the maximum P limit, after which their active power is kept constant. 

 

2-6  Experimental Validation of V-I droop scheme 

2-6-1  Laboratory scale MG 

The proposed control method has been implemented on a three-phase laboratory scale 

MG, as shown in Fig. 2-18. The test MG is composed of three inverter-based DERs, three 

loads and a resistive line model. A variable DC voltage source is used to supply the inverters. 

Electronically controlled circuit breakers are used to connect/disconnect the inverters and 

loads from the MG. The DER 1 is included in setup 1 and DERs 2 and 3 are included in setup 

2. Each setup is equipped with a dSPACE 1006 controller platform and a GPS timing system. 
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It is worth mentioning that the experimental implementation could be substantially 

simplified by using only one dSPACE platform to control all of the three inverters. However, 

that implementation strategy is in contrary with the distributed nature of MGs, which imposes 

the use of separate local controllers for individual DERs. More importantly, verifying the 

efficacy of GPS timing requires at least two separate controller units. 

The dSPACE controllers are connected to PCs using Ethernet interface. The “dSPACE 

Control Desk” program is used to manage the dSPACE controllers and plots/save the signals. 

The experimental results are captured using the “dSPACE control desk” and plotted in 

MATLAB. 

1 2lineR − 2 3lineR −

 

Fig. 2-18 schematic diagram of the experimental setup 
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Fig. 2-19 Photos of the experimental setup 

The specifications of the experimental hardware as well as control parameters are listed in 

Table 2-5. The MG is operated at frequency of 50Hz and phase voltage of 220Vrms. The 

inverters have a rating of 2kVA and are switched at PWM frequency of 10kHz. The load 

impedances are selected so that the full load power is close to the MG capacity. The LV 

feeder is modelled by resistive line impedances. 
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Table 2-5 Parameters of the test MG 

Description Parameter Value Unit 

Fundamental Frequency f0 50 Hz 

Rated phase Voltage Vrated 220 Vrms 

Inverter Specifications 
Srated 2 kVAR 

fPWM 10 kHz 

LCL Filter 

Lf 8.6 mH 

Cf 4.5 μF 

Lc 1.8 mH 

Load impedances 

R1 115 Ω 

R2 153 Ω 

Z3 43+j22 Ω 

Line Impedances 
Rline1-2 0.66 Ω 

Rline2-3 0.22 Ω 

V-I droop coefficients 
m 6.5 Ω 

n 25 Ω 

Voltage controller parameters 
kp1 0.008 S 

kr1 36 S/s 

Current controller parameters 
kp2 45 Ω 

kr2 1000 Ω/s 

 

2-6-2  SecureSync timing system 

Commonly, accurate time synchronization is achieved based on a timing pulse with a 

period of 1s. The rise time of the 1 pulse per second signal (1PPS) is synchronized with the 

UTC time with accuracy of a fraction of microsecond. 

GPS receivers are perhaps one of the most widespread communication devices, which are 

available both as a separate device and as an embedded system in smartphones. However, 

standard GPS receivers are generally designed for positing and cannot be used for time 

synchronization. Fortunately, there are quite a few brands which manufacture commercial 

GPS timing systems, among which Spectracom ® is the top one. 

Spectracom, which is a multi-national company, with headquarters in New York, USA, 

offers a variety of GPS-based timing systems, including SecureSync ® Time and Frequency 

Reference System, Epsilon GPS Clock, NetClock Public Safety Master Clock and Enterprise 

Class SecureSync. For the purpose of this project, the latter one was found the most suitable 

because of the affordable price and availability of a precision 1PPS output. So, we bought the 

device for laboratory setup. 
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Fig. 2-20 SecureSync GPS timing system 

The picture of SecureSync timing system is shown in Fig. 2-20. The device is equipped 

with a keypad, three LEDs, an LCD display and a clock display in the front side. The keypad 

can be used to conduct some basic settings and the LEDs show the status of the device. 

Normally, the Power and Sync LEDs should light green and the fault LED should be off.  

The device features several ports including an Ethernet port, a standard RS232 serial 

communication port, antenna plug, 1PPS and 10MHz output ports. The most comfortable 

way for interfacing with the device is Ethernet. The device can be connected to a PC either 

directly or through a local host/router. After the connection is established, the IP of the device 

will be displayed on the front LCD. The user interface of the device can be accessed on a PC 

by entering the IP address in a web browser program. 

After turning on, the device searches for the observable satellite signals. As mentioned in 

Section 2-3-2, four satellite signals are necessary to obtain the position. Once the position is 

obtained, it is saved in the memory of the device. Afterwards, only one satellite is enough to 

maintain time synchronization. The signal strengths of the observable satellites as well the 

historical data of the number of observable satellites can be accessed through interface-

>GNSS tab.  

2-6-3  Interfacing SecureSync timing system with dSPACE controllers 

The 1PPS signals from the GPS receivers are depicted in Fig. 2-21. It is observed that the 

1PPS signals are synchronized with an accuracy of less than 1μs. The 1PPS signal is captured 

by dSPACE I/O interface card (DS4002) and used by local controllers to calculate the offset 

time between the individual local controller clock and the global UTC time (toffset). 
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Ch2: GPS 2 
output pulse

Ch1: GPS 1 
output pulse  

Fig. 2-21 1PPS signals from measured  from GPS receivers outputs 

2-6-4  Experimental Results 

In order to study the performance of the proposed method, three tests are conducted:  

• Step load change with the P-V/Q-f droop method 

• Step load change with the proposed method 

• Connection of a DER to the MG 

With the aim of presenting a comparative study, the P-V/Q-f droop method [25], which is 

conventionally used for MGs with resistive lines, is implemented. The conventional droop 

parameters are listed in Table 2-6. The P-V and Q-f droop coefficients are designed based on 

the permissible voltage deviations and pole placement method, respectively. The step load 

response with the conventional droop method is depicted in Fig. 2-22. Initially, loads 1 and 2 

are connected. At t=0.05s, a large reactive load is connected to bus 3. Following the load rise, 

the active and reactive powers experience overshoot and ringing. The poor dynamic response 

is mainly originated from the power measurement delay. Moreover, the active power sharing 

is less accurate at higher loading conditions due to the larger voltage drops on the lines. As a 

result, the DER3, which is closer to the load, experiences a current overshoot as illustrated in 

Fig. 2-22 (c). 

Table 2-6 Parameters of the Conventional droop 

Parameter Value Unit 

P-V droop coefficient 0.014 1/A 

Q-f droop coefficient 0.012 Hz/kVAR



43 
 

0 0.5 1 1.5 2 2.5
500

750

1000

1250

1500

1750

time(s)

P
(W

)

 

 

DER1

DER2

DER3

 
(a) 

0 0.5 1 1.5 2 2.5
-500

0

500

1000

time(s)

Q
(V

A
R

)

 

 

DER1

DER2

DER3

 
(b) 

 

0 0.5 1 1.5 2 2.5

-4

-2

0

2

4

time(s)

O
ut

pu
t 

cu
rr

en
t 

of
 D

E
R

3

 

 

ioa

iob

ioc

-4

-2

0

2

4

-4

-2

0

2

4

 
(c) 

0 0.5 1 1.5 2 2.5
210

215

220

225

time(s)

R
M

S
 V

ol
ta

ge
 o

f 
D

E
R

s

 

 

DER1

DER2

DER3

 
(d) 

Fig. 2-22 Experimental Results for test 1 (conventional droop method): a) active powers, b) reactive 
powers, c) current of DER3 and d) RMS voltages 
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The step load response with the proposed method is depicted in Fig. 2-23.  Comparison of 

Fig. 2-22 and 2-23 reveals a significant improvement of the dynamic response. Specifically, 

the transient response of active and reactive power is smooth and the settling time is less than 

a cycle. As a result, the current of DER 3 rises smoothly. During low loading conditions (at 

t=0), the active power sharing is not ideal. However, the accuracy of active power sharing is 

improved at high loading conditions thanks to the piece-wise linear V-I droop characteristics. 

This helps prevent DERs from overload. Furthermore, the rms voltage is within the 

permissible range (0.95pu to 1.05 pu), as depicted in Fig. 2-23 (d).  
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Fig. 2-23 Experimental Results for test 2 (proposed method): a) active powers, b) reactive powers, c) 
current of DER3 and d) RMS voltages 
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Fig. 2-24  Experimental Results for test 3: a) active powers, b) reactive powers and c) current of 
DER2 

The experimental results for DER connection test are shown in Fig. 2-24. Initially, DER1 

and load 1 are connected to the MG. At t=0.05s, DER 2 is connected. It is observed that the 

load power is shared between the DERs following the connection. The transient of active 

power and current is smooth and the reactive power remains constant. Therefore, the 

proposed method enables smooth connection of DERs to the MG without requirement for 

additional synchronization mechanisms (such as PLL).  

2-7  Summary and conclusions 

The MGs provide a context for facilitating the integration of renewable energy resources 

in low voltage networks while delivering a high quality and reliable energy to consumers. 

However, low inertia, strict current limits and small size of inverter-based DERs on one hand 

and large step load changes on the other hand make the MGs vulnerable to power quality and 

stability issues. 
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This chapter has demonstrated that dynamic and stability of MGs can be improved 

significantly by designing a droop control scheme in accordance with the characteristics of 

inverter-based DERs, i.e., low inertia and strict current limits. In this chapter, a new 

coordinated control method based on V-I droop characteristic is proposed to fulfil the 

aforementioned aims. In order to improve power sharing accuracy at high loading conditions, 

when the DERs are vulnerable to overload, a piece-wise linear droop characteristic is 

adopted. 

The proposed control method is analogous to the voltage droop method in DC MGs [62], 

where the converters output voltages are drooped in accordance to the output current. 

However, the method is discriminated from the virtual output resistance [25] and virtual 

inductance [26] methods in AC MGs, which utilize P-E/Q-f droop characteristics for power 

sharing. 

The performance of the droop controller considering the voltage regulator and the filter 

dynamics is investigated by eigenvalue analysis. The analysis verifies the fast dynamic 

response and small-signal stability of the method. The method is then applied to the CIGRE 

benchmark MG and both step load change and islanding scenarios are studied. The 

simulation results demonstrate a smooth dynamic response, which settles within two cycles 

after the disturbance. Moreover, the voltage is maintained within 96% to 104% of nominal 

value. The narrow range of voltage variations on one hand and the fixed frequency operation 

on the other hand, imply high quality of energy delivered to the consumers.  
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Chapter  3  

Enhancement of the robustness of 
V-I droop scheme with respect to 
GPS interruptions 

 

3-1  Introduction 

An intrinsic feature of the conventional droop method is the dependency of the frequency 

on the loading conditions [50]. This results in unwanted frequency deviations which degrade 

the power quality. The frequency deviations can be compensated by two different 

approaches: 

1-Secondary control schemes: In this approach, which is inspired by secondary control 

method in power systems, a central controller sends a frequency compensation signal to the 

DERs. The signal is used by the local controllers to shift the local P-f droop 

characteristics[6]. So, the steady-state frequency is restored to the nominal value [3]. 

However, the implementation of the secondary control level requires communication links 

among the DERs. In addition, the method does not prevent transient frequency fluctuations 

subsequent to load changes. In case of power systems, such transients are negligible due to 

the smoothness of load changes. However, in islanded MGs the relatively larger magnitude of 

instantaneous load changes results in considerable frequency fluctuations. 

2- Control methods based on GPS synchronization: An alternative approach is using GPS 

timing technology [55] to realize constant frequency operation. In this approach, each DER is 

equipped with a GPS receiver, which produces a pulse at frequency of 1Hz (1PPS). Since all 

GPS receivers are locked to atomic clocks of the GPS satellites, the 1PPS signal can be 

utilized to synchronize the DERs. 

Recently, several MG control methods based on GPS have been proposed. In [33], a 

power-angle (P-δ) droop characteristic is introduced to coordinate the power generation of 

the DERs according to the voltage angles. However, this method suffers from slow dynamic 
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response due to the intrinsic delay of power measurement. In [38], a power management 

system (PMS) is proposed to calculate the amplitude and angle of the reference voltages of 

individual DERs according to the power flow requirements. The reference values are then 

communicated to the local controllers, which regulate the inverter voltages. However, this 

method requires communication links among DERs. In [39], a decentralized plug and play 

(P’n’P) control method is proposed to ensure stable operation of meshed MGs subsequent to 

connection/disconnection of new DERs. However, the requirements of line parameters and 

load current feedback make the method difficult to implement. In [46], the GPS timing is 

used to synchronize the rotating reference frames (SRRFs) of the local controllers. The DERs 

are then coordinated by drooping the d and q axis components of the reference voltage with 

respect to the d and q axis components of current, respectively.  

So far, the GPS-based MG control methods have been studied using computer simulations 

[33], [38], [39], [46]. Therefore, the practical issues concerning GPS synchronization have 

been largely neglected. The most important issue is the interruption of the GPS signal, which 

might result in circulating currents between the DERs or instability depending on the duration 

of interruption. Another issue is the interfacing of the GPS receivers with the local 

controllers. 

In this chapter, a novel decentralized control method has been proposed to enable practical 

implementation of GPS timing technology in MG control applications. In this method, the 

DERs are synchronized by using a combination of GPS timing and an adaptive Q-f droop 

characteristics. Under normal operating conditions, the DERs are synchronized based on the 

GPS signals and the frequency is fixed at the nominal value. In case that the GPS signal of a 

DER fails, the backup Q-f droop is activated to maintain synchronization with other DERs. 

The synchronization scheme does not require any information about the availability of GPS 

signal at other DER units. In addition, stable operation is guaranteed regardless of the number 

of DERs with GPS failure. The scheme is used along with V-I droop control method, to 

enable coordinated operation without any communication link among DERs.  

The salient features of the proposed control strategy in comparison with the previous 

schemes are summarized in Table 3-1. In this table “Y” and “N” denote yes and no, 

respectively. Similar to P-δ [33] and V-I [46] droop schemes, the proposed method is 

independent from network topology/impedances and does not require a communication link 

between the units. Unlike the other methods, the proposed strategy is robust with respect to 

GPS failure. In terms of frequency regulation, fixed frequency operation is achieved as long 

as GPS receivers are functional. However, in case that several units experience GPS failure, 

the frequency is changed to guarantee safe operation. 
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Table 3-1 Comparison of the proposed method with the previous schemes   

                                        Control method           
Feature 

PMS 
 [38] 

P’n’P 
[39] 

P-δ  
[33] 

V-I  
[46] 

Prop-
osed 

Works without any communication link among DERs N Y Y Y Y 

Is independent from network topology/impedances N N Y Y Y 

Has a fast dynamic response Y Y N Y Y 

Experimental results provided  N N N N Y 

Robust with respect to GPS failure N N N N Y 

Frequency of operation  Fixed Fixed Fixed Fixed 
Fixed/ 
Var. 

The contents of this chapter has been published in [63]. The rest of the chapter is 

organized as follows: The proposed method is detailed in Section 3-2. The small signal 

stability of the method is studied in Section 3-3. Experimental results are presented in Section 

3-4 to verify the efficacy of the method. Section 3-5 concludes the chapter. 

3-2  Proposed Control Method 

The schematic diagram of the proposed control method is shown in Fig. 3-1. The 

controller is composed of a synchronization block, which controls the reference angle of the 

SRRF (θ) so that the DER is synchronized with the rest of MG followed by a V-I droop 

controller and cascaded voltage/current controller, which regulates the inverter reference 

voltage. In order to achieve voltage tracking with zero steady-state error, proportional plus 

resonant (P+R) control method is used for both voltage and current control loops. The 

controller output is converted to PWM signals, which control the inverter. The inverter is 

followed by an LCL filter, which eliminates the switching harmonics. 

 The V-I droop control law is defined as 

( )0 0

00
cd d d dc c

qc c q qcq

v i r f iE R L

iL R r iv

ω
ω

∗

∗

   −     
= + −       

          
 (3-1)

in which cv , i, Rc, Lc, rd, rq are the filter capacitor reference voltage, output current, inductor 

resistance and inductance, the d and q axis droop coefficients, respectively. The normalized 

piece-wise linear function, f, is introduced to improve the current sharing accuracy at high 

loading conditions, when the DERs are susceptible to over-current. In order to achieve even 

current sharing, the droop coefficients are selected according to the DER ratings as 

1 2

1 2

d d dN

N

r r r

KVA KVA KVA
= = =  (3-2)
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q q qN
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= = =  (3-3)
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Fig. 3-1 Proposed control method 

 

The schematic diagram of the sync mechanism is shown in Fig. 3-2. It is composed of the 

GPS timing, adaptive Q-f droop and angle calculation blocks. The GPS timing block 

calculates the offset time between the local oscillator and the 1PPS signal from the GPS 

according to the following equation (please refer to Section 2-3-3 for more details): 

mod{ ,1}offset capt t=  (3-4)

The offset angle (θoffset) is then obtained by multiplying the offset time with the 

fundamental frequency.   

The function of the adaptive Q-f droop changes depending on the GPS signal status. When 

the GPS signal is present, the switch S1 is in state I. So the droop frequency, δω , is 

calculated, according to a piecewise linear characteristic as following:  

( )
( )

if

if

0 otherwise

Q l l

Q l l

k Q Q Q Q

k Q Q Q Qδω
− >


= + < −



 (3-5)

where kQ is the droop coefficient and Ql is the reactive power limit, which is selected as a 

fraction of maximum permissible reactive power (e.g., Ql=0.9Qmax). Equation (3-5) implies 

that while the magnitude of the reactive power is less than the limit, the droop frequency is 

zero and the DER operates at fixed frequency. However, if the reactive power goes beyond 

the range, the droop frequency is increased linearly.  
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Fig. 3-2 Sync mechanism (a) block diagram, (b) simplified angle calculation block for state 1, (c) 
simplified angle calculation block for state 2 

 

 In case of GPS interruption, the switch S1 is changed to state II. So the droop frequency is 

calculated, according to a linear characteristic as following: 

max

max

l
Q

Q Q
k Q

Q
δω

− =  
 

 (3-6)

in which the droop coefficient is adjusted to have equal maximum droop frequency in both 

states.  

The operation of the adaptive Q-f droop is demosntarted in Fig. 3-3. As for illustration, a 2 

DER MG is assumed, in which DER1 (left hand side) is synchronized with the GPS receiver 

whereas DER2 (right hand side) is experiencing a GPS signal interruption. When the load 

reactive power is lower than Ql1 (operating point x), the frequency is fixed at f0  and the total 

load reactive power is supplied by DER1. However, when the load reactive power is 

increased above Ql1, (operating point o) the frequency rises to f1 and the load is shared 

between the DERs. 
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Fig. 3-3 Adaptive Q-f droop operation 

Therefore, each DER might operate in one of the following modes: 

1- GPS is present and lQ Q< :  frequency fixed at f0 

2- GPS is present and lQ Q> : frequency dependent on Q 

3- GPS is interrupted and 0Q = : frequency fixed at f0 

4- GPS is interrupted and 0Q ≠ : frequency dependent on Q 

The DERs might switch between the operating modes as a result of GPS 

interruption/reconnection or load changes. In order to ensure a smooth transfer between 

different operating modes, an angle calculation scheme is deployed. 

The function of angle calculation block is controlled by switch S2. If the DER operates at 

mode 1, S2 is at state I. Otherwise, S2 is at state II.  

In state I, the angle error (Δθ) is obtained as the difference between the previous value of 

the sync angle (θs) and the offset angle. The angle error is then multiplied by gain b and 

saturated and the result is used to update the sync angle. Neglecting the saturation and mod 

blocks, the angle calculation block is simplified to the diagram shown in Fig. 3-2 (b). The 

sync angle can be expressed as 

[ ] [ ] [ ] [ ]( )1 1
s s offset sz b zn n n nθ θ θ θ− −= + −  (3-7)

in which b is a constant parameter. Rearranging the terms, the block transfer function is 

expressed as 

1

( )

( ) 1 (1 )
s

offset

z b

z b z

θ
θ −=

− −
 (3-8)
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Equation (3-8) represents a low pass filter with a cut-off frequency of 

( )1

1
ln 1c

s

b
T

ω = − −  (3-9)

where Ts is the sampling period. The cut-off frequency of the low pass filter is selected 

considering the trade-off between smooth mode transition and time synchronization accuracy. 

In case the GPS is interrupted or Q goes above Ql, S2 is switched to state II. Neglecting 

the “mod” block, the angle calculation block is simplified to the diagram shown in Fig. 3-2 

(c). So, the sync angle is updated, as follows: 

[ ] [ ]
11

s
s

T
n n

z
θ δω−=

−
 (3-10)

Equation (3-10) represents a discrete-time integrator. Therefore, the sync angle is equal to 

the filtered offset angle or the integral of droop frequency depending on the operating mode. 

The SRRF angle is calculated as the sum of the sync angle and 0tω . 

3-3  Small signal analysis of the proposed method 

In order to study the small signal stability of the proposed method, a mathematical model 

of the DER is derived in this section. The inverter reference voltage is represented in the 

global SRRF as 

**
,

* *
,

cos sin

sin cos
cloc dcd

cq cloc q

vv

v v

δ δ
δ δ

    
=     −       

 (3-11)

where *
,cloc dv  is the reference voltage in the local reference frame, which is obtained according 

to (3-1) and 0tδ θ ω= − is the angle of difference between the local and global SRRFs. 

Assuming the angle δ is small, (3-11) can be approximated as 

* * *
, ,cd cloc d cloc qv v vδ= +  (3-12)

* * *
, ,cq cloc d cloc qv v vδ= − +  (3-13)

In steady-state conditions, the d and q axis voltages and the angle δ settle at the equilibrium 

point: 

*
, 0cloc d cdv V=

 
(3-14)

*
, 0cloc q cqv V=

 
(3-15)
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0δ δ=  
(3-16)

*
0cd dv V=  

(3-17)

*
0cq qv V=

 
(3-18)

To linearize the system, we assume that a small perturbation (from a load change or any 

other disturbance) occurs in the system. In such a case, (3-12) and (3-13) can be written as 

( ) ( )( )* * *
0 0 , 0 0 ,d cd cd cloc d cq cloc qV v V v V vδ δ+ Δ = + Δ + + Δ + Δ  (3-19)

( )( ) ( )* * *
0 0 0 , 0 ,q cq cd cloc d cq cloc qV v V v V vδ δ+ Δ = − + Δ + Δ + + Δ  (3-20)

Therefore, 

* * *
0 , 0 ,cd cq cloc d cloc qv V v vδ δΔ = Δ + Δ + Δ  (3-21)

* * *
0 0 ,d ,qcq cd cloc clocv V v vδ δΔ = −Δ − Δ + Δ  (3-22)

Using (3-1), the perturbation of local voltage reference can be expressed as 

( ), 0

,

cloc d d d d dc c

qc c q qcloc q

v i r f I iR X

iX R r iv

∗

∗

  ′Δ Δ  Δ −   
= −      Δ ΔΔ          

 (3-23)

in which Xc = ω0Lc is the reactance of the output inductor and 0dI is the equilibrium value of 

di . Substituting (3-23) into (3-21) and (3-22), we have: 

( )( ){ } ( ){ }*
0 0 0cd cq c d d d c q c d c q qv V R r f I i X i X i R r iδ δ′Δ = Δ + − Δ − Δ + Δ + − Δ  (3-24)

( )( ){ } ( ){ }*
0 0 0cd cd c d d d c q c d c q qv V R r f I i X i X i R r iδ δ′Δ = −Δ − − Δ − Δ + Δ + − Δ  (3-25)

Defining  

( )0d d d cr r f I R′ ′= −  (3-26)

q q cr r R′ = −  (3-27)

and rearranging the terms, (3-24) and (3-25) are simplified to  

( ) ( )*
0 0 0cd cq c d d c q qv V X r i X r iδ δ δ′ ′Δ = Δ + − Δ + − − Δ  (3-28)

( ) ( )*
0 0 0cq cd c d d c q qv V X r i X r iδ δ δ′ ′Δ = − Δ + + Δ + − Δ  (3-29)
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The angle δ is related to the average time offset (T ) and reactive power (Q ) as following  

1 2s c sT c Qδ = +  (3-30)

in which 1c  and 2c are constant coefficients, which depend on the controller operating mode. 

Moreover, s is the derivative operator. 

The average time offset and reactive power are obtained from the instantaneous values as 

following: 

1 1c c offsetsT T tω ω= − +  (3-31)

2 2c csQ Q qω ω= − +  (3-32)

cd q cq dq v i v i= −  (3-33)

in which q is the instantaneous reactive power and ωc2 is the cut-off frequency of the low-

pass filter. 

Substituting (3-33) into (3-32) and linearizing around the equilibrium point, the average 

reactive power is expressed as 

( )2 2 0 0 0 0c c cd q q cd cq d d cqs Q Q V i I v V i I vω ωΔ = − Δ + Δ + Δ − Δ − Δ  (3-34)

where Iq0 is the equilibrium value of the iq. 

The reference voltage is fed to the cascaded P+R voltage-current controllers in αβ frame. 

The P+R controllers can be modelled as PI controller in the SRRF frame as following [64]: 

( ) ( )
2
r v

Ldq cdq cdq p v cdq cdq

k
i v v k v v

s
∗ ∗ ∗−

−= − + −  (3-35)

( ) ( )
2
r i

Pdq Ldq Ldq p i Ldq Ldq

k
v i i k i i

s
∗ ∗ ∗−

−= − + −  (3-36)

in which p vk − , r vk − , p ik − , r vk −   are the proportional and resonant coefficients of the voltage 

and current controllers, Li
∗  and Li are the reference and measured value of the filter inductor 

current, cv  is the filter capacitor voltage and pv∗  is the PWM reference voltage, respectively. 

Moreover, the subscript dq refers to the 2 element vector of d and q components. 

The LCL filter dynamics are represented as 

[ ]f Ldq L Ldq Pdq cdqsL i Z i v v= − + −  (3-37)



57 
 

[ ]f cdq c cdq Ldq dqsC v Y v i i= − + −  (3-38)

[ ]c dq c dq cdq tdqsL i Z i v v= − + −  (3-39)

in which, 
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, 

RL is the resistance of the filter inductor, XL is the reactance of the filter inductor, and Cf is 

filter capacitance. 

Combining (3-28)-(3-31) and (3-34)-(3-39), the DER dynamics are expressed in state-

space form as following: 

td

tq

offset

v

sx Ax B v

t

 
 

= +  
 
 

 (3-40)

where, 

, , , , , , ,v s Ldq cdq dqx Q T C C i v iδ = Δ Δ Δ Δ Δ Δ Δ   (3-41)

in which vC  and sC  are the states of the voltage and current controllers, respectively. 

Specifically, 

( )*1
v cdq cdqC v v

s
= −  (3-42)

( )*1
s Ldq LdqC i i

s
= −  (3-43)

The system stability is studied by analysing the eigenvalues of the matrix A. The 

parameters used in this study are detailed in the Section 3-4. The loci of the dominant 

eigenvalues with 1 0c ω=  , 2 0c =  (mode 1) and qr  varying from 2.5 to 40Ω are shown in Fig. 

3-4. With the increase of dr , the low frequency eigenvalues (4,5) move away from the 

imaginary axis. This result implies faster current sharing dynamics. On the other hand, the 

resonant eigenvalues (labeled as number 6 to number 9) move towards the imaginary axis. 

Consequently, the LCL filter resonance becomes less damped. Therefore, there is a trade-off 

between the accuracy of current sharing during transients and the damping of LCL filter 

resonance. 
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Fig. 3-4 Trajectory of the dominant eigenvalues for rq varying from 2.5Ω (cross sign) to 40 Ω (square 
sign) 
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Fig. 3-5 The dominant eigenvalues for modes 1 (blue) , 2 (red) and 4 (green) 

The dominant eigenvalues for different operating modes are depicted in Fig. 3-5. It is 

observed that small signal stability is ensured in all operating modes.  

3-4  Experimental Results 

The proposed control method has been implemented in the intelligent micogrid lab of 

Aalborg university. The structure and the parameters of the experimental hardware are 

detailed in Section 2-6-1. The parameters of the proposed control method are listed in Table 

3-2. The droop coefficients rd and kQ are selected based on the permissible voltage and 

frequency deviations, respectively. The q axis droop coefficient is then designed based on the 

small signal analysis of Section 3-3.  
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Table 3-2 Parameters of the test MG 

Description Parameter Value Unit 

V-I droop coefficients 
rd 6.5 Ω 

rq 25 Ω 

Q-f droop parameters 

kQ 0.3 Hz/kVAR 

ωc2 50 π rad/s 

Qmax 1 kVAR 

Ql 0.9 kVAR 

Voltage controller 
parameters 

kp1 0.008 S 

kr1 36 S/s 

Current controller parameters 
kp2 45 Ω 

kr2 1000 Ω/s 

Sync mechanism LPF  
ωc1 4π rad/s 

b 0.00125 - 

 

The dynamic response of the proposed method with the presence of GPS signals is the 

same as V-I droop scheme, which has been already presented in Section 2-6-4. Therefore, 

only the experimental results corresponding with GPS failure and reconnection scenarios are 

presented in this section, as illustrated in Fig. 3-6. Initially, all of the DERs and loads are 

connected to the MG and all GPS receivers are active. At t=5s, the GPS signal of DER1 is 

manually interrupted. So, DER1 uses the linear Q-f droop characteristics to maintain 

synchronization with DERs 2 and 3. Since DERs 2 and 3 keep the system synchronized to the 

UTC time, the frequency is fixed at 50Hz. So, Q1 drops to zero and Qload is shared between 

DERs 2 and 3 according to the vq-iq droop characteristics.  

At t=25s, the GPS signal of DER2 is interrupted. Following, DER3 attempts to keep the 

frequency fixed. However, since the Qload is higher than the Ql, the DER3 is switched to 

mode 2, changing the frequency according to the piece-wise linear Q-f characteristics. 

Consequently, Q1 rises and Q3 is retained below the maximum value. At t=45s, the GPS of 

DER 3 is interrupted. As a result, DER3 is also changed to linear droop characteristics. So, 

Qload is equally shared between the DERs. 

At t=65s and 75s, load 3 is disconnected and connected, respectively. It is observed that 

the step load response is smooth despite the GPS interruptions. At t=90s, the GPS signal of 

DER 2 is reconnected, changing the DER2 to mode2. At t=110s, the GPS signal of DER1 is 

reconnected. At this stage, Q2 drops below Ql and the DERs 1 and 2 synchronize the MG 

with the UTC time. As a result, the frequency is changed back to 50Hz and Q3 drops to zero. 

At t=140s, the GPS of DER3 is also connected, switching the DER to mode 1. Subsequently, 

the reactive power is equally shared between the DERs. 
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Fig. 3-6 Experimental Results for test 4: (a) active powers, (b) reactive powers, (c) frequency, (d) 
current of DER3 and (e) voltage of DER3 
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Experimental results show that in case of GPS disconnection/reconnection, the DERs 

change their operating modes so as to maintain synchronization with the MG but also enable 

fast step load response regardless of the GPS availability. In terms of power quality, fixed 

frequency operation is achieved as long as sufficient number of DERs receiving the GPS 

signals. In addition, the voltage profile of the MG is within the permissible range of 0.95 to 

1.05pu.  

3-5  Conclusions 

In this chapter, a novel decentralized control method is proposed for inverter-based 

islanded MGs. In this method, the SRRFs of the DERs are synchronized to a common 

reference frame by means of a sync mechanism, which uses a combination of GPS timing and 

an adaptive Q-f droop controller to align the reference angle of the DERs. In order to 

coordinate the active and reactive power generation of DERs and follow the load changes 

with a fast dynamic response, the DER voltage is adjusted according to the V-I droop 

characteristics.  

The proposed control method has been tested using a laboratory-scale MG. The 

experimental results demonstrate that the proposed method favors from the following 

features: 

• Fixed frequency operation as long as a sufficient number of GPS receivers are 

functional 

• Robustness with respect to GPS signal interruptions 

• Overdamped step load response, which eliminates current overshoots 

• Improved active power and current sharing at high loading conditions 

• Simple connection of the DERs to the MG 

• Voltage profile within the permissible range 
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Chapter  4  

A secondary control strategy for 
microgrids with resistive lines 

 

4-1  Introduction 

Despite simple implementation, decentralized MG control methods suffer from voltage 

and frequency deviations and poor load sharing [4]. To overcome limitation of the 

decentralized methods and improving their performance, communication-based control 

approaches are introduced. While centralized methods favor high flexibility and performance, 

they are considered less practical due to the requirement of an extensive and costly 

communication network and the fact that the single point-of-failure of the centralized 

controller affects the whole system [65]. Distributed control architectures have recently 

gained popularity since they can discharge duties of a central controller with less 

communication and computation costs, while being resilient to faults or unknown system 

parameters [6]. Distributed control schemes are composed of local control agents 

interconnected through a sparse communication network [5]. Each control agent includes 

primary and secondary control levels. At the primary level, droop control method is used to 

enable load sharing with a fast dynamic response. Using the information from other agents, 

the secondary controller eliminates the voltage and frequency deviations caused by load 

changes and improves power sharing [66]. 

The existing distributed control schemes are mostly developed based on the assumption of 

inductive network impedance [6, 67]. For inductive networks the active power and reactive 

power are decoupled and related with the frequency and voltage, respectively. Therefore, 

active power-frequency (P-f) and reactive power-voltage (Q-V) droop characteristics are 

adopted for the primary control level. Moreover, the secondary control methods are 

introduced to regulate the system frequency and voltage as well as to improve reactive power 

sharing among the DERs, tackling the limitation of droop control. However, the network 

impedance is mainly resistive in practice, especially in case of low voltage MGs. In such 

cases, the existing control methods for inductive systems cannot provide satisfactory 

performance. In [68], a distributed control method based on P V−   and Q-f droop 
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characteristics have been proposed for resistive MGs. However, that method suffers from 

poor dynamic response.  

In this chapter, a new distributed secondary control framework is introduced which 

guarantees voltage regulation and load power sharing in low-voltage resistive MGs. In the 

primary level of the proposed framework, V-I droop characteristics are used to share the 

active and reactive components of the load current among the DERs. The use of a resistive 

droop function not only improves the system damping but also makes the method appropriate 

for resistive networks. A distributed control scheme is proposed to improve the load sharing 

and voltage regulation of the V-I droop method. In this method, the d-axis voltage is adjusted 

so as to regulate the average MG voltage to the rated value while ensuring proper active 

power sharing. Moreover, the q-axis voltage is altered such that the load current and 

accordingly the reactive power are proportionally shared between the DERs. 

The rest of the chapter is organized as follows. The proposed control method is detailed in 

Section 4-2. Experimental results are presented in Section 4-3 to verify the efficacy of the 

proposed method. The chapter is concluded in Section 4-4. 

4-2  Proposed Control Method 

The sharing accuracy of the droop-based schemes in general and the V-I droop method in 

particular, is dependent on the line impedances and the distribution of the load in the MG. 

Particularly, the DER units which have a smaller electrical distance with the load tend to have 

a larger power output compared to the farther units. On top of that, the voltage deviations 

caused by the droop characteristics degrades the voltage regulation across the MG. In order to 

improve the sharing accuracy and voltage regulation, a distributed secondary control method 

is proposed.  

4-2-1  Control structure 

The schematic diagram of the proposed control structure for a MG comprising of n DER 

units is illustrated in Fig. 4-1. Each DER includes an energy source, an inverter and an LCL 

filter, which eliminates the switching harmonics from the output current.  The DERs are 

connected to the point of common coupling (PCC) through line impedances.  

Each DER is controlled by a local controller consisting of primary and secondary control 

layers. The primary control layer is composed of V-I droop controller and the inner control 

loops, which coordinate the DER units in a decentralized way. The distributed secondary 

control layer adjusts the offset of the droop characteristics so as to alleviate the effect of line 

voltage drops on the sharing accuracy and restore the voltage profile within a range of the 

nominal voltage. The secondary controller of each unit communicates with the neighbor units 

through a low bandwidth cyber network. 
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Fig. 4-1 Proposed control structure. 

4-2-2  Mechanism of operation 

The operation of the proposed control scheme is demonstrated based on Fig. 4-2. For 

simplicity, the number of DER units is limited to n=2 and the lines are assumed to be purely 

resistive. Furthermore, the resistance of line 1 is assumed to be larger than line 2. The vq-iq 

droop characteristics for the two DER units are depicted in Fig. 4-2 (a). In this figure, the 

droop characteristics before and after the activation of the secondary controller are shown by 

solid and broken lines, respectively. Prior to activating the secondary controller, both units 

have the same characteristics. However, due to the mismatch between the line impedances, 

the q-axis component of the local voltage of unit 1 (vq1) is lower than unit 2 (vq2). Therefore, 

unit 1 supplies a larger q-axis current compared to unit 2. In order to improve the iq sharing 

accuracy, the secondary controller of unit 2 increases the secondary voltage, vsq2. 

Consequently, the vq-iq droop characteristic of unit 2 is shifted up and the operating voltages 

are changed to vʹq1 and vʹq2. As a result, the q-axis load current is equally shared among the 

units. 

The vd-id droop characteristics for the DERs are depicted in Fig. 4-2 (b). Prior to activating 

the secondary controller, the d-axis components of the local voltages drop to vd1 and vd2. In 

order to improve the voltage regulation, the secondary controllers shift up the d-axis droop 

characteristics of both units until the d-axis voltages reach vʹd1 and vʹd2. At this stage, the 

average value of the local voltages is restored to E0. This way, the MG voltage profile is 

maintained within the permissible range. Furthermore, by applying a larger secondary voltage 

to unit 2, the adverse effect of line voltage drop on the sharing accuracy is eliminated. 

Therefore, id is equally shared among the units. 
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Fig. 4-2 Operation of the proposed controller in a) q-axis and b) d-axis 
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Fig. 4-3 Proposed control method for agent i. 

4-2-3  Control scheme 

The schematic diagram of the proposed control method for agent i is illustrated in Fig. 4-3. 

The secondary control level is comprised of four blocks: calculation block, which obtains the 

terminal voltage, normalized active power and normalized q-axis current; distributed 

averaging block, which estimates the average value of DER terminal voltages; voltage 

control block, which improves the voltage regulation and active power sharing accuracy; and 

Q sharing block, which improves the current sharing accuracy. In the primary level, the 

inverter reference voltage is obtained by adding the droop and secondary control signals. The 

inner control loops, which consist of cascaded voltage and current controllers, track the 
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reference voltage with a fast dynamic response. Accordingly, space-vector PWM module 

assigns appropriate switching signals to drive the inverter. 

The secondary control level is designed based on consensus concept. In this framework, an 

information state xi is assigned to each control agent. The information states are shared 

between the agents, i.e., inverters through a sparse communication network. The state of each 

agent is updated based on the received information form the neighbors. If the distributed 

communication network contains minimum connectivity, the control agents will reach to 

consensus, that is, their states will converge to a common value: 0 1 nx x x= = … =  [69]. Here, 

the information state is a vector of three variables, including estimated average voltage, kv , 

normalized active power, norm
kP  and normalized q-axis current, norm

qki .  
The average MG voltage is obtained by using the distributed averaging technique called 

dynamic consensus [70]. The average voltage estimator of agent i provides the estimation of 

average voltage magnitude, iv , using the information state received from agent j, jv , and the 

local terminal voltage, tiv , as 

( )
0

( ) ( ) ( ) ( ) ,
i

t

i ti avg j i
j

v t v t k v v dτ τ τ
∈

= + −


 
(4-1)

where kavg is the integral gain, and i  is the set of neighbors of agent i. Furthermore, the 

terminal voltage is obtained from capacitor voltage and output current, as following: 

td cd dc c

tq cq qc c

v v iR X

v v iX R

−      
= +      

      
 

(4-2)

2 2
t td tqv v v= +  (4-3)

in which Rc and Xc are the resistance and inductance of the output inductor, respectively. 

The normalized active power, normP , is defined as the ratio of the measured active power 

on the rated power: 

norm
rated

P
P

P
=  (4-4)

If the load is shared proportionally among the DER units, the normalized active powers of 

all units will be equal. With the assumption of resistive network impedance, active power 

sharing is dependent on the voltage amplitude of individual DERs. In order to properly share 

the active power and also regulate the voltage within an acceptable range of the nominal 

value, the d-axis voltage correction term, vsd, is obtained as  

( )( ) ( ),

0 0

( ) ( )
i

rated norm norm
v i j

t t

isd i P
j

v d dk v P PkV τ τ τ τ τ
∈

− += − 


 (4-5)
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Equation (4-5) implies that the control agents regulate the average voltage at the rated 

value while attempting to equalize their normalized active powers.  

To ensure proper sharing of reactive power, another control module is implemented to 

provide appropriate q-axis voltage reference for the droop mechanism.  Accordingly, the q-

axis secondary controller at agent i updates the voltage reference, vsq, by comparing its 

normalized current, ,
norm
q ii , with the normalized current of its neighbors’ to find the loading 

mismatch  

( )
0

, ,, ( ) ( )
i

nor
t

sq
m norm

q q j q ii
j

v ik i dτ τ τ
∈

= −


 
(4-6)

where kq is the integral gain. The normalized q axis current, norm
qi , is defined as 

max

qnorm
q

q

i
i

I
=  (4-7)

The maximum q-axis current is dynamically updated based on the d-axis current 

max 2 2
q rated dI I i= −  

(4-8)

in which Irated refers to the rated DER output current.  

Equations (4-6)-(4-8) imply that the control agents attempt to perform reactive power 

sharing according to the rms current. It should be mentioned that the safe operating region of 

DERs is limited by their output current rather than a maximum reactive power. Therefore, the 

proposed approach is more practical compared to the conventional reactive power sharing, 

which aims at proportional sharing of load reactive power.  

4-3  Experimental Results 

The proposed method was implemented on a similar test setup as Chapter 2.  The control 

parameters are shown in Table 4-1 and the schematic diagram of the test bed is shown in Fig. 

4-4. The links, which are shown as broken lines, connect the neighbor DER units. As seen, 

the cyber network has a ring-shaped topology. This topology features first order redundancy, 

i.e., in case that one of the communication links fails, the local controllers remain connected. 

The proposed control routine is implemented in a dSPACE 1006 digital control system. In 

order to consider the communication constrains, each of the communication links is emulated 

in dSPACE as low bandwidth link with data rate of 100 samples per second and delay of 

10ms. Two Spectracom ® GPS synchronization systems [71] are used to synchronize the 

local controllers with the UTC. The DER units are interconnected through a resistive model 

with R/X ratio of around 7. The MG loads are modelled by a combination of resistive and 

inductive loads. To consider the worst case scenario, all loads are accumulated at the 

downstream bus.  
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Table 4-1 Electrical and control parameters of the test MG 

Parameter Symbol Value
Inverter nominal power Prated 1500 W 

Line impedance 
ZL1 0.66+ j0.07 
ZL2 0.5+ j0.07 
ZL3 0.5+ j0.07 

Load impedances (case 1)  ZLoad1/ ZLoad2 35Ω/ 35+j40 Ω 
Load impedances (case 2)  ZLoad1/ ZLoad2 57Ω/ 34+j47 Ω 
Communication Rate fcom 100  samples/s 
Communication delay Tdcom 10  ms 

DSC Parameters 

kavg 1.2 s-1 

kv 6 s-1 
kP 0.1 W.s-1 
kq 300 Ω -s-1 

Droop coefficients 
rd  5.5 Ω 
 rq 20 Ω 
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Fig. 4-4 Schematic diagram of the experimental setup 

In order to validate the efficacy of the proposed method, two case studies are presented; 

performance assessment, and plug’n’play capability. The experimental results are captured 

using dSPACE Control Desk program and plotted in MATLAB. The experimental results for 

the first study are shown in Fig. 4-5. Initially, load 1 is turned on and the distributed 

secondary controller (DSC) is disabled. As shown in Fig. 4-5 (a), the sharing of active power 

between the DERs, provided by the V-I droop mechanism, is affected by the line impedances. 

Specifically, DER4 provides the largest share (P4) due to its electrical closeness with the 

load. At t=3s, Load 2 is turned on. It is observed that the load sharing accuracy is improved 

at higher loading conditions thanks to the adaptive droop function. Nevertheless, a 

considerable error is observed in both active and reactive power sharing. Additionally, the 

voltage of DER4 (V4) falls to 207V (see Fig. 4-5(c)), which is out of the permissible range 

(0.95pu-1.05pu). Subsequent to activation of the DSC at t=6s, the load active power is 
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proportionally shared between the DERs and the voltages are regulated within an acceptable 

range of the rated voltage. Additionally, the reactive power is properly shared between the 

DERs according to the available reactive current capacity. Load 2 is turned off and on at t=9 

an 12s, respectively. It is observed that the power sharing has an acceptable accuracy and the 

rms voltages remain within the permissible range during the transients. 
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Fig. 4-5 Performance of the proposed method for the first scenario: a) active powers, b) reactive 
powers, c) rms voltages and d) DER4 voltage. 
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In the second case study, plug’n’play capability of the proposed control method is 

examined. To that end, the electrical connection of DER4 and accordingly all related 

communication links are disconnected at 2t s= . As illustrated in Fig. 4-6, the active and 

reactive power generations of DERs 1-3 are smoothly increased to compensate for the 

disconnection of DER4. Moreover, the voltages are maintained within an acceptable range of 

the rated value. The DER4 is reconnected at 4t s= . Following, the powers and voltages are 

smoothly changed back to their initial value. It should be pointed out that unlike the 

conventional droop method, the proposed method does not require any additional 

synchronization mechanisms e.g., PLL prior to reconnection of DER4. 
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Fig. 4-6 Plug and play capability: a) active powers, b) reactive powers, c) rms voltages. 

 

 

 



71 
 

 

4-4  Conclusions 

In this chapter, a new distributed control framework comprising of primary and secondary 

control levels is proposed for islanded MGs with resistive line impedances. In the primary 

level, V-I droop method is adopted as a decentralized control mechanism for fast sharing of 

load current. For the secondary level, a novel distributed control method is proposed. In this 

method, each of the control agents alters the d and q axis voltages according to the 

information received from neighbor agents so as to improve the voltage regulation and ensure 

proper sharing of active and reactive power. Since the proposed framework uses GPS timing 

to synchronize the control agents, it has an essential feature that no additional 

synchronization mechanisms are required while connecting a new DER. Experimental results 

demonstrate the effectiveness of the proposed method in satisfying the control objectives.  
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Chapter  5  

A distributed control framework 
for integrated PV-battery based 
microgrids 

5-1  Introduction 

The increased penetration of rooftop photovoltaic (PV) panels in low voltage distribution 

networks might cause several technical problems due to the mismatch between generation 

and demand throughout the day. Therefore, distribution system operators tend to encourage 

the installation of energy storage units (ESU) as well as controllable loads, which enable 

active participation of consumers in load/generation balance [40]. This new infrastructure 

avails providing the local consumers with a high quality and reliable power source in the 

context of smart MGs [1]. 

MGs can operate either in the grid connected or islanded modes. During the grid 

connected mode, voltage and frequency regulation and load/generation balancing are 

achieved by the upstream network [72]. Therefore, the control schemes are mainly focused 

on the economical operation, based on energy prices and electricity markets [73-75]. During 

the islanded mode, however, a more complex control scheme is necessary to ensure stable 

and reliable operation. In this mode of operation, specifically, the controller is required to 1) 

maintain load/generation balance, 2) regulate voltage and frequency, 3) balance the state of 

charge (SoC) of ESUs, 4) protect the inverters and ESUs from power overload, and 5) protect 

the ESUs from deep discharging or overcharging.  

The most straightforward solution for achieving the aforementioned control objectives is 

using a central power management system [76-79]. However, the centralized approach 

exposes a single point of failure, i.e., any failure in the central controller affects the entire 

system. Moreover, the implementation of centralized controller requires an extensive and 

costly communication network [4].  

An alternative approach is the decentralized scheme, in which each generation and load 

unit is controlled by a local controller [41, 42, 80-85]. The conventional decentralized control 
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method uses active power-frequency droop to distribute active power between the distributed 

energy resources (DERs) [41]. However, the conventional droop method ignores the 

aforementioned objectives 3-5. Adaptive droop schemes, which change the droop coefficient 

based on the SoC are proposed to balance the SoCs [42, 84, 85]. Furthermore, bus signalling 

strategies are introduced to trigger different mode changing actions thus protecting the ESUs 

from deep charging and overcharging [80-83].  

The decentralized solutions are mostly limited to ESU and PV units, which are connected 

to the grid through separate inverters. To reduce the converter losses and the component 

costs, a hybrid unit can be formed by connecting the PV and ESU in the DC side of an 

inverter. Although coordination of a single hybrid unit with other DERs in islanded MGs has 

been recently studied in [82, 83], the proposed methods are not applicable to MGs consisting 

of multiple hybrid units. In addition, the decentralized methods suffer from frequency and 

voltage deviations, which degrade the power quality. 

Distributed control is a good solution to address the limitation of both centralized and 

decentralized approaches in implementation of the energy management system. The 

distributed control frameworks are comprised of local control agents, which are 

interconnected through a sparse communication network [5]. These control strategies are 

mostly based on different consensus protocols, which enable regulating some local 

parameters e.g., voltage, frequency or power generation to a global average value [7]. The 

distributed control methods favor improved reliability, expandability and lower 

communication cost compared to the centralized control methods [6]. 

Distributed control methods have recently gained attraction in various areas of MG 

control, e.g., for the elimination of voltage and frequency deviations caused by the primary 

droop controllers [6-10], load power sharing [70], economic profitability [11], voltage control 

[12], [13], and SoC balancing [14-16] as main ones. However, there is not a single work in 

the literature, using the potential of distributed control mechanism for coordination of hybrid 

PV-ESU units in islanded MGs. In this chapter, a novel distributed control framework is 

proposed to manage the state of each generation/load unit according to the aforementioned 

control objectives. The main contributions of the presented strategy are as follows: 

• In contrast with the existing methods in [41, 42], where coordination of a single hybrid 

PV-ESU unit with the other DERs is studied, our proposed approach enables coordinated 

control of MGs consisting of multiple hybrid PV-ESU units. 

• A new consensus-based leader-follower strategy is introduced which dynamically 

changes the communication network topology to ensure SoC balancing despite the power 

constraints. The leader regulates the voltage in the whole MG, while the followers are 

responsible to manage the power sharing among the ESUs in the MG. In contrast with 
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the control method in [8], which incorporates the SoC management objective in active 

power-frequency droop characteristics and use the distributed controller to mitigate the 

frequency drifts, we use our current sharing method (proposed in [46]) for power 

distribution and directly incorporate the SoC management into the distributed control 

algorithm. The work in [12] and [13] proposes similar leader-follower methodology, but 

for overvoltage protection during grid-connected mode of operation and are not 

applicable to the islanded MGs. As opposed to the proposed method, the control schemes 

in [14-16] do not consider SoC and power constraints. 

• A distributed load shedding and PV curtailment strategy is adapted to assure the SoCs 

are maintained within safe operating region.  

The rest of the chapter is organized as follows. The control layout is presented in Section 

5-2. The proposed control method is detailed in Sections 5-3 and 5-4. Experimental results 

are presented in Section 5-5 to verify the efficacy of the method. Section 5-6 concludes the 

chapter. 

5-2  Controller layout  

Consider the MG in Fig. 5-1, which is composed of single-phase hybrid DERs and 

controllable and uncontrollable loads connected to a LV feeder. Each DER is supplied by a 

rooftop PV panel and an ESU, which are connected to a common DC bus through DC/DC 

boost converters. The DER is interfaced with the MG through a single phase inverter. 

Each of the converters and controllable loads are controlled by a separate module. The 

ESU control module regulates the DC bus voltage. The PV control module normally adjusts 

the PV current based on maximum power point tracking method. If the ESUs in the MG are 

charged to the maximum level, the PV controllers are switched to power curtailment mode to 

reduce the PV generation. The inverter control module manages the output power based on 

the total load, total PV generation and SoC of all units. The load control module performs 

load shedding in case the ESUs are discharged to the minimum level.  
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Fig. 5-1 General schematic of the MG control architecture.  
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Fig. 5-2 Schematic of the inverter control module 

The control modules, which are also referred to as control agents, are interconnected 

through a low bandwidth distributed communication network. The control framework must 

ensure load/generation balance, maximize the PV generations, balance the SoCs and regulate 

the voltage. In addition, the following constraints need to be satisfied: 

min maxiSoC SoC SoC< <  (5-1)

rated
oi iP P<  (5-2)

rated
ESUi ESUiP P<  (5-3)

in which iSoC , oiP and ESUiP  are the SoC, output active power and ESU active power of 

inverter i, respectively. The controller should be independent from the network topology and 

robust with respect to parameter/load variations and communication interrupts. The control 

structure is detailed in the following sections. 

5-3  Inverter control module 

As shown in Fig. 5-2, the inverter control module is based on a cascaded structure. The 

inner loop voltage (VC) and current controllers (CC) use proportional plus resonant method 

to track the reference voltage with a fast dynamic response. The primary controller adopts V-

I droop characteristic to enable decentralized coordination of the DERs. A novel distributed 

secondary control (DSC) method based on the consensus concept is proposed to achieve the 

objectives of SoC balancing, restoring the voltage to the nominal value and ensuring safe 

operation. 
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5-3-1  Fundamentals of Consensus control strategy 

Consensus concept [86] is used to implement the DSC. In this context, each unit is 

regarded as a control agent which is connected to its direct neighbor through a sparse 

communication network. The communication network may form a weighted graph, where the 

agents and communication links are represented by nodes and edges, respectively. The 

interaction between the agents in this cyber network is quantified in terms of the graph 

adjacency matrix, *[ ] N N
G ijA a R= ∈ , in which N is the total number of agents. In case the 

agent i receives information from agent j, 0ija >  and otherwise, 0ija = . A scalar information 

state, xi, is assigned to each agent.  

A well-established method for coordination of the agents is to update the information state 

of agent i according to  

( )
0

N

i ij j i
j

x a x x
=

= −  (5-4)

Equation (5-4) is commonly referred to as a distributed consensus algorithm in the 

literature, since it guarantees convergence to a collective decision via local interactions [87]. 

Defining the convex coefficients 
0

/ij ij

N

k ikw a a
=

=  , one can rearrange (5-4) as 

0
0

1 N

i i ij jN
jikk

x x w x
a =

=

= − +


  (5-5)

Therefore, the information state of agent i converges to a weighted average of the 

information states of its neighbors [67]. If the distributed communication network contains 

minimum connectivity, each of the information states will converge to a common value: 

0 1 Nx x x= = … =  [86]. 

Although each of the agents can serve as a virtual leader, it is preferable to select the agent 

which has the least electrical distance from the critical bus of the MG as the leader [34]. 

Without loss of generality, agent 0 is assigned as the leader and other agents are assigned as 

followers. The leader does not receive information from the follower agents; thus 0 0ja = . 

The follower agent i receives information from its immediate neighbors and the leader (i.e. 

agent 0).  

5-3-2  SoC Balancing 

The proposed distributed secondary controller (DSC) realizes the consensus method by 

introducing a voltage correction term, vs, into the d-axis droop characteristics. The 

mechanism of operation of the DSC is explained based on the simplified model of Fig. 5-3. In 

this model, the dynamics of the VCs, CCs and LCL filters are neglected due to their small 
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time constant compared to the secondary controller. Consequently, the V-I droop controller is 

simplified to the combination of a voltage source ( ratedE ) and a virtual resistance ( dr ). The 

DSC voltage correction term is represented as a dependent voltage source.  
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Fig. 5-3 Simplified MG model. 

In case the DSC voltage correction terms are zero, the load power is shared between the 

DERs according to the V-I droop virtual resistances. Additionally, the MG voltage profile 

deviates from the rated value due to the drop on the virtual resistances as well as the 

distribution lines. The voltage profile can be improved by setting the DSC offsets of all units 

to an appropriate common value. However, such a strategy keeps the power sharing between 

the units unaffected. In order to improve the voltage profile while achieving SoC-dependent 

power sharing, the DSC voltage correction terms are controlled according to a leader-

follower strategy, as explained in the following. 

To improve the voltage profile, the leader voltage correction term is calculated as  

( )0 0 0
rated

s s tv k E v dt= −  (5-6)

 

in which sk and tv are the DSC gain and terminal voltage, respectively. 

With the intention of SoC balancing, the information state of unit i is defined as 



( )

SoC-dependentnormalized 
  coefficientESU power

1ESUi
i

i i

P
x

C F SoC
= ×



 
(5-7)
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where ESUiP , iC and iSoC  are the output power, capacity and state of charge of ESUi, 

respectively. Moreover, the function ( )F ⋅ is defined as 

( ) if  0

if 0
i L ESUi

i
H i ESUi

SoC SoC P
F SoC

SoC SoC P

− ≥
=  − <

 (5-8)

in which LSoC  and HSoC  are the lower and higher limits of the SoC, respectively.  

For the follower unit i, the voltage correction term, siv , is calculated as 

( )si si ESUi ESUiv k P P dt∗= −  (5-9)

in which the ESU reference power, ESUiP∗ , is calculated according to a weighted average of the 

neighbors’ information states, i.e., 

( )
0

N

ESUi i i ij j
j

P C F SoC w x∗

=

=   (5-10)

in which the coefficients wij are defined as 

1
        if agent  receives data from agent 

0           otherwise
iij

i j
Nw


= 


 (5-11)

where iN is the number of the neighbors of agent i.  

Comparison of equations (5-6) and (5-9) reveals that the leader attempts to restore the 

voltage to the nominal value while the followers pursue altering the load sharing among the 

DERs. 

Combining (5-7), (5-9) and (5-10), the voltage correction term of the follower agent i is 

expressed as 

( )
0

N

si si i i i ij j
j

v k C F SoC x w x
=

 
= − + 

 
  (5-12)

Simplifying (5-12), one can notice that the proposed distributed secondary algorithm is in 

fact a special form of the well-known consensus protocol in (5-5). 

From the model of Fig. 5-3, one can write the DER output current 
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,
rated

si ti d
odi

di

E v v
i

r

+ −
=  (5-13)

In addition, neglecting the converter losses, the output current is related to the ESU power, 

i.e.,  

,

ESUi PVi
odi

ti d

P P
i

v

+≅  (5-14)

Combining (5-13) and (5-14), the relation between the voltage correction term and ESU 

power is obtained 

,
, ,

rateddi PVi
si ESUi di ti d

ti d ti d

r P
v P r v E

v v

 
≅ + + −  

 
 (5-15)

 

Replacing ESUiP with ( )i i ix C F SoC (as per (5-7)), (5-15) can be expressed as 

( )
,

constantdi i i
si i

ti d

r C F SoC
v x

v
≅ +  (5-16)

where the PV power and the grid voltage are assumed constant. Substituting (5-16) in (5-12), 

the dynamics of the DSC are represented as 

0,

N
di

i i ij j
jsi ti d

r
x x w x

k v =

= − +  (5-17)

Equation (5-16) is a special form of (5-5) with coefficients aij selected as 

,1
    if agent i receives data from agent j

0                  otherwise

si ti d

ij i id

k v

a N r


= 



 (5-18)

As mentioned in Section 5-3-1, when the consensus strategy converges, all of the 

information states will reach to a common value. Therefore, (5-7) and (5-8) imply that the 

surplus power (i.e., total PV generation minus total load) during discharging and charging 

modes will be dispatched among the DERs according to 

0 0

0

/ /ESU ESUN N

L N L

P C P C

SoC SoC SoC SoC
= =

− −
  (5-19)
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0 0

0

/ /ESU ESUN N

H H N

P C P C

SoC SoC SoC SoC
= =

− −
  (5-20)

Consequently, the ESU with higher SoC is discharged faster (charged slower) than the one 

with lower SoC [14]. 

5-3-3  Controller design guidelines 

The criteria for the controller design are: 

1- The dynamics of the DSC should be much slower compared to the primary control 

level but much faster compared to the rate of change of SoCs. 

2- The proposed consensus algorithm must be stable in spite of the communication 

constraints. 

The first criterion ensures the decoupling of primary and secondary control levels. As 

detailed in [46], the time constant of the V-I droop controller is around one fundamental 

cycle, i.e., 20ms. On the other hand, the rate of change of SoC is in the order of minutes-

hours. Therefore, the time constant of the DSC should be in the order of seconds. 

The effect of communication constraints including the delays and the switching of 

topology on the consensus algorithm is detailed in [88] and [89]. Defining the Laplacian 

matrix of the communication network, ( ) ( )1 * 1[ ] N N
G ijL l R + += ∈ ,  as  

0,k

    if     

           otherwise

N

ik
k iij

ij

a i j
l

a
= ≠

 == 
−


 (5-21)

the consensus algorithm will converge if the communication delay satisfies the following 

inequality [88]: 

( )max2dcom
G

T
L

π
λ

<  (5-22)

in which maxλ  refers to the largest eigenvalue of a matrix and dcomT  is the communication 

delay. 

To simplify the design, all nonzero communication coefficients are selected to be identical 

and equal to a. In other words: 

{ } ,1
1, 2,..., : si ti d

i id

k v
i n a

N r
∀ ∈ =  
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Using the theorem proposed in [90], an upper bound for the largest eigenvalue of Laplacian 

matrix is expressed as  

( ) { }( )max 2 max 1G i
i

L N aλ ≤ −  (5-23)

Substituting (5-23) into (5-22), the upper bound of the communication coefficient is 

calculated as 

{ }( )4 max 2i dcom
i

a
N T

π<
−

 (5-24)

Combining (5-24) and (5-18), the upper bound of the DSC gain for agent i is obtained as 

{ }( ), 4 max 2

di i
si

ti d i dcom
i

r N
k

v N T

π<
−

 (5-25)

5-3-4  Power Limiting 

Although the proposed distributed method in Section 5-3-2 is effective in terms of SoC 

balancing, it does not respect the power limits of inverters and ESUs. In order to guarantee 

safe operation, the proposed consensus algorithm is modified to comprise the power limiting 

feature. 

The minimum and maximum limits of the ESU power are obtained by combining (5-2) 

and (5-3) 

{ }min ,rated rated
i oi PVi ESUiP max P P P= − − −  (5-26)

{ }max i ,m n rated rated
i oi PVi ESUiP P P P= −  (5-27)

For the follower agents, the ESU reference power, which is calculated from (5-10), is 

checked versus the maximum and minimum limits, i.e.,  

min maxi ESUi iP P P∗≤ ≤  (5-28)

If the constraint (5-28) is violated, the ESU power is fixed at the corresponding limit. This 

means that the variable ix  is also fixed. In such a case, the agent i is excluded from the 

algorithm and does not broadcast its state information to the other agents. In order to ensure 

the integrity of the communication network, the agent is bypassed by sending the information 

state of agent i-1 to the agent i+1 and vice-versa. 

For the leader agent, ESU power limiting is conducted by amending the state, as follows 
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( ) ( )

( )

( ) ( )

0
0 0

0 0

0
0 0

0 0

0
0 0

0 0

 if    

                                 if   

 if    

ESU
lim ESU L ESU L

ESU
L ESU H

ESU
lim ESU H ESU H

P
k P P P P

C F SoC

P
x P P P

C F SoC

P
k P P P P

C F SoC


+ − <


= < <



+ − >


 (5-29)

in which L min0 margP = P + P , H max0 margP = P P− , margP is the power margin and limk is the limiter 

coefficient.  

If the ESU power is within the defined margins, (5-29) is reduced to (5-7) and the leader 

power is determined based on its SoC. Otherwise, the magnitude of the leader information 

state is increased, imposing other agents to increase their share of surplus power. As a result, 

the leader power is limited.  

The power margin, Pmarg, is a key design parameter; large power margin reduces the 

functionality of the proposed SoC balancing method, while small values adversely affect the 

controller dynamics.  

The parameter klim should be selected so that when PESU0 reaches its limit, the absolute 

value of x0 is larger than xmax. This way, as long as x0 is below xmax, the ESU0 works within 

its safe operating region. From (5-29), the value of x0 at the power limits can be expressed as: 

( ) ( )

( ) ( )

0
min 0 0 min 0

0 0

0
0

max 0 0 max 0
0 0

if    

if    

ESU
lim L ESU

ESU
lim H ESU

P
k P P P P

C F SoC
x

P
k P P P P

C F SoC

 + − =
= 
 + − =


 (5-30)

However, ( )0 0C F SoC  is always positive. Therefore, 

0 marg 0 min 0

0 marg 0 max 0

if    

if    

lim ESU

lim ESU

x k P P P

x k P P P

< − =
 > =

 (5-31)

So, the absolute value of x0 is always greater than marglimk P . Selecting limk  according to: 

max
lim

marg

x
k

P
>  (5-32)

it can be ensured that 0 maxlimitat P
x x> . 

5-3-5  Proposed DSC algorithm 

Fig. 5-4 illustrates the cooperative algorithm for the leader agent. As can be seen, the 

terminal voltage of the inverter is estimated first according to the simplified DER model (see 
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Fig. 5-3). To restore the voltage drop caused by the primary droop controller, the leader 

control command is updated based on (5-6). Next, the function 0( )F SoC  is calculated 

according to (5-8) and limited to the range min[ , )F ∞ . This restriction is necessary to prevent 

the information state from singularity. Following, the information state is obtained according 

to (5-29) and broadcasted to the follower agents. 

0Broadcast  to the follower agentsx

0Update  based on (5-6)sv

0 0 0 0

      Estimate the output voltage 

according to: rated
t s od odv E v r i= + −

Finish

0Calculate  According to (5-29)x

0Calculate ( ) from (5-8)F SoC

0 minLimit ( ) to [ , )F SoC F ∞

Start

 

Fig. 5-4 Flowchart of the proposed cooperative algorithm for the leader agent 

The consensus algorithm for the follower agent i is shown in Fig. 5-5. The agent i receives 

information from its immediate neighbors (agent i-1 and agent i+1) and the leader. The ESU 

reference power required for SoC balancing is calculated using (5-10). The algorithm then 

checks whether the reference power is in the safe operating range. If the reference power is 

within the safe range, ( )iF SoC  is calculated, and limited to min[ , )F ∞ . The information state 

ix , is estimated according to (5-7) and broadcasted to the neighbor agents. Once the ESU 

reference power, ESUiP∗ , is out of the safe operating range, the power set point is fixed at the 

limit and the agent is bypassed by sending the information state of agent i-1 to the agent i+1 

and vice-versa. Finally, the secondary voltage correction term is updated based on (5-9). 
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Fig. 5-5 Flowchart of the proposed cooperative algorithm for follower agents. 
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5-4   Load and PV control modules 

The loading and PV generation capacity of the MG is limited not only by the power rating 

of the DERs but also the SoC constraints. During night time (i.e., no PV generation), the total 

loading capacity is the summation of the rated power of the ESUs which are charged above 

the minimum SoC. During day time, the total PV generation capacity is the summation of 

rated power of ESUs which have not reached the maximum SoC minus the total load. In 

order to maintain load/generation balance while preventing ESUs from deep discharging and 

overcharging, a load shedding and PV curtailment method is introduced in this section. 

The loads and PVs are controlled based on the average information state of the leader, 

which is approximately equal to the steady-state information state of all DERs, i.e., x. The 

operating principle of the load control module is explained based on the diagram shown in 

Fig. 5-6. The diagram illustrates the variation of ESU current versus SoC for different values 

of x as a parameter. It is worth mentioning that the margin between SoCL (SoCH) and the 

minimum (maximum) SoC provides a reserve capacity for supplying sensitive loads and 

managing the transients. For small value of x, the current is shared among the ESUs 

according to the SoCs, while the ESUs with LSoC SoC<  supply very small currents. 

However, as x rises, the DERs with higher SoC reach their current limit. As a result, ESUs 

with lower SoC discharge faster than expected, quickly reaching the minimum charge level. 

Therefore, it is necessary to shed some part of the MG load in case that x is higher than a 

positive critical level. Once x is lower than a negative critical level, PV generations must be 

curtailed. 

 

LSoC maxSoCminSoC

ESUP

HSoC

rated
ESUP

SoC

 increasesx

 

Fig. 5-6 Variations of ESU current versus SoC for different values of x.  
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Fig. 5-7 Control characteristics of a) load control and b) PV control modules. 

The load shedding is conducted based on a hysteresis characteristic to prevent chattering 

phenomenon. As an example, the load shedding characteristics for a MG consisting of two 

controllable loads is shown in Fig. 5-7(a). When x rises above the level 1Hx  or 2Hx , local 

loads 1 or 2 are disconnected, respectively. The loads 1 and 2 remain disconnected until x 

falls below 1Lx  and 2Lx . Therefore, the chattering phenomenon is prevented. 

The PV curtailment characteristic is shown in Fig. 5-7(b). Normally, the PV generations 

are controlled by maximum power point (MPP) tracking method. As can be observed, once x 

is decreased below xPV, the PV voltage is increased to reduce the PV generation. Using an 

identical characteristic for all PV control modules, fair curtailement can be ensured. 

5-5  Experimental results 

The proposed method has been tested on a laboratory scale MG setup depicted in Fig. 5-8. 

The experimental setup is similar with the setup used in Chapters 2,3, and 4, except that a 

single phase MG is implemented by disconnecting the phase “c” of the inverters. 

Additionally, the LCL filter and line impedances are different. The specifications of the 

experimental setup are listed in Table 5-1. The underlying MG setup includes four single-

phase DER units. Due to the change from three to single phase topology, the capacity of each 

inverter unit is reduced to 700 W.  

The GPS synchronization and communication network are modelled in the dSPACE 

controller. The communication rate is defined as the number of data samples transmitted 
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through each of the links in 1s. To model a low bandwidth communication network, the 

communication rate is limited to 50 samples per second in all cases. The communication 

delay is selected as 20ms for scenarios 1-4 and varied from 20ms to 1s in the fifth scenario. 

Furthermore, the ESUs, PVs and the corresponding DC/DC converter are modeled in 

MATLAB and emulated in the dSPACE controller.  

1lineZ 2lineZ 3lineZ

 

Fig. 5-8 Schematic diagram of the Experimental setup. 

Table 5-1 Electrical and control parameters of the test MG 

 

Parameter Symbol Value 

 

Filter parameters Lf /Cf /Lc 3.6  mH/ 9 μF/3.6  mH 

Line 1 impedance Zline1 0.18  +j0.07 Ω 

Line 2 impedance Zline2 0.28+j0.08 Ω 

Line 3 impedance Zline3 0.38+j0.06 Ω 

Load impedance: Case 1  R0/ R1/ R2 115 /57 /57 Ω 

Load impedance: Case 2 R0/ R1 230 / 115 Ω 

Load impedance: Case 3 R0/ R1/ R2 115 /115 /57 Ω 

SoC constraints SoCmin -SoCmax 50-100 % 

ESU capacities C0 /C1 /C2 /C3 2.8/4.2/5.6/2.5 kW-min 

Communication Rate fcom 50  samples/s 

Communication delay case 1-4 Tdcom 20  ms 

C
ontrol P

aram
eters 

Leader DSC 

ks0 1  

klim 0.1  

Pmarg 200  W 

Follower DSC ksi 0.014 

Function F Fmin 0.01 

SoC limits SoCL-SoCH 55-95% 

PV control thresholds 
xPV  -10 

xmax 15 

Load 1 control thresholds xL1 - xH1 0.1 -10 

Load 2 control thresholds xL2 - xH2 1 - 15 

Droop coefficients rd / rq 4 / 8.4 Ω 
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Fig. 5-9 Performance of the proposed method following the DSC activation. (a) inverters’ active 
powers, (b) SoCs, (c) information states, (d) bus voltages.  

Efficacy of the proposed control method is verified under the following studies: 1) DSC 

performance assessment, 2) step load reponse, 3) discharge cycle scenario, 4) day time 

scenario, and 5) impact of communication delay. 

In the first, second and third study, the PV generations are zero and the load is supplied by 

the ESUs. The experimental results for the first study are provided in Fig. 5-9. Prior to 

activating the proposed controller, the load active power is shared among the units by means 

of the V-I droop mechanism. At t=5s, the DSC is activated, where the power set point of each 

inverter is adjusted so as the information states of the units reach a common value. As shown 

in Fig. 5-9 (c), the consensus is reached within 10s after activation of the DSC. As a 

consequence, the set points of inverters’ powers are defined according to the SoC and 

capacity of the ESUs. Particularly, the largest share is dedicated to DER2; the one which has 

the highest stored energy (SoC=95% and C= 5.6 kW.min), followed by DER1 (SoC=99% 

and C=4.2 kW.min). Comparison of Fig. 5-9 (b) and (c) reveals that the DSC transient 
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response is much faster compared to the rate of change of SoCs. Therefore, the proposed 

method is effective in terms of SoC balancing. Additionally, the output voltage of the leader 

i.e., DER0 is restored to 1pu (See Fig. 5-9 (d)). 

In the second test, the response of the system to a step load change is studied by 

connecting the load 1 to the MG. From Fig. 5-10 (a), it is observed that the active powers of 

all units rise following the step load change. Since the SoC of DER0 is lower compared to 

other units, its information state (x0) grows rapidly (See Fig. 5-10 (b) and (c)). Consequently, 

P1 and P2 are increased to reduce P0 and consensus is achieved within 10s. As shown in Fig. 

5-10 (d), the DERs output voltage are regulated within a range of the nominal value. The 

slight voltage deviation of the follower units originates from the voltage drop on the line 

impedances. 
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Fig. 5-10 Controller performance in response to a step load change. (a) inverters’ active powers, (b) 
SoCs, (c) information states, (d) bus voltages. 
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Fig. 5-11 Experimental results for the third scenario. (a) active powers, (b) SoCs, (c) average 
information state, and d) bus voltages.  

The third scenario studies the performance of the proposed control framework over the 

ESUs discharge cycle. Initially, loads 0 and 1 are connected to the MG. As shown in Fig. 5-

11, the information states are at consensus and the load is shared among the DERs according 

to the corresponding energy capacities. Once load 2 is connected at 20st = , P1 and P2 reach 

their limits, and their powers are fixed at 700 W. This results in an inevitable increase in P3 

and P0. Consequently, the SoC3 and SoC0 fall with a relatively fast rate until 80 st = , when 

SoC0 reaches close to the lower SoC limit (i.e., SoCL=55%). At this point, the average 

information state, i.e., xavg, reaches the trigger point of load 1 (i.e., 1 10Hx = ). It is worth 

mentioning that the delay of xavg compared to the agents’ states (x0-x3) is caused by the low-

pass filter used for preventing load shedding during transients. The load controller sheds load 

1, and subsequently DER 1 and DER 2 exit the power limiting mode, enabling SoC-based 

load sharing once again. Therefore, the SoCs converge towards SoCL. At 165st = , all SoCs 

reach SoCL and the information state xavg reaches the trigger point of load 2 (i.e., 2 15Hx = ). 
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Accordingly, load 2 is also shed from the MG. At this stage, the MG only supplies the 

sensitive load (i.e., load 0). It should be noted that once all SoCs reach the minimum value 

(50%) the MG has to be shut down to prevent deep discharging of the ESUs.  

In the fourth study, PV generations vary according to a typical profile. Fig. 5-12 illustrates 

the experimental results for this study. The effect of PV alignment on the received energy is 

modeled by considering time shifted irradiations, as depicted in Fig. 5-12 (b). Prior to 

70st = , the total PV generation is lower than the total load, and the excess demand is shared 

between the ESUs. For 70st > , the total PV generation goes higher than the total load and 

the surplus generation is shared among the ESUs according to the available storage capacity. 

Particularly, the largest share is dedicated to PESU2 (SoC2=55%, C2=5.6 kW.min) followed 

by PESU1 (SoC1=50%, C1=4.2 kW.min). For 340s 375st< < , PESU2 reaches the limit and 

remains fixed at -700 W. At 380st = , the SoCs reach close to the higher SoC limit (95%) 

and the average information state drops below PVx  (i.e., -10). At this stage, the PV control 

modules increase the voltages to reduce the PV generations so as to keep the surplus 

generation close to zero. As a result, the ESU powers are decreased to around zero and the 

SoCs are limited below 100%. 

At 550st = , the load 1 is switched on. The load change is initially picked up by the ESUs. 

However, the increase of ESU powers results in a rise of information states. As shown in Fig. 

5-12 (f), the information states undergo an oscillation but settle at a common value within 

20s. The load change causes the average information state (xavg) to change from -14.3 to   -

13.1. Therefore, the PV control modules increase the PV generations to reduce the ESU 

power back to around zero. The PV control modules continue increasing the PV powers in 

order to keep the surplus power generation close to zero. At 670st = , the PV generations are 

increased to the maximum and hence the PVs are controlled at MPPT. Next, the maximum 

PV generation drops below the total load due to the low solar irradiance. Therefore, the ESUs 

powers are increased to maintain load/generation balance. It is worth mentioning that in both 

case studies (see Fig. 5-11 (d), and Fig. 5-12(g)), the rms voltage is within an acceptable 

range of the rated value and the frequency is fixed at 50Hz. Therefore, a high power quality is 

guaranteed.  

In the fifth case, effect of communication delay on the performance of the proposed 

cooperative method is studied. To that end, a step load change is applied to bus 2 and the 

dynamic response with three different communication delays is recorded. The active power 

outputs and the information states of the DERs for communication delays of 20 ms, 200 ms 

and 1 s are depicted in Fig. 5-13. The results show that for delays shorter than 1 s, the 

proposed controller remains functional. Although large delays may cause low frequency 

oscillations, the settling time is fast enough for the SoC management application. 
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Fig. 5-12 Performance of the proposed control framework for the day scenario. (a) inverters’ active 
powers, (b) solar irradiations, (c) curtailed pv power, (d) ESU powers, (e) SoCs, (f) information state, 

and (g) bus voltages.  
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Fig. 5-13 Performance of proposed control method under different communication delays: (a,b) 20 
ms, (c,d) 200 ms, and (e,f) 1 s.  
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5-6  Conclusions 

In this chapter, a novel distributed control framework is proposed for MGs comprising of 

several PV-ESU hybrid units. In the proposed method, the individual units are controlled by 

decentralized V-I droop mechanism together with dedicated distributed secondary controller, 

which are interconnected through a low bandwidth communication network. The distributed 

controllers are coordinated based on a leader-follower framework, where the leader regulates 

the voltage and the followers manage the sharing of power between the ESUs so as to balance 

the SoCs. The communication topology is dynamically changed to exempt the units which 

reach the maximum power from the consensus algorithm. In addition, PV curtailment and 

load shedding are deployed to protect the ESUs from deep discharging and overcharging. 

Therefore, safe operation of the ESUs and associated DC/DC and DC/AC converters is 

guaranteed. The experimental results validate the efficacy of the proposed method in terms of 

voltage regulation, SoC balancing, and limiting the SoCs/ powers within the safe range. The 

results also show that the proposed control framework is robust with respect to large 

communication delays.  
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Chapter  6  

A model predictive supplementary 
droop controller for unbalanced 
loading conditions 

 

  

6-1  Introduction 

Unbalanced loading conditions, which are the most common case in low voltage MGs, 

cause degraded performance of the voltage regulator and droop controller [17]. Moreover, the 

conventional current limiting mechanisms are not effective under unbalanced conditions. The 

latter might result in over-currents or circulating current harmonics between DERs.  

In contrast to the balanced conditions, the steady-state d-q components of the voltage and 

current are not constant under unbalanced conditions. As a result, PI control method in d-q 

reference frame does not provide zero steady-state error. In order to tackle this issue, 

deadbeat  [23], repetitive [17] and proportional plus resonant (P+R) [64] control methods 

have been utilized. The aforementioned methods eliminate the steady-state error by 

incorporating the error frequency components as controller poles. 

The application of conventional droop control under unbalanced conditions might produce 

large negative sequence (NS) voltages. In order to improve the power quality, NS voltage 

should be reduced. The NS voltage and current can be controlled by adjusting the NS output 

impedance of DERs [13]-[16], injecting a NS compensating voltage [23] or a combination of 

both methods [22]. However, an increase of compensation effort or a decrease of NS 

impedance alters the flow of NS current in MGs, which in turn degrades the NS current 

sharing accuracy.  

In order to improve the reliability, dynamic performance and power quality of islanded 

MGs, a novel control method is proposed in this chapter. The controller is composed of four 

control levels, namely, supplementary droop, primary droop, voltage and current controllers. 

The voltage and current controllers are designed based on P+R method and implemented in 
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the abc framework to limit the individual phase currents. The primary droop is based on the 

recently introduced V-I droop control method [91], which ensures significantly faster 

dynamics and higher damping compared to the conventional droop method. At the highest 

level of the control hierarchy, a novel supplementary droop controller is introduced to 

improve the power quality and reliability. The controller prevents active power overload, 

improves the current limiting mechanism and controls the NS impedance to reduce the 

voltage unbalance while decreasing NS current sharing error. 

The rest of the chapter is organized as follows. The motivation of the study including the 

overcurrent stress and the voltage unbalance issues in conventional controllers are described 

in Section 6-2. A mathematical analysis of current sharing among DER units under 

unbalanced conditions is presented in Section 6-3. The proposed control method is detailed in 

Sections 6-4 to 6-6. Simulation results are presented in Section 6-7 to verify the efficacy of 

the proposed method. The practicality of the proposed method is discussed in Section 6-8. 

Section 6-9 concludes the chapter.  

6-2  Motivation of the study 

6-2-1  Overcurrent stress 

The inverter based low voltage MGs are usually supplied with DERs of small size, which 

are highly susceptible to over-current. Short circuit faults, machine starting and slow 

dynamics of droop controllers might result in transient over-currents. On the other hand, 

unequal sharing of active or reactive power between DERs and voltage variations throughout 

the MG might result in sustained over-currents during high loading conditions. 

In order to prevent the overcurrent stress, the inverter current might be limited by using a 

saturation block in the current control loop of the inverter. However, the effectiveness of this 

method is dependent on the reference frame, based on which the current control loop is 

designed.  

As for demonstration, it is assumed that the current tends to have a value of 2pu before 

being limited. Fig. 6-1 depicts the resulting current waveforms after saturating the αβ0, dq0 

and abc components under balanced and unbalanced (single-phase) conditions. For balanced 

conditions, while all methods effectively limit the current to 1pu, only dq0 case produces a 

sinusoidal waveform. On the other hand, for unbalanced conditions neither αβ0 nor dq0 cases 

limit the current below 1pu. This necessitates the importance of current limiting in abc 

framework. However, this method deteriorates the current waveform and introduces current 

harmonics, which circulate between the DERs. A solution for this issue will be addressed in 

Section 6-6. 
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Fig. 6-1 Inverter current after applying saturation in different reference frames under balanced and 
unbalanced conditions 

6-2-2  Voltage unbalance 

Voltage unbalance is quite a common issue in low voltage MGs, where the majority of 

loads are single-phase. On the other hand, the International Electro-technical Commission 

(IEC) recommends limiting of voltage unbalance below 2% [92]. The voltage unbalance can 

be reduced by injecting a NS compensating signal to the inverter reference voltage. However, 

the compensation deteriorates the current sharing between DERs. A method for reducing the 

circulating currents while limiting the voltage unbalance below the acceptable limit is 

introduced in Section 6-5. 

6-3  Mathematical analysis of unbalanced conditions 

6-3-1  Symmetrical components 

The symmetrical components of three-phase voltages can be extracted from the three-

phase phasors, as follows: 

0

1
a

b

c

V V

V A V

V V

+ −

−

   
   =   
     

 (6-1)

where Va, Vb and Vc are the voltage phasors, 0V , V +  and V − refer to zero, positive and NS 

components and the inverse transformation matrix 1A−  is defined as [48]: 
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1 2

2

1 1 1
1

1
3

1

A a a

a a

−

 
 =  
  

 (6-2)

with a=1∠120°. The voltage unbalance is defined as the ratio of the NS voltage over the 

positive sequence voltage: 

( )%UN

V
V

V

−

+=  (6-3)

One way to extract the  phasors from instantaneous voltages is using single-phase Park 

transformation. In this method, the d and q components of the voltage vx (x=a, b or c) are 

calculated by introducing a virtual two phase system, as follows [93]: 

cos sin

sin cos
xd xx x

xq xx x

v v

v v
α

β

θ θ
θ θ

    
=    −    

 (6-4)

in which the virtual α and β components are defined as 

x xv vα =  (6-5)

0

/ 2
x xv v tβ

π
ω

 
= − 

 
. (6-6)

The parameter xθ  is the angle of the synchronous rotating reference frame of phase x, 

a tθ ω=  (6-7)

0

2

3b t
πθ ω= −  (6-8)

0

4

3c t
πθ ω= −  (6-9)

with 0ω  being the fundamental frequency. The phase difference between the reference frames 

is selected so that the dq components of the three phases are identical under balanced 

conditions.  

The voltage phasors can be expressed in terms of single-phase dq components, as follows: 

( )
( )

2

ad aq
a

b bd bq

c
cd cq

v jvV

V a v jv

V a v jv

 +   
   = +   
    + 

 (6-10)
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in which coefficients a and a2 are introduced to compensate the phase difference between the 

single phase reference frames. Substituting (6-10) in (6-1), the NS voltage can be expressed 

( ) ( ){ }21

3 ad aq bd bq cd cqV v jv a v jv a v jv− = + + + + +  (6-11)

Rearranging the real and imaginary parts of the right hand side (RHS) of (6-11), the NS 

voltage can be expressed, as follows: 

2 7 4 11

3 6 3 6

2 7 4 11

3 6 3 6

1 0 cos cos cos cos
1

3
0 1 sin sin sin sin

ad

aq

d bd

bqq

cd

cq

v

v

v v

vv
v

v

π π π π

π π π π

−

−

 
 

   
    

=     
     
    

 
  

 (6-12)

in which dv− and qv−  are the real and imaginary parts of the  voltage, respectively. Defining 

T

d qv v v− − − =   , (6-13)

T

dq ad aq bd bq cd cqv v v v v v v =   , (6-14)

2 7 4 11

3 6 3 6

2 7 4 11

3 6 3 6

1 0 cos cos cos cos
1

3
0 1 sin sin sin sin

negC

π π π π

π π π π

 
 

=  
 
  

, (6-15)

(6-12) can be expressed in the closed form: 

neg dqv C v− =  (6-16)

Similar analysis can be applied for the current. 

6-3-2  Sharing of negative sequence current in islanded MGs 

Consider the MG in Fig. 6-2, which is composed of two dispatchable DERs and an 

unbalanced load. The NS voltages at buses 1 and 2 can be expressed in terms of the NS 

output impedances of DER1 ( 1Z − ) and DER2 ( 2Z − ), as follows: 

1 1 1tV Z I− − −= −  (6-17)

2 2 2tV Z I− − −= −  (6-18)
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Fig. 6-2 Sample MG 

Therefore, the load NS current is shared between the DERs according to: 

1 2 2

1 2 1 2

L

Load L L

I Z Z

I Z Z Z Z

− −

− − −

+=
+ + +

 (6-19)

2 1 1

1 2 1 2

L

Load L L

I Z Z

I Z Z Z Z

− −

− − −

+=
+ + +

 (6-20)

in which 1LZ  and 2LZ  are the impedances of line 1 and 2, respectively. 

From (6-19) and (6-20), it is observed that the sharing of NS current is dependent on the 

DER NS impedances as well as the line NS impedances. In addition, (6-17) and (6-18) show 

that full compensation of the NS voltage at the DER terminals is equivalent to selecting 

1 2 0Z Z− −= = , which implies sharing of NS current is according to the line impedances only. 

In practice, however, it is desirable to share the NS current between the DERs according to 

the current ratings of the DERs. This can be achieved by introducing virtual NS impedances 

in DER outputs.  The NS impedances can be selected as inversely proportional to the DER 

rating to provide even NS current sharing between the DERs.  

The NS current sharing error is maximum when either of the lines has zero impedance. 

Assuming 2 0LZ =  and using (6-19) and (6-20), the NS current sharing is obtained as: 

2 1 1

1 2 2

LI Z Z

I Z Z

− −

− − −= +  (6-21)

Therefore, the sharing error is dependent on the ratio of the line impedance on NS 

impedance of the DER2. The virtual NS impedances are limited by the permissible voltage 

unbalance and are typically in the same order as the line impedances. Consequently, the NS 

current sharing is poor. Poor sharing of the NS current adversely effects the current sharing of 

individual phases. The problem gets worse as the load becomes more unbalanced. In order to 
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investigate the problem under worst case conditions, a single phase load with a current of 

,Load ai I θ= ∠  is assumed. So: 

0

3load load load

I
I I I

θ+ − ∠= = =  

Assuming that the positive and zero sequence currents are shared accurately, we have: 

2,0
2 2

1, 2,

*
3

rated

rated rated

II
I I

I I

θ+ ∠= =
+

 

On the other hand,  

1
2

1 2

*
3

L

L

Z ZI
I

Z Z Z

θ −
−

− − −

+∠=
+ +

 

Therefore, the phase currents of DER2 can be expressed as: 

2,
2

1, 2,

rated
a z

rated rated

I
I I k I

I I
θ θ

 
= ∠ + ∠  + 

 (6-22)

( )2 120b zI k I θ= ∠ ° +  (6-23)

( )2 120c zI k I θ= ∠ − ° +  (6-24)

in which kz is a non-dimensional positive factor, defined as: 

( )
( )( )

1 1, 2 2,

1, 2, 1 23

L rated rated

z

rated rated L

Z Z I Z I
k

I I Z Z Z

− − −

− − −

+ −
=

+ + +
 (6-25)

If kz is zero, the load current will be proportionally shared between the DERs and phase b 

and c currents will be zero. However, in the practical case of 0zk > , the phase a current of 

DER2 will be increased as shown in (6-22). This increase might result in over-current 

stresses during high loading conditions. In addition, while no load is connected to phases b 

and c, the DER currents are nonzero according to (6-23) and (6-24). In other words, the phase 

b and c currents will circulate between DER 1 and DER2, hence giving rise to additional 

power losses in the lines as well as DERs. 

The aforementioned issues originate from the fact that the DER2 experiences larger NS 

voltage and tends to apply larger NS compensation. Such compensation is equivalent to 

reduction of the voltage of the lightly loaded phase, which in turn results in a negative d-axis 

current in the lightly loaded phase. On the other hand, the active power of the DERs which 
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contribute to power sharing is positive. So, the d-axis component of the abc currents is also 

expected to be positive. Therefore, a negative d-axis current is associated with the flow of 

circulating currents into the DER. In the proposed method, this characteristic is used to detect 

and identify the direction of the circulating currents. The circulating currents are then reduced 

by adjusting the NS impedance, as explained in Section 6-5. 

6-4  Controller layout 

In order to tackle the aforementioned issues, a novel control method is proposed. The 

controller is composed of four levels, including the supplementary droop, primary droop, 

voltage and current controllers, as shown in Fig. 6-3. The inverter reference voltage is 

obtained as a combination of the no load voltage ( 0E ), primary and supplementary droop 

signals. For phase a, the reference voltage is defined as: 

,0
0

,0

a a a
a dcd od odT T

a a a
a qT Tcq oq oq

uv i iE R X
R

uX Rv i i

∗

∗

       −   
= + − +          

               
 (6-26)

in which a
cv ∗ , a

oi , au are the reference voltage, output current, and the supplementary control 

action of phase a, respectively. Moreover, TR , TX  and 0R are the resistance and reactance of 

the output inductor (or transformer), and the droop coefficient, respectively. The reference 

voltage for other phases is obtained similarly.  

The second term on the RHS of (6-26) compensates the voltage drop on the isolation 

transformer, the third term droops the voltage according to a resistive characteristic to ensure 

an overdamped response [91], and the fourth terms is the supplementary controller signal.  

The primary droop ensures coordinated operation of DERs and stability of the MGs. On 

the other hand, the supplementary controller is responsible for minimizing the voltage 

unbalance, limiting the DER active power generation, limiting the inverter current to 

eliminate the circulating current harmonics and reducing the circulating currents. In order to 

satisfy the first three objectives, the Model Predictive Control (MPC) technique, which is a 

powerful tool for solving control problems with constraints, is adopted. The NS reference 

voltage is adjusted by the gain scheduled NS droop so as to reduce the circulating currents.   

Both MPC and primary droop controller are designed in synchronous rotating reference 

frame. In order to obtain dc d and q components under unbalanced conditions, single-phase 

Park transformation (block T) is utilized to refer the parameters of each phase to the 

corresponding reference frame. Phase b and c reference frames lag the phase a reference 

frame by 120° and 240°, respectively. So, the d-q parameters of all phases will be equal under 

balanced condition. 
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Fig. 6-4 Block diagram of the phase a cascaded controller 

The voltage and current controllers are designed based on the abc reference frame to 

regulate the inverter voltage while limiting the maximum inductor current. The phase a 

voltage and current controllers are detailed in Fig. 6-4. The voltage controller utilizes P+R 

filters along with feed-forward signal from the output current to produce the inductor current 

reference. In order to protect the inverter from overcurrent stresses, the reference current is 

limited by using an anti-windup saturation scheme. The current control loop, which has the 

highest bandwidth in the control hierarchy, tracks the reference current with minimum 

transient error. This ensures that the inverter current is effectively limited upon the 

occurrence of disturbances. The current controller output is then added to the voltage feed-

forward signal to obtain the reference voltage for the PWM block. 

The PWM switching signals from the PWM block are fed to a four-leg inverter. The 

inverter is followed by an LC filter and a transformer, which eliminate high frequency 
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harmonics and provide isolation, respectively. The DER is connected to the PCC by means of 

a four-wire line. 

6-5  Gain-scheduled negative sequence droop 

As detailed in Section 6-3-2, a mismatch of the NS impedance between the unbalanced 

load and individual DERs causes circulating currents in the lightly loaded phases. The DERs 

which are closer to the load experience larger NS voltage and tend to apply larger NS 

compensation. Such compensation is equivalent to reduction of the voltage of the lightly 

loaded phase, which in turn results in a negative d-axis current in the lightly loaded phase. On 

the other hand, the active power of the DERs which contribute to power sharing is always 

positive. As a result, the d-axis component of the abc currents are also expected to be 

positive. Therefore, negative sign of the d-axis current implies flow of circulating currents. 

More importantly, they imply that the DER is closer to the unbalanced load compared to the 

other DERs in the MG. In the proposed scheme, this characteristic is utilized to reduce the 

circulating currents.  

The gain scheduled NS droop is illustrated in Fig. 6-5. In the first step, the d-axis current 

of the lightly loaded phase is selected. The current transients are eliminated through a low 

pass filter and then inverted to obtain the signal w. For the DER unit which is electrically 

closer to the load, the d axis current of the lightly loaded phase becomes negative and w will 

become positive. To reduce current sharing error, the resistance of the DER is increased for 

positive values of w. The value of resistance is calculated by means of two hysteresis blocks. 

The hysteresis loops are activated when w goes above a higher threshold and remain active 

until it is drops below a lower threshold. The output of the hysteresis blocks is 1 when 

activated and 0 otherwise. The hysteresis signal is then multiplied by a gain (kH1 and kH2) and 

added to an offset (k0) to obtain the NS impedance factor. The NS impedance factor is in turn 

multiplied by the maximum NS impedance ( maxR− ) to obtain the negative sequence 

impedance. The NS reference voltage is then obtained from the NS current and the NS 

impedance. 
The circulating currents activate one or both of the hysteresis blocks of the DERs which is 

closer to the load. This increases the NS impedance of the DERs and reduces the mismatch of 

the total NS impedance between the DERs and the load. Therefore the circulating currents 

drop. Such drop, however, does not change the NS impedance so long as the d-axis currents 

are below the threshold.   
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Fig. 6-5 NS gain scheduled droop 

6-6  Model predictive control strategy 

6-6-1  Control structure 

The block diagram of the proposed MPC is depicted in Fig. 6-6. An unknown control 

action u(k) is applied to the plant. The plant response to the control action is predicted and 

compared with the desirable response to obtain the error. The optimum control action is 

calculated by solving the optimization problem of minimizing the error while satisfying the 

constraints.  

Here, the plant includes the power circuit, the cascaded controllers and the primary droop 

controller. The control action is the vector of supplementary droop signals, i.e, 
Ta a b b c c

d q d q d qu u u u u u u =    (6-27)

( )u kΔ η

d

y
( ) ( ) ( )1x k Ax k B u k+ = + Δ

( ) ( )k Cx kη =

PlantMPC

( )Min   

subject to: A

f u

u
b

ε

Δ

Δ 
≤ 

 

( )x k

 

Fig. 6-6 MPC structure 

The desirable response is defined as regulating the NS voltage to its reference value, which is 

determined by the gain-scheduled negative sequence droop block. So, the objective function 

is defined as: 

( ) 2
min 1v k V− −+ −  (6-28)
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in which d qv v v− − − =   and V − are the NS voltage at the DER terminal and the NS voltage 

reference, respectively. The output constraints are defined as limiting the active power and 

peak current within the safe operating range, i.e,  

( ) max1p k P+ ≤  (6-29)

( ) m
ˆ 1 Iabc axi k + ≤  (6-30)

in which, the predicted active power and the vector of peak inductor currents are expressed as 

p(k+1)  and ( )ˆ 1abci k + , respectively. The maximum permissible value of the active power 

and current are denoted by Pmax and Imax, respectively. To ensure smooth transient response, 

the control move, Δu(k) , is limited to b: 

( )u k bΔ ≤  (6-31)

Furthermore, in order to prevent overvoltage, the supplementary droop signal (i.e., u) must 

remain negative: 

( ) 0u k ≤  (6-32)

6-6-2  Derivation of the Plant model 

The prerequisite for realizing the MPC is to derive the plant model. For each phase, a 

single-phase model is derived based on the synchronous rotating reference frame of the 

phase. To that end, each of the P+R controllers is approximated as two PI controllers in d and 

q axis [64].  

The dynamic equations of the LC filter, output transformer, line and the cascaded PI 

controllers are detailed in Chapter 3 (Section 3-3) and repeated here for convenience: 

0

0

1 1

f

fLd Ld dd cd

Lq Lq dq cqf f f

f

R

Li i v v
s

i i v vR L L

L

ω

ω

 
− 

        = + −                − −
  

 (6-33)

0

0

0 1 1
0

cd cd Ld od

cq cq Lq oqf f

v v i i
s

v v i iC C

ω
ω

        
= + −        −        

 (6-34)
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0

0

1 1
T l

od od cd pccdT l

oq oq cq pccqT l T l T l

T l

R R
i i v vL L

s
i i v vR R L L L L

L L

ω

ω

+ − +        = + −        +  + +       − − + 

 (6-35)

where vd is the PWM voltage. 

The P+R controller is equivalent to the combination of two PI controllers in positive and 

negative rotating reference frame [64]. So, the P+R controller can be approximated by PI 

controllers in the positive rotating reference frame: 

* *

* *

dd LdLd cdri
pi

dq LqLq cq

v ii vk
k

v ii vs

        = + − +                      
 (6-36)

* *

* *

odLd cd cdrv
pv

oqLq cq cq

ii v vk
k H

ii v vs

         = + − +                         
 (6-37)

The last terms on the RHS of (6-36) and (6-37) are the feedforward signals.  In order to 

express the controllers’ dynamics in state-space form, the integrals of the voltage and current 

errors are defined as state-variables: 

( )*1/vd cd cde s v v= −  (6-38)

( )*1/vq cq cqe s v v= −  (6-39)

( )*1/id Ld Lde s i i= −  (6-40)

( )*1/iq Lq Lqe s i i= −  (6-41)

Using (6-33)-(6-41), the combination of cascaded controller, LC filter, isolation 

transformer and line is described in the state-space form, as follows: 

*
0 1 1a a ca ax A x B v w= + + Γ  (6-42)

in which “a” refers to phase a. Also, ax , *
cav  and aw  are the state vector, inverter reference 

voltage and disturbance vector, which are defined as  

Ta a a a a a a
a Ld vd vq id iq o

a a a
Lq cd cq d oqx e e e ei i v v i i =   , (6-43)

* * * Ta a
ca cd cqv v v =   , (6-44)
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Ta a
a PCCd PCCqw v v =   , (6-45)

respectively. Moreover, the matrices 0A , 1B  and 1Γ  are obtained as 

0

0

0

0

0

1

1

1 1

1 1

1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0

f pi pv pi

f f

f pi pv pi pi rv ri

f f f f

f f

f f

l T

T l T l

pi rv ri

f f

pv rv

pv rv

pi

f

R k k k

L L

R k k k k k k

L L L L

C C

C C

R R

L L L L

A

k k k

L L

k k H

k k H

k H

L

ω

ω

ω

ω

− − − −

− − − −

−

−

+
−

+ +

=

−

−

−
−

− −
− −

0

0

1
0 0 0 0 0 0 l T

T l T l

pi

f

R R

L L L L

k H

L

ω

ω +
−

+ +

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − 
   

(6-46)

1

1

1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

pi pv

f

pv pi

f

T

pv

pv

k k

L

k k

L

k

B

k

+

+

 
 
 =  
 
  

 (6-47)

1

1
0 0 0 0 0 0 0 0 0

1
0 0 0 0 0 0 0 0 0

T

T l

T l

L L

L L

− 
 + Γ =

− 
 + 

 (6-48)

Substituting (6-26) in (6-42), the plant dynamics are expressed in the following form: 

0
1 1 1 10a a a a

E
x A x B u B w

 
= + + + Γ 

 
  (6-49)

1a ay C x=  (6-50)

where ay  is the vector of phase a measured signals, 

a a a a a a
a Ld Lq cd cq od oqy i i v v i i =    (6-51)
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and A1 and C1 are obtained as follows: 

0 0
1 0 1 2*8

0 0

0 T T

T T

R R L
A A B

L R R

ω
ω

− − 
= +  − 

 (6-52)

4

1 4*4

2

0

0

0

I

C

I

 
 =  
  

 (6-53)

The continuous time plant model is then discretized by using zero order hold method. The 

per-phase discrete time model is described as: 

( ) ( ) ( ) ( )0
2 2 2 21

0a a a a

E
x k A x k B u k B w k

 
+ = + + + Γ 

 
 (6-54)

in which subscript “2” is used for discretized model. 

The predictive control algorithm produces the control moves Δua rather than ua. Therefore, 

it is convenient to regard the system input as Δua and the plant as having this signal as its 

input. To that end, an alternative state-space representation can be utilized with the following 

features: 

1- The plant input is ( )au kΔ  and the output which will be produced without a disturbance 

is represented as ( )kη .  

2- The disturbance is modelled in the plant output. So, the measured output ( ( )ay k ) is the 

summation of ( )kη  and the disturbance, ( )d k  

3- The augmented state is defined as  

( ) ( )
( )

ax k
k

k
ξ

η
Δ 

=  
  

 (6-55)

Using (6-54), the future state change can be predicted from the current state change, as 

follows: 

( ) ( ) ( )2 21a a ax k A x k B u kΔ + = Δ + Δ  

Furthermore, the future change in the plant output is expressed as  

 

( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )

1

1 2 2

1 2 1 2

1 1

a a

a a

k C x k k

C A x k B u k k

C A x k k C B u k

η η

η

η

+ = Δ + +

= Δ + Δ +

= Δ + + Δ
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Therefore, the future augmented state can be expressed as [94] 

( )( 1) ( ) ak A k B u kξ ξξ ξ+ = + Δ  (6-56)

where, 2

1 2

0A
A

C A Iξ
 

=  
 

, 2

1 2

B
B

C Bξ
 

=  
 

. Furthermore, the system output is expressed as 

( ) ( )( )ay k C k d kξ ξξ= +  (6-57)

where, [ ]0C Iξ = . 

The above representation has some advantages from the realization point of view. Recall 

that in (6-54) the state prediction (x(k+1)) is dependent on the wa (PCC voltage), which is 

unknown to the local controller. This dependency is removed in (6-56) by replacing xa with 

Δxa. Moreover, the effect of variations of PCC voltage (Δwa), the errors due to measurement, 

PWM switching and the inherent delay of single-phase Park transformation are included in 

the model as output disturbance (d).  

Expanding (6-55) and (6-56), the three-phase plant is model is described, as follows: 

( )( 1) ( )x k Ax k B u k+ = + Δ  (6-58)

( )( )y Cx k d k= +  (6-59)

6-6-3  Prediction of negative sequence voltage 

Since the voltage drop on the transformer is compensated by the primary droop controller, 

only the MPC and primary droop actions contribute to the NS terminal voltage. Therefore, 

the NS voltage at the next time step can be estimated as:  

( ) ( ) ( )( )01 1neg dq neg odqv k C v C R i k u k− + = = − + +  (6-60)

in which ( )1odqi k +  is the predicted output current. The phase a output current prediction is 

related to the predicted state, as follows: 

( )
( )

[ ] ( )2*14 2

1
0 1

1

a
oq

a
od

i k
I k

i k
ξ

 +
= + 

+  
 (6-61)

in which Ik refers to identity matrix of order k. Expanding (6-61) to three phases, we have: 

( ) ( )1 1odq ioi k C x k+ = +  (6-62)

where 
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2*14 2*2 2*14 2*2 2*14 2*2

2*14 2*2 2*14 2*2 2*14 2*2

2*14 2*2 2*14 2*2 2*14 2*2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
io

I

C I

I

 
 =  
  

 (6-63)

Substituting (6-62) in (6-60), we have: 

( ) ( ) ( )1 1d neg io negv k R C C x k C u k− + = − + +  (6-64)

The future state, ( )1x k + , is predicted from the plant model, as per (6-58). Substituting (6-

58) into (6-64), the negative sequence voltage at the next time step is obtained according to 

( ) ( ) ( )
( ) ( )

( )1 d neg io neg d neg io

k k

v k R C C Ax k C u k R C C B u k−

Ψ Θ

   + = − + + − Δ   

 
 

(6-65)

6-6-4  Active power prediction 

The active power at the next time step is expressed as follows: 

( ) ( ) ( )
, ,c

1 1 1x x
Ldq cdq

x a b

p k i k v k
=

+ = + ⋅ +  (6-66)

where, ‘ ⋅ ’ denotes dot product. Equation (6-66) is linearized by using Taylor expansion, as 

follows: 

( ) ( ) ( ) ( ) ( ) ( )
, ,c

1 1 1x x x x
Ldq cdq cdq Ldq

x a b

p k p k i k v k v k i k
=

+ = + Δ + + Δ +  (6-67)

The change in the active power of phase x (x=a,b,c) can be expressed as: 

( ) ( ) ( ) ( ) ( )

( )
( )
( )
( )

1

1
1

1

1

x
Ld

x
Lqx x x x

x cd cq Ld Lq x
cd

x
cq

i k

i k
p k v k v k i k i k

v k

v k

 Δ +
 
Δ + 

 Δ + =    Δ + 
 Δ + 

 (6-68)

Equation (6-68) can be written in terms of the current measurement, ( )ay k and future state 

variables, ( )1kξ + , as follows: 

( ) ( ) [ ] ( )4 4*12 4*16

1 0 0 0 0 0

0 1 0 0 0 0
1 0 1

0 0 1 0 0 0

0 0 0 1 0 0

T

x ap k y k I kξ

  
  
  Δ + = × +       

 (6-69)

Therefore, the change in total active power is predicted as follows: 
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( ) ( ) ( ){ } ( ){ }1 1
T

py pxp k p k C y k C x k+ = + +  (6-70)

in which pyC  and pxC are appropriate matrices with 0 and 1 elements. Substituting (6-58) into 

(6-70), the active power at the next time step is expressed as 

( ) ( ) ( )( ) ( )

( )
( )( )

( )
( )1

T T

py px py px

p pk k

p k p k C y k C Ax k C y k C B u k

ω Ω

+ = + + Δ
 

 

(6-71)

6-6-5  Peak current prediction 

The phase a inductor peak current at the next time step can be expressed in terms of the d-

q current components: 

( ) ( ) ( )2 2ˆ ˆ ˆ1 1 1a Lda Lqai k i k i k+ = + + +  (6-72)

Equation (6-72) can be linearized using Taylor expansion, as follows: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )ˆ ˆ1 1 1
ˆ ˆ

LqaLda
a a Lda Lqa

a a

i ki k
i k i k i k i k

i k i k
+ = + Δ + + Δ +  (6-73)

Rearranging the terms, (6-73) is rewritten in the matrix form, as following: 

( ) ( ) ( )
( )

( )
( ) [ ] ( )2 2*14

ˆ ˆ1| 0 1
ˆ ˆ

LqaLda
a a a

a a

i ki k
i k k i k I k

i k i k
ξ

 
+ = + + 

  
 (6-74)

Expanding (6-74) to three phases, the peak inductor currents can be predicted as: 

( )
( )
( )

( )
( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2*14

2 2*14

2 2

1

ˆ ˆ1

ˆ ˆ1

ˆ ˆ1

0 0 0 0
ˆ ˆ

0 0

0 0 0 0 0
ˆ ˆ

0 0

0 0 0 0
ˆ ˆ

a a

b b

c c

aa
LqLd

a a

bb
LqLd

b b

cc
LqLd

c c

peak

i k i k

i k i k

i k i k

i ki k

i k i k
I

i ki k
I

i k i k
I

i ki k

i k i k

C k 
 
 

   +
   

+ = +   
   

+      

 
 
 
 
 
 
 
 
 
  



( )
*14

2

1

peak

x k

C k 
 
 

 
  + 
  



 

(6-75)

Substituting (6-58) into (6-75), we have: 
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( ) ( ) ( ) ( )
( )

( )
( )

( )1 2 1 2
ˆ ˆ1abc abc peak peak peak peak

i ik k

i k i k C k C Ax k C k C B u k

ω Ω

+ = + + Δ
 

 
(6-76)

 

6-6-6  MPC formulation 

At this stage, the optimization problem can be represented in terms of the unknown control 

move, ( )u kΔ , and the current state. Replacing (6-65) into (6-28) and introducing the 

weighting matrix Q1, the objective function is expressed as 

( ) ( ) ( ) ( ) 2

1Q
f k u k k V k−= Θ Δ + Ψ −  (6-77)

Furthermore, combining (6-29), (6-30), (6-71) and (6-76), the power and current constraints 

are expressed as: 

( )u k ωΩΔ ≤  (6-78)

in which 
0

0
p

i

Ω 
Ω =  Ω 

 and 
max

mI

p

ax i

P ω
ω

ω
− 

=  − 
. In order to prevent large oscillations and 

ensure convergence of the optimization problem, the power and current constraints are 
softened by introducing a slack variable ε, as follows: 

( )u k ω εΩΔ ≤ +  (6-79)

0ε ≥  (6-80)

Adding penalties for the control action, control moves and slack variable, the objective 

function is expressed, as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2

21
k 1

R S QQ
f k u k k V k u k u k u kε−= Θ Δ + Ψ − + Δ + Δ + − +  (6-81)

in which R, S and Q2 are penalty matrices. Finally, the optimization problem can be 

expressed in the standard form, as follows: 

2

0
min 2

0 0

T T

uu GHu u u
f

Qε ε ε
ΔΔΔ Δ Δ        

= +        
        

 (6-82)

subject to: 
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const const

u
A b

ε
Δ 

≤ 
 

 (6-83)

in which 

( ) ( )1

T

uH k Q k R SΔ = Θ Θ + +  (6-84)

( ) ( ) ( ) ( )1 k 1
T

uG k Q k V k Su−
Δ  = Θ Ψ − + −   (6-85)

6*6 6*6 4*6 4*6 6*6

6*4 6*4 4*4 4*4 6*4

0

0 0 0

T

const

I I I
A

I I

− Ω 
=  − − 

 (6-86)

( )[ 0 1 ]T
constb b b u kω= − −  (6-87)

At each time step, the optimization is solved by using online active set strategy [95], 

which is recently introduced as a computationally efficient optimization algorithm for MPC 

application. The optimization algorithm computes the optimum control move (Δu). The 

control action is then obtained as the cumulative sum of the control move. 

6-6-7  MPC tuning 

In order to facilitate tuning of the MPC penalty factors, each factor is normalized, as 
2F F P= ×  (6-88)

where F is the penalty  factor, F  is the normalized penalty factor, and P is the permissible 

range of variations of the corresponding parameter. The permissible range of the control 

action is selected as 0.1*nominal voltage to prevent excessive voltage drops. Moreover, the 

permissible range of the voltage unbalance error, active power and peak current slack 

variable are selected as 0.001*nominal voltage, 0.01*nominal current and 0.01*nominal 

power, respectively. 

The normalized penalty factors 1Q and 2Q  are selected as unity to ensure the voltage 

unbalance error and current and power overload are prioritized according to the 

corresponding range of variations. The dynamics of the MPC is dependent on the control 

move penalty factor R . As R  is increased, the control action becomes slower but with less 

oscillations. Since the purpose of the MPC is improvement of power quality, R  is selected 

large enough to ensure a stable, smooth dynamic response, with low sensitivity to parameter 

variations. The control action penalty factor S  pushes the control action towards smaller 

values. This parameter is selected heuristically so that the control action falls with an 

acceptable rate after the disturbance is removed. 
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6-7  Simulation Results 

In order to verify the effectiveness of the proposed method, it is applied to the CIGRE 

benchmark MG [96] which has been illustrated in Fig. 2-14 and detailed in Chapter 2, 

Section 2-5. The MG is composed of 5 DERs interconnected through a four-wire network. 

DERs 1-4 are dispatchable, that is, they can provide desirable active power according to 

droop characteristics. The dispatchable DERs might be supplied from intermittent energy 

sources such as PVs and wind turbines coupled with energy storage. Alternatively, 

controllable energy resources such as microturbines might be used to provide active power 

response. DER 5 is supplied with a PV energy source and controlled in constant current mode 

at unity power factor (PF=1). A detailed model of the system including inverter switches is 

built in MATLAB/Simulink and time-domain simulations are conducted with the 

conventional and the proposed method. The MPC is implemented in Simulink by using the 

open-source solver qpOASES. The PF of loads 1, 3, 4 and 5 is selected as 0.8 to represent 

common situation in LV networks. Other simulation parameters are shown in tables 5-1 and 

5-2. To investigate the dynamic and steady-state response, three scenarios are devised. 

 

Table 6-1 Benchmark parameters 

                DER unit  
Parameter 

DER1 DER2 DER3 DER4 DER5 

Rated power (kW) 30 15 23 3 10 

Rated current (A) 90 45 70 9 30 

Filter inductance (Lf, mH) 1.8 4 2.4 20 5.5 

Filter equivalent resistance (Rf, Ω) 0.184 0.3 0.24 2 0.5 

Transformer equivalent inductance (LT, mH) 1.2 1.4 1.1 8.2 3.1 

Transformer equivalent resistance 0.09 0.14 0.1 0.8 0.3 

 

Table 6-2 Control parameters 

Description Parameter Value Unit 

Inverter switching frequency fsPWM 20 kHz 

MPC sample time  TsMPC 2 ms 

MPC Penalty Factors 
R 1 pu 

S 0.09 pu 

Gain-Scheduled Negative Sequence 
Droop Parameters 
 

Th1/ Th2 0.05± / 0.10±  pu 

k0 0.3 pu 

kH1 0.3 pu 

kH2 0.4 pu 

R- 0.041 pu 

Primary droop coefficient R0 0.1 pu 
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In the first scenario, all of the loads are single-phase loads, connected to phase a. Solar 

irradiance is constant at 200W/m2. At t=0.2s, a step load increase of P=19kW/PF=0.7 is 

applied to bus 2. The load increase is picked up by all of the DERs. Nevertheless, the current 

rise is larger in case of DER2, which is closest to the disturbance. Simulation results for the 

proposed method are shown in Fig. 6-7. The inverter current of DER2 is shown in Fig. 6-7(a). 

Subsequent to the load rise, the current controller limits the instantaneous inverter current, 

clipping the current waveform. The distortion, however, is removed after a few cycles 

through the action of MPC. The compensation of NS voltage causes circulating currents in 

the phase b and c. The circulating currents, however, are reduced to less than 0.1pu thanks to 

the gain scheduled NS droop. At t=0.4s, the load is disconnected from bus 2. Subsequently, 

the currents drop to their initial value. 

The active power generations of the DERs are depicted in Fig. 6-7(b). It is observed that 

the load increase is shared between the dispatchable DERs. During t=0.2s to t=0.35s the 

active power of DER2 gradually drops as a result of the MPC action. Subsequent to the load 

disconnection, the active powers of the DERs drop. The transient change of active power is 

larger for DER2, which is closer to the load. As a consequence, the active power of DER2 

goes negative for less than 1 cycle. Nevertheless, the average power of DER2 is positive. 

As shown in Fig. 6-7(c), va drops to 0.95 following the load increase. The decrease in va 

gives rise to NS and zero sequence voltages. The LCs compensate the NS voltage according 

to the gain scheduled NS droop. Since the zero sequence voltage remains unchanged, the 

magnitude of the phase voltages differ. The steady-state voltage imbalances at buses 1-5 

settle at 0.55%, 1.76%, 0.45%, 0.6%, 0.68%, respectively. 
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Fig. 6-7 Performance of the proposed method-case 1. (a) DER2 current, (b) DER powers (c) DER2 
voltage 
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Simulations are repeated for the conventional P-f/ Q-E droop method [1] with P+R 

cascaded controllers implemented in the αβ0 framework. The parameters of the P-f and Q-E 

droop controllers are listed in table 6-3. The parameters of the cascaded controllers are 

selected the same as the proposed controller.  

Table 6-3 Conventional droop controller parameters 

Description Parameter Value Unit 

P-f droop coefficient kP 2 rad/s 

Active power reference P0 0 W 

No-load frequency f0 50 Hz 

Q-E droop coefficient kQ 0.06 pu 

Reactive power reference Q0 0 VAR 

No-load Voltage E0 1 pu 

Low-pass filter cut-off frequency ωcLPF 30 rad/s 

 

The conventional method provides equal sharing of the steady-state active power, as 

shown in Fig. 6-8(b). However, the poor sharing of Q results in a sustained overcurrent with a 

magnitude of 1.5pu in the DER2, as shown in Fig. 6-8(a). The overcurrent can be prevented 

by implementing the cascaded controller in abc framework. However, as mentioned in 

Section 6-2-1, that method causes circulating current harmonics. As shown in Fig. 6-8(c) the 

va drops to less than 0.9pu. The poor voltage regulation is caused by two factors: Firstly, the 

Q-E droop characteristic varies the reference voltage of the inverter between 0.96 to 1.04. 

Secondly, in contrast to the proposed method, the voltage drop across the DER transformer is 

not compensated in this case. The voltage imbalance at bus 1-5 is 2.6%, 3.1%, 2.6%, 2.6% 

and 2.7%, respectively.   
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Fig. 6-8 Performance of the conventional method-case 1. (a) DER2 current, (b) DER powers (c) 
DER2 voltage 
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In the second scenario, loads 1, 3, 4 and 5 are three-phase loads. Solar irradiance is 

constant at 200W/m2. At t=0.2s an unbalanced load composing of a three-phase load with 

P=45.6 kW/PF=0.8 and a single-phase load with P=3.8kW/Pf=0.8 is connected to bus 2. 

Simulation results for the proposed method are illustrated in Fig. 6-9. Subsequent to load rise, 

the iLa of DER2 increases but is effectively limited by the MPC. Also, the active power of 

DER2 reaches is limited to the rated value. The voltage imbalance is around 0.1-0.2%.  
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Fig. 6-9 Simulation results of the proposed method-case 2: a) DER2 current, b) DER powers c) DER2 
voltage  
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Simulation results for the second scenario with the conventional method are illustrated in 

Fig. 6-10. Since the load is less unbalanced in this case, the current limiting mechanism of the 

conventional controller is more effective. However, the DER2 still experiences a peak 

inverter current of 1.19pu. The voltage va at bus 2 falls to around 0.87pu. The voltage 

imbalance is around 0.6%. 
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Fig. 6-10 Simulation results of the conventional method-case 2: a) DER2 current, b) DER powers c) 
DER2 voltage 
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In the third scenario, load 2 is composed of a three-phase load with P=45.6 kW/PF=0.9 

and a single-phase load with P=1.9kW/PF=0.9. Other loads are three-phase loads. The solar 

irradiance is initially 1000 W/m2 but drop to 200W/m2 at t=0.2s. As a result, the generation of 

DER5 drops from 1pu to 0.2pu. Simulation results for this proposed method are illustrated in 

Fig. 6-11. In order to maintain the load/generation balance the active powers of the 

dispatchable DERs are increased, as shown in Fig. 6-11(b). It is observed that the active 

power of DER2 is effectively limited to 1pu and the excess load is shared between DERs 1, 3 

and 4. The instantaneous current and voltage of DER2 are only slightly affected by the 

disturbance. The voltage imbalance is around 0.1-0.2%.    
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Fig. 6-11 Performance of the proposed method-case 3: a) DER2 current, b) DER powers c) DER2 
voltage  
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Fig. 6-12 Performance of the conventional method-case 3: a) DER2 current, b) DER powers c) DER2 
voltage 

Simulation results for the third scenario with the conventional method are illustrated in 

Fig. 6-12. It is observed that the current of DER2 is within the limits in this case. This is a 

result of improved current sharing of the conventional droop method at higher PFs, where Q 

is small. Nevertheless, voltage regulation is poor compared to the proposed method. 

Comparison of the simulation results reveals important improvements in terms of power 

quality and overcurrent stresses. Specifically, the proposed method effectively limits the 

inverter currents without introducing current harmonics. The voltage profile is within the 

permissible range of 1.05pu to 0.95pu. The maximum voltage imbalance is 1.7%, which is 
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lower than the 2% standard limit. Although the active power sharing is not ideal but the 

active power of each DER is limited to its rated value.   

The proposed method is designed independent from the network topology and loading 

conditions. In order to verify the design, 13 additional scenarios, including single-phase, 

three-phase unbalanced step load changes at bus 1,3,4 and 5 and also two phase step load 

changes at each of the buses are simulated. In each scenario, the step load power is selected 

as the maximum permissible demand of the corresponding bus and other loads are weighted 

in accordance with the total generation capacity.  

A summary of simulation results are listed in Table 6-4. The maximum voltage is equal to 

the no-load voltage in all cases. In cases 1 and 4 the minimum voltage is 0.98 and the voltage 

imbalances are 1.4% and 1.5%, respectively. For case 2 the accumulation of a large load at 

bus 2 causes the minimum voltage to drop to 0.95pu and the imbalance to increase to 1.7%. 

In case 3, despite the large magnitude of the disturbance, the voltage regulation is better 

thanks to the larger size of DER3 compared to DER2. Since DER5 does not contribute to 

voltage regulation, the voltage imbalance is the largest in case 5. Nevertheless, both voltage 

deviation and voltage imbalance are within the permissible range in all cases. Moreover, the 

THDI is less than 0.5%.  

In order to investigate the robustness of the MPC, the impedances of the transformer and 

the LC filter of DER2 have been altered by a factor of 30%±  and simulations have been 

repeated for each case. The results showed no considerable difference with the original 

simulation. 

Table 6-4 Simulation results for the proposed method 

             Disturbance location 
Description 

bus1 bus2 bus3 bus4 bus5 

Step load power/phase (kW) 4 19.2 13.3 4 12.5 

Max Voltage (pu) 1.05 1.05 1.05 1.05 1.05 

Min Voltage (pu) 0.98 0.95 0.98 0.97 0.95 

Max voltage imbalance (%) 1.4 1.7 1.2 1.5 1.9 

Max THDI (%) 0.4 0.5 0.4 0.5 0.5 

 

6-8  Discussion 

From the implementation viewpoint, the primary droop and cascaded controllers are 

similar to the conventional droop control method. The execution time of the MPC is 

measured in MATLAB by running the MPC code on a 2.6 GHz Intel core i5 PC (without 

using parallel processing). The time required for 106 executions is measured manually as 
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around 200s. So, the MPC execution time is calculated as 200μs. Therefore, the 

implementation of MPC with a sample time of 2ms is feasible with the DSPs available in the 

market. A GPS receiver is required to synchronize the time zero of the LCs. Although GPS 

synchronization adds to the complexity of the controller, it brings the advantage of fixed 

frequency operation. 

  Simulation results show that the active powers of the DERs are not equal. The sharing 

error originates from line voltage drops [91] and the MPC control action. As a result, the 

sharing is not ideal. Ideal sharing is neither an economical nor a technical requirement for 

low voltage MGs. In other words, optimal sharing, which is achieved through the action of 

secondary controllers, is different from ideal sharing. However, ideal sharing might be 

desirable to prevent DERs from active power and current overload during high loading 

conditions. In the proposed method, this problem is circumvented through the action of MPC.  

6-9  Conclusions 

Unbalanced load currents might adversely affect the performance of decentralized 

controllers. Moreover, they cause the conventional current limiting mechanisms to 

malfunction. While the former results in voltage unbalance and circulating currents between 

DERs, the latter might result in over-current stress or circulating harmonic currents. 

In this chapter, a novel control method is introduced to tackle the aforementioned issues 

while providing high power quality. The controller utilizes V-I droop control method to 

provide fixed frequency operation with a fast dynamic response. Moreover, a supplementary 

droop controller is introduced as a mechanism for limiting the current and active power to the 

rated value and reducing the voltage unbalance. The method is tested on CIGRE benchmark 

MG. Simulation results demonstrate that the proposed controller improves the power quality 

by limiting the voltage unbalance below 2% and eliminating the circulating current 

harmonics. Moreover, the active power generation is limited to the rated value. 
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Chapter  7  

Accurate current sharing and 
power quality improvement under 
nonlinear loading conditions 

 

7-1  Introduction 

Unbalanced and nonlinear loads, which are quite common in MGs, not only degrade the 

power quality but also adversely affect the performance of droop control schemes in terms of 

sharing accuracy. In particular, the conventional droop scheme, which is focused on 

fundamental active and reactive power sharing, cannot ensure equal sharing of harmonic 

currents, which are produced by nonlinear loads.  To alleviate those shortcomings, several 

modified droop control methods have been developed [24-27], among which virtual 

impedance-based schemes are the most widely accepted [25]. 

The virtual impedance schemes achieve a fast dynamic response by modifying the DG 

voltage according to the DG output current. Furthermore, proper sharing of negative 

sequence and harmonic currents is achieved by selecting the virtual impedance of each unit 

inversely proportional with its power rating. However, in weak islanded MG, where the line 

impedance is considerable, accurate load current sharing requires large virtual impedances 

which may produce a large voltage distortion [28]. Therefore, there is a trade-off between 

current sharing accuracy and power quality. 

To compensate for the voltage drop on the lines, a virtual capacitance [29] or an adaptive 

negative virtual resistance [30] can be employed. However, those schemes require the 

knowledge of line impedances and network topology. An alternative approach is using a 

hierarchical control structure, composed of primary and secondary levels [31]. The primary 

controller comprises local DG controllers, which use a combination of droop control method 

and virtual impedance to coordinate the power generation of DGs and share the harmonic 

loads between them. The secondary controller produces compensating signals so as to 

improve the voltage quality in a so-called Sensitive Load Bus (SLB). The compensation 

signals are broadcasted to the local controllers to adjust the DG reference voltage 

accordingly. The hierarchical control scheme has been further elaborated in [97] to enhance 
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the frequency regulation. However, the methods of [31] and [97] have some important 

limitations: 

1) In order to minimize the communication bandwidth and reduce the adverse effects of 

communication delays, the voltage of the sensitive load bus is transformed to synchronous 

rotating frame (dq-frame) and then transformed back to stationary frame (αβ-frame) in local 

controllers. On the other hand, each controller uses the phase angle of its local voltage for 

Park transformations. Since the voltage angle varies throughout the MG, this process results 

in transformation errors, which may degrade the performance when the DGs are electrically 

far. Consequently, current sharing and also voltage quality might deteriorate. 

2) The selective virtual impedance scheme is not only complex to implement but also 

suffers from slow dynamic response.  

3) The voltage drop across the lines degrades the performance of virtual impedance 

scheme in terms of current sharing accuracy. The effect of line impedances can be 

compensated by means of distributed control techniques as discussed in [98] and [99-101]. 

However, since the secondary controller is characterized by slow dynamic response, it does 

not prevent transient overcurrent stresses. 

4) The control methods proposed in [31] and [97] are based on the assumption of inductive 

network impedances. However, the low voltage MGs are mainly resistive in practice. 

In this chapter, a novel hierarchical control framework, comprised of primary and 

secondary control levels is proposed to alleviate the aforementioned problems. The main 

contributions of the presented method are as follows: 

• While the basic V-I droop method proposed in Chapter 2 is implemented in the dq 

reference frame, the proposed scheme is implemented in abc reference frame to 

enable fast sharing of harmonic components. Moreover, the droop coefficient is 

adaptively updated according to the peak current to ensure improved accuracy at 

high loading conditions. This approach highlights the significance of limiting the 

peak output current of each DG unit within its current ratings. 

• In contrast with [25, 31, 97-101] , which add a virtual impedance to the conventional 

droop scheme to enable sharing of the harmonic currents, the proposed primary 

controller integrates the fundamental and harmonic current sharing into a single V-I 

droop controller. Therefore, the structure of the proposed primary controller is 

significantly simpler compared to [25, 31, 97-101]. 

• In order to improve the power quality and alleviate the effect of line impedances on 

the active power sharing, a novel secondary control scheme is proposed. The 

secondary controller includes a distributed power sharing controller and a 
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centralized voltage conditioning scheme. The distributed power sharing controller 

acts upon an agent-based structure, in which each agent modifies the d-axis 

fundamental voltage of the corresponding DG unit according to the difference 

between the normalized power of the unit and the neighbor units. The voltage 

conditioning scheme uses a simple integral controller to compensate the voltage 

deviations and distortions at the SLB.   

The majority of the content of this chapter has been published in [102]. The rest of the 

chapter is organized as follows. The problem of proportional current sharing in islanded MGs 

and the conventional solutions are addressed in Section 7-2. The proposed method is 

introduced in Section 7-3.  Experimental results are presented in Section 7-4 to demonstrate 

the efficacy of the proposed method. The chapter is concluded in Section 7-5. 

7-2  Proportional current sharing in islanded MGs 

In this section, the conventional current sharing strategies and their shortcomings are 

discussed.  

7-2-1  Virtual resistance scheme 

The conventional droop method suffers from several issues including slow dynamics, 

frequency and voltage fluctuations and degraded sharing accuracy under nonlinear and/or 

unbalanced loading conditions [103]. One solution for improving the dynamic performance 

and sharing accuracy is to introduce a virtual resistance in the DG output [25]:  

* 1
c v ov E R i+= −  

(7-1)

in which *
cv , vR  and oi are the reference voltage, virtual resistance and output current, 

respectively. Furthermore, 1E + is the fundamental reference voltage obtained from P-V/Q-f 

droop control method [25]. In order to perform proper current sharing, the virtual impedance 

of each unit is selected inversely proportional to its power rating: 

1 1 2 2. . .v rated v rated vN ratedNR S R S R S= = =  
(7-2)

in which Sratedk is the rated apparent power of unit k. This scheme is used along with the P-

V/Q-f droop method to allow equal sharing of negative sequence and harmonic components.  

The effect of virtual resistance on the sharing of harmonic currents can be analyzed based 

on the equivalent model of Fig. 7-1. The dynamics of the inner voltage control loop is 

neglected in this equivalent circuit as its time constant is much smaller compared with the 

droop controller. Using KVL and KCL, the output current of unit k is obtained as 
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Fig. 7-1 Equivalent model of the MG for negative sequence and harmonics 

where h h h
ck Lok linekz z z= +  and h

Lokz  and h
linekz  are the impedance of output inductor and line of unit 

k, respectively. Moreover, the effect of compensation voltage, vcmp, is neglected. 

Comparing (7-2) and (7-3), it is observed that the accuracy of current sharing is adversely 

affected by the output inductor and line impedances. Accurate current sharing necessitates 

selecting a virtual resistance much larger than ( )h h
ck linekz z+ . On the other hand, the value of 

virtual resistance is limited by the permissible voltage deviations. Therefore, the sharing 

accuracy of the virtual resistance method might be poor in practice. 

7-2-2  Selective virtual impedance scheme 

Since the fundamental power factor is higher than 0.7 in practice, the fundamental voltage 

deviations caused by a virtual resistance is higher compared with a virtual inductance with 

the same impedance. In order to attain a desirable voltage regulation while taking advantage 

of the improved damping of the virtual resistance, the virtual impedance scheme is adopted. 

In this method, the reference voltage corresponding to harmonic order h (h=1+,1-,2+,2-,…) is 

defined as 
*h h h h

c v ov E Z i= −  (7-4)

in which h
kE  is equal to 1

kE +  for the fundamental positive sequence component and zero, 

otherwise. Moreover, h
vZ  is the virtual impedance matrix, which is defined as 

h h
h v v
v h h

v v

R X
Z

X R

 −
=  
 

 (7-5)

This virtual impedance method is commonly implemented in αβ reference frame. The 

main challenge for implementation of the virtual impedance scheme is extraction of the αβ 

components corresponding to each of the dominant harmonics. An straightforward solution 

for extraction of a harmonic components h is transforming the signal to the synchronous 

rotating reference frame (SRRF) rotating with angular speed of 0hω , averaging the d and q 

components of the signal to remove the other components and transforming the averaged 

components back to the αβ frame [97]. However, the averaging filters incur a delay, which 
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slows down the current sharing dynamics. In order to improve the current sharing dynamics, 

a multi-resonant frequency-locked loop harmonic extraction method is proposed in [104]. 

Nonetheless, this method is complex and computationally expensive. 

7-2-3  Effect of secondary harmonic compensation on current sharing 

The voltage drops across the virtual impedance, DGs output inductors and the lines give 

rise to voltage distortions at the PCC. In order to improve the quality of voltage, secondary 

harmonic compensation schemes are adopted [31, 97, 98, 101]. In these methods, a secondary 

controller calculates a compensation command for each of the dominant harmonics. The 

compensation commands are broadcasted to the local controllers via a communication 

network. Based on the received commands, each local controller adds a compensation voltage 

to its output voltage.  

With the intention of reducing the communication bandwidth, the compensation 

commands are broadcasted in the form of d and q components. This necessitates the 

utilization of Park and inverse Park Transformations at the secondary and local controllers, 

respectively. Such transformations cause an error in the received compensation command due 

to the mismatch between the reference angles of the secondary and local controllers.  

The effect of transformation error on the current sharing among the DERs can be analyzed 

based on the MG model in Fig. 7-1. In order to simplify the analysis, it is assumed that the 

compensation command is directly injected into the reference voltage of the inverter and 

N=2. The compensation signal computed at local controller i, h
cmpiv  is related to the secondary 

controller command, h
cmpv , as follows:  

( ) ( )
( ) ( )

,

,

cos sin

sin cos

h h
cmpi d cmpdi i

h h
i icmpi q cmpq

v vh h

h hv v

δ δ
δ δ

    
=    −         

(7-6)

in which iδ  is the difference between the reference angle of the local controller i ( refiθ ) and 

the secondary controller ( refsθ ): 

i refi refsδ θ θ= − , (7-7)

It should be pointed out the angles refiθ and refsθ are conventionally extracted from the local 

voltages by means of a PLL [31, 97, 98, 101].  Therefore, an unintentional mismatch exists 

between refiθ  and refsθ due to the line impedances. As a result, the compensation voltages of 

each local controller varies depending on the corresponding voltage angle and the harmonic 

order. From Fig. 7-1, the current of unit 1 is calculated using superposition theorem as 
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Equation (7-8) implies that the transformation error alters the current sharing between the 

units. Moreover, the effect of transformation error is escalated at higher order harmonics. 

This unintentional and uncontrolled issue might cause circulating harmonic currents among 

the units and expose some units to overcurrent stresses under high loading conditions. In 

Section 7-3, a solution is proposed to tackle this problem. 

7-3   Proposed Control Method 

In order to improve the current sharing accuracy in islanded MGs while ensuring high 

power quality, a novel control strategy is proposed in this chapter. The proposed control 

method for a general MG consisting of N DGs and several loads, which can be balanced, 

unbalanced, linear or nonlinear is depicted in Fig. 7-2. The control framework is comprised 

of primary and secondary control levels. At the primary level, a new droop controller is 

proposed to enable sharing of load current among the DG unit with a fast dynamic response. 

The secondary control level includes a voltage conditioning module and distributed power 

sharing control agents. The individual control agents and the voltage conditioning module are 

interconnected through a low bandwidth communication (LBC) network. Additionally, the 

DG units are synchronized by means of GPS timing technology. 
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Fig. 7-2 Proposed control framework  
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7-3-2  Droop control strategy 

In this section, a new decentralized control method as an extension for V-I droop concept 

[46] is proposed to enable fast and accurate current sharing. In this method, the primary 

control action of unit k is defined according to the following adaptive voltage-current droop 

law: 

( ), 0
ˆ

pk abc abc vk ok okv E r i i= −  (7-9)

in which rvk is the adaptive virtual resistance, which is adjusted according to the largest peak 

of the abc output currents, ôki . Furthermore, the no-load reference voltage, 0abcE , is a 

balanced sinusoidal voltage with rated amplitude and frequency: 

0 0 0 0

2 4
sin sin sin

3 3

T

abc s s sE E E E
π πθ θ θ    = − −        

 (7-10)

Equation (7-10) implies that the phase a no-load reference voltage of each DG unit is aligned 

with the d axis of the global SRRF. 

The proposed droop controller provides a simple and unified droop scheme for sharing of 

fundamental active and reactive power as well as harmonic components. The salient feature 

of the proposed droop method is the emphasis on the accurate sharing of instantaneous 

current instead of power (conventional droop [105]) or d and q components of current (basic 

V-I droop [46]).  

The adaptive virtual resistance is defined as 

( ) ( )ˆ ˆ
vk ok vk okr i R g i=  (7-11)

in which vkR  is the maximum virtual resistance, which is selected based on the maximum 

permissible voltage deviations.  Moreover, g(.) is a monotonic piecewise linear function with 

a maximum value of 1.  

The mechanism of operation of the proposed droop method is explained based on the 

model in Fig. 7-1. Consider a MG composed of two DG units with equal power ratings. 

Using current division rule, the output current of unit 1 is expressed as 

( )
( ) ( )

2 2

1

2 2 1 1

h
v ch h

o Loadh h
v c v c

r z
i i

r z r z

+
=

+ + +
, (7-12)
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Fig. 7-3 Proposed droop control method 

Substituting (7-11) into (7-12) and rearranging the terms, the following expression is 

obtained: 
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R

−− +
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++ +
, (7-13)

Ideally, the load current is shared equally between the units and the second term on the 

Right Hand Side (RHS) of (7-13) is zero. In practice, however, the mismatch between the line 

impedances gives rise to the sharing error. By using the presented adaptive virtual resistance, 

if the peak current of unit 1 is larger than unit 2, the term ( ) ( )2 1
ˆ ˆ
o og i g i−  goes negative, hence 

reducing the current of unit 1. Otherwise, ( ) ( )2 1
ˆ ˆ
o og i g i−  goes positive, thus increasing the 

current of unit 1. Therefore, the proposed scheme improves the current sharing accuracy 

compared to the conventional virtual resistance method. Additionally, the sharing accuracy is 

improved at higher loading conditions due to the higher slope of the function g(.). This way, 

the DGs are protected from overcurrent stresses without imposing additional voltage 

distortion. It is worth mentioning that although the increase of rvk causes higher voltage 

distortion at high loading conditions, since gmax=1, the maximum distortion is the same as the 

fixed resistance case. 

The block diagram of the proposed droop scheme is depicted in Fig. 7-3. An absolute 

value block followed by a max block detects the phase with the largest instantaneous 

magnitude of current. A classic peak detector [106] then extracts the largest peak of the 

output currents. The adaptive virtual impedance is calculated according to (7-11) and 

multiplied by the instantaneous currents to obtain the virtual resistance voltage drop. Finally, 

the primary control action is achieved by subtracting the virtual resistance drop from the no-

load voltage.     

7-3-3  Distributed power sharing controller 

The adaptive droop method proposed in Section 7-3-2, resolves the challenge of accurate 

load sharing at high loading conditions to prevent overloading. However, it might be 
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technically or economically desirable to accurately share the active power at low/medium 

loading conditions as well. To achieve this objective, a novel distributed power sharing 

control method is proposed in this section. 

Assuming the output voltage is aligned with the d-axis, the active power is proportional to 

the d-axis current. Therefore, it is possible to modify the active power by adjusting the 

fundamental d-axis current 1
odi + . On the other hand, due to the resistive nature of the network 

impedance, 1
odi +  is dependent on the 1

cdv + . Therefore, it is possible to alter the sharing of active 

power among the DG units by modifying the 1
cdv +  of the individual units.  

The operation of the power sharing controller for a MG comprising of two DG units is 

illustrated in Fig. 7-4. For simplicity, the DGs are assumed identical and the impedance of 

line 2 is assumed zero. In case of Fig. 7-4 (a), the voltage correction terms are zero. So, both 

DG1 (solid line) and DG2 (broken line) droop characteristics start from E0 and drop with a 

rate of rv. However, due to the voltage drop on line 1, the voltage of DG1 is higher. As a 

result, DG1 supplies a smaller current compared to DG2. In case of Fig. 7-4 (b), a negative 

voltage correction term is applied to DG2. As a result, the droop characteristic of DG2 is 

shifted down and even current sharing is achieved. 
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(a)                                                          (b) 

Fig. 7-4 Sharing of d-axis current among two DGs. (a) Before and (b) after adding the voltage 
correction. 

The schematic diagram of the power sharing controller is illustrated in Fig. 7-5. In order to 

achieve proportional power sharing among the units, the voltage correction term for DG unit i 

is updated based on the consensus protocol  [69]. In this method, each local controller is 

regarded as a control agent. The information state of agent i, xi is defined as the normalized 

active power of the unit: 

norm i
i i rated

i

P
x P

P
= =  (7-14)
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in which iP  and rated
iP  refer to the total (fundamental plus harmonic) active power and rated 

power of unit i, respectively. The information states are shared between the agents, through a 

sparse communication network. The state of each agent is updated based on the received 

information form the neighbors, as following: 

( ) ( )( ),
10

t n

si d i
j

jj ix xv a dττ τ
=

= −  (7-15)

in which the communication weight, aij , is a constant positive number if agent i receives 

information from agent j and zero, otherwise. If the distributed communication network 

contains minimum connectivity, all of the states will converge to a common value: 

0 1 nx x x= = … =  [67]. In other words, the load active power will be proportionally shared 

among the DGs. 
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Fig. 7-5 Distributed power sharing controller. 

7-3-4  Voltage conditioning module 

As shown in Fig. 7-2, the voltage conditioning module is composed of a harmonic 

extraction block and an integral controller. The harmonic components of the SLB voltage are 

extracted according to the method proposed in [107]. The compensation signal corresponding 

to harmonic order h, h
cmpv , is then computed by means of an integral controller, as follows: 

( ),
h h h
cmp d c refd SLBdv k v v dt= −  (7-16)

( ),
h h h
cmp q c refq SLBqv k v v dt= −  (7-17)

in which ck  and h
SLBv  are the integral controller gain and hth harmonic component of the SLB 

voltage, respectively. In order to regulate the fundamental voltage at the rated value and 

eliminate the harmonic distortions, the reference voltage,  h
refv  is set as 1

0refdv E+ = , 1 0refqv + =  for 

fundamental component and zero for other components. The compensation signals are 

broadcasted to the DGs. At the DG level, the compensation voltage is transformed back to the 

abc frame and injected to the DG reference voltage.  
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Since all of the local controllers are synchronized by means of GPS technology, the Park / 

inverse Park transformation errors, which are addressed in Section 7-2-3 are eliminated. 

Therefore, all DG units exert an identical compensation voltage, and the current sharing 

remains unchanged. 

7-4  Controller design 

The design of the proposed droop controller comprises the selection of the maximum 

virtual resistance Rv , the droop function g(.), and the time constant of the peak detector.  The 

maximum instantaneous voltage deviation, maxv̂Δ , following a step load change is related to 

Rv as: 

max max
ˆˆ v ov R iΔ =  (7-18)

Assuming a maximum step load change of 1pu and a maximum voltage deviation of 10%, 

the maximum virtual resistance is selected as 0.1pu. It is worth mentioning that according to 

the small signal analysis presented in [46] and [63], a virtual resistance of 0.1pu also satisfies 

the stability criterion.  

The design of the piecewise linear function g(.) involves the selection of a set of breaking 

points. With the intention of simplifying the implementation while ensuring accurate current 

sharing at high loading condition, three breaking points are used (points B, C, D), as depicted 

in Fig. 7-6. For a loading of less than 60%  ( max
ˆ / 0.6oi I < ), g(.) is fixed at gB. For higher 

output currents, the function g(.) is increased until it reaches 1 at 100% loading.  

g
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Fig. 7-6 Adaptive virtual resistance function 

The values gB , gC  and gD are calculated by solving the following optimization problem: 

{ }, , ,

min x x
x A B C D

Cf C e
∈

=   (7-19)

. (0) ,Bst g g=  (7-20)



137 
 

(1) 1,g =  (7-21)

where Cf is the cost function,  Cx and xe  are the penalty factor and current sharing error 

corresponding with the point x (x=A,B,C,D), respectively.  To emphasize the importance of 

accurate current sharing at high loading conditions, the penalty factors are selected as 1AC =  

, 2BC = , 4CC = , 16DC = . Furthermore, the current sharing error is calculated according to 

(7-13). Solving (7-19) –(7-21) numerically, the values gA , gB and gC are obtained as 0.33, 

0.46 and 0.62, respectively. 

The peak detector instantaneously increases the adaptive virtual resistance during step load 

rises. When the load drops, however, the virtual resistance drops with a time constant τ. The 

parameter τ must be much larger than the time constant of the droop controller as well as the 

period of the peak current signal to decouple the dynamics of the droop controller from the 

peak detector and ensure smooth variations of the virtual resistance. On the other hand, the 

peak detector must be fast enough to allow the virtual resistance settle at steady-state before 

the next load rise. 

The designing of inner control loops and the secondary controller has been addressed in 

detail in [6, 31, 108]. 

7-5  Experimental results 

The proposed method has been prototyped in the MG laboratory of Aalborg University 

with a similar setup used in Chapter 3. The schematic diagram and photo of the test bed are 

shown in Fig. 7-7. The MG supplies a linear balanced load as well as a nonlinear unbalanced 

load, which is comprised of a single phase rectifier connected between phase a and b. This 

MG was assembled based on two experimental setups. Each of the setups is equipped with a 

GPS receiver and a dSPACE 1006 digital control platform. An Ethernet communication link 

is used for broadcasting the secondary controller signal to the local controllers.  

The specifications of the test bed as well as the control parameters are listed in Table 7-1. 

The load impedances are selected so that the full load current is close to the inverters rated 

power. The R/X ratio of lines is selected around 7 to mimic typical low voltage feeders [51]. 

To model a low bandwidth communication link, the data rate is limited to 100 sample/s and 

an intentional delay of 10 ms is introduced for each of the links.  

The performance of the proposed method is verified under seven different scenarios. 
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Fig. 7-7 Laboratory-scale test microgrid: a) schematic diagram, and b) Photo of the setup 

 
Table 7-1 Parameters of the test MG 

Description Parameter Value Unit 
Resistive Load R1 57 Ω 
Nonlinear Load  
(DC side) 

RNL 130 Ω 
CNL 115 μF 

Line Impedances 

Zline1-2 0.22+j0.03 Ω 
Zline2-3 0.22+j0.03 Ω 
Zline3-4 0.5+ j0.06 Ω 
Zline4-5 0.5+j0.06 Ω 

Communication rate fcom 100 Sample/s 
Communication delay Tdcom 10 ms 

V-I droop 
Rv 6 Ω 
τ 1 s 

Distributed secondary controller 
gain 

aij 50 V/s 

Voltage conditioning gain kc 5 1/s 



139 
 

7-5-1  Effect of adaptive virtual resistance and secondary control 

In the first study, the effect of the proposed adaptive droop function and secondary 

controller on the current sharing accuracy and power quality is studied. The experimental 

results for this case are shown in Fig. 7-8. Prior to t=3s, a fixed virtual resistance is adopted 

by setting the droop function in equation (11), equal to 1. From Fig. 7-8(a), it is observed that 

P1, P2, P3, and P4 are 910 W, 960 W, 1020W, 1050W, respectively. Therefore, the DGs 

which are electrically closer to the load pick up a larger share from the load. The sharing 

error is also reflected in peak current, as shown in Fig. 7-8(b). The rms voltages at the SLB 

are within the standard range of 0.95pu to 1.05pu thanks to the smart selection of the virtual 

resistance. However, as shown in Fig. 7-8(e), the SLB voltage quality is degraded. 

Particularly, the unbalance factor (UF) is at 2.7%, and the positive and negative sequence 

components of the third harmonic (H3+ , H3-) are at around 1.7%. Furthermore, the positive 

and negative components of the fifth harmonic (H5+,H5-) are at around 0.6%, respectively. It 

is worth mentioning that the higher order harmonics are negligible, hence are not shown for 

brevity. 

Around t=3s, the adaptive virtual resistance is activated. As shown in Fig. 7-8 (c), the DGs 

which are electrically closer to the load adopt a larger virtual resistance. This way, the 

adverse effect of line impedances on current sharing accuracy is reduced. As a result, the load 

sharing accuracy is improved, as depicted in Fig 7-8 (b).  

Around t=6s, the secondary controller is activated. Consequently, the SLB voltage is 

regulated at 1pu and the voltage distortions are eliminated. The harmonic compensation 

results in an increase of the load current, which in turn causes the DG currents to increase. 

Consequently, the adaptive virtual resistances are increased to improve the sharing accuracy 

(See Fig. 7-8 (b)). 
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Fig. 7-8 Experimental results for the first study: a) active power, b) peak current, c) virtual resistance, 
d) SLB RMS voltage, and e) SLB harmonic distortion 
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7-5-2  Step load response 

In the cases 2,3,4,6 and 7 the nonlinear load is switched on and off to study the step load 

response. The second case study examines the performance of conventional method based on 

power droops, which is discussed in Section 7-2-1. The parameters of the conventional 

method are listed in Table 7-2. The droop coefficients are designed based on the eigenvalue 

analysis [46] and the virtual resistance is selected so as to limit the voltage deviations within 

permissible range (0.95-1.05pu).  The experimental results for the second study are illustrated 

in Fig. 7-9. As shown in Figs. 7-9 (a) and (c), DG unit 4, which is electrically closer to the 

nonlinear load, supplies the largest share of active power (P4) and current (I4) followed by 

units 3, 2, and 1. In other words, the load sharing is dependent on the electrical distance of the 

DG units from the load. As a consequence, I4 exceeds the rated value (5A). On the other 

hand, because reactive power coordination is conducted based on frequency, which is a 

global parameter as opposed to voltage, reactive power sharing is accurate (see Fig. 7-9 (b)). 

As shown in Fig. 7-9 (d), the SLB voltage is distorted following the connection of the 

nonlinear load. As a consequence, the third and fifth harmonic of line ab are increased to 

2.8% and 1.2%, respectively (See Fig. 7-9 (e)). Furthermore, the THD is around 3.2%, 1.5% 

and 1.8% for lines ab, bc and ca, respectively. 

Table 7-2 Control parameters of the virtual resistance method 

Description Value Unit 

P-V droop coefficient 0.0075 V/W 

Q-f droop coefficient 0.00001 Hz/W 

Virtual resistance 3 Ω 
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Fig. 7-9 Step load response of the conventional method: a) Active power, b) Reactive power, c) DG 
currents, d) SLB voltage, and e) Voltage harmonics 
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Fig. 7-10 Step load response of the proposed droop method without secondary control: a) Active 
powers, b) Reactive powers, c) Phase a currents, d) SLB voltage, and e) Voltage harmonics 

 
 

In the third case, the step load change response of the proposed droop method without 

secondary control layer is investigated. The experimental results for the third case are 

illustrated in Fig. 7-10. Comparing Fig. 7-9 (c) and 7-10(c) reveals the improved current 

sharing accuracy of the proposed droop method. The enhanced current sharing is achieved by 

adaptive adjustment of virtual resistances according to the output current. Specifically, the 

virtual resistance of unit 4 is increased above other units, which results in the decrease of P4 

below P3 and P2 (see Fig. 7-10 (a)). As shown in Fig. 7-10 (b), although reactive power 

sharing is not ideal, the sharing error is less than 0.01pu. Moreover, the voltage harmonics are 

almost the same as the conventional method, as shown in Figs. 9 (d) and (e). 
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Fig. 7-11 Step load response of the proposed method: a) Active powers, b) Reactive powers, c) Phase 
a currents, d) SLB voltage, and e) Voltage harmonics 

 

In the fourth case, the proposed method with secondary control layer is tested. The 

experimental results for this case are shown in Fig. 7-11. Comparison of Fig. 7-10 (a) and 7-

11 (a) reveals that the secondary control scheme improves the accuracy of active power 

sharing. Since the dynamics of the secondary control layer are relatively slow, the SLB 

voltage experiences transient distortions following the load changes (see Fig. 7-11(d)). 

However, the instantaneous voltages are within the permissible range of 0.95pu to 1.05pu. 

Furthermore, as shown in Fig. 7-11 (e), the third and fifth harmonics of the SLB voltage 

are eliminated in the steady-state. As a result, the voltage THD corresponding to lines ab, bc 

and ca is reduced from 3.3%, 1.5% and 1.8% in the third case to 1 %, 0.8% and 0.85%, 

respectively. 
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7-5-3  Plug and play operation 

The fifth study demonstrates the Plug and Play (P’n’P) feature of the proposed strategy. In 

this scenario, the DG unit 4 is disconnected from and reconnected to the MG at t=1s and 

t=6.5s, respectively. As shown in Fig. 7-12 (a) and (b), following the outage of unit 4, the 

power and current of units 1-3 are increased to maintain the load/generation balance. It is 

worth mentioning that although unit 4 is electrically disconnected from the MG but its 

voltage remains synchronized with the grid thanks to the GPS synchronization technology. 

This facilitates the reconnection of unit 4 and ensures a smooth reconnection. From Fig. 7-12 

(c) and (d) it is observed that the voltage deviation and harmonic distortion exhibit a small 

increase during the transients but are changed back to zero within less than a second.  

7-5-4  Effect of network impedance 

Although the proposed droop control method is developed for MGs with low X/R ratio, it 

is also applicable to the MGs with inductive network impedance. In the sixth case, the effect 

of network X/R ratio on the current sharing accuracy is investigated by performing the step 

load change test under the following conditions: 1) lines are modeled by 0.22Ω resistors, 2) 

lines are modeled by 0.5mH inductors. The experimental results for the resistive and 

inductive line cases are shown in Fig. 7-13 (a) and (b), respectively. It is observed that in case 

of inductive network, I4 contains more distortion compared to other units. The reason is the 

degraded current sharing accuracy at high order harmonics due to the larger line impedance at 

higher frequencies. Nevertheless, the peak current of all units are almost the same in both 

resistive and inductive cases. Therefore, overcurrent stresses are prevented regardless of the 

network X/R ratio. 
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Fig. 7-12 Response of the proposed method to outage and reconnection of unit 4: a) active powers, b) 
current waveforms, and c) RMS voltage and d) harmonic distortion 
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Fig. 7-13 Effect of network impedance on the performance of the proposed method: a) resistive 
network and b) inductive network.  
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7-5-5  Effect of communication delays 
In the last case, the effect of communication delays on the step load response is studied. 

To that end, the communication delay is increased from 10ms to 100ms and 200ms and the 

step load change test is repeated. As illustrated in Fig. 7-14, although the increase of 

communication delay slows down the distributed secondary controller, but the proposed 

method exhibits an acceptable performance for delays of up to 200ms. It should be pointed 

out that modern communication technologies exhibit a much smaller delay (around 10-40ms) 

[109]. 
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Fig. 7-14 Performance of proposed control method under different communication delays. (a) and (b) 
100 ms (c) and (d) 200 ms 
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7-6  Summary and conclusions 

The islanded MGs solely rely on the local DG units for voltage support and 

load/generation balance. On the other hand, the individual power electronic interfaced DG 

units have a relatively small capacity and are susceptible to overcurrent stresses. Therefore, 

an accurate load sharing strategy is crucial to prevent activating the overcurrent protection 

systems and possible damages.  

In this chapter, a new hierarchical control structure is proposed for improving power 

quality and current sharing accuracy of MGs. The control framework is comprised of primary 

level, which is responsible for fast and accurate sharing of instantaneous load current among 

the DG units and the secondary control, which facilitates accurate sharing of active power as 

well as compensating voltage distortions caused by nonlinear and unbalanced load currents. 

The proposed control framework takes advantage of GPS timing technology as a means for 

achieving fixed frequency operation and eliminating the transformation errors resulting from 

Park / inverse Park Transformations.   

The proposed control architecture is independent of the system topology and does not 

require knowledge of line impedances. Since the current sharing is managed by the primary 

control level, which has a fast dynamic response, transient currents are also properly shared 

among the units. On the other hand, the large time constant of the secondary level enables 

implementation of the method with a low bandwidth communication network. Experimental 

results demonstrate the efficacy of the presented approach in terms of current sharing 

accuracy and power quality.  
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Chapter  8  

Conclusions and Future Work 
 

8-1  Conclusions 

In this thesis, a new droop control technique based on voltage-current characteristics was 

proposed to enhance the dynamic response of low voltage MGs. Furthermore, the proposed 

droop method is used as the basis for the development of more advanced decentralized and 

distributed control schemes, which pursue improvement of robustness, flexibility and power 

quality. The summarized conclusions of the thesis are listed in the following. 

The conventional droop method is based on governor systems used for frequency control 

in power systems. Because of the substantial differences between low voltage MGs and 

power systems (R/X ratio, inertia of the generations, load characteristics), the conventional 

method does not exhibit a satisfactory dynamic response in low-voltage MGs. 

In Chapter  2, a new droop control scheme is proposed to enhance the dynamic response 

of load sharing in MGs. In this method, GPS timing technology is used to synchronize the 

time reference of each DER unit with the universal coordinated time. This way, the frequency 

can be fixed at the rated value. Furthermore, the reference voltage of each DER is drooped 

versus its current. This strategy eliminates the delay associated with measurement of power in 

conventional droop method and hence results in a significant improvement in the dynamic 

response. 

The integration of GPS technology in the proposed control method as well as other recent 

work [33, 38, 39, 110] boosts the power quality and simplifies plug and play operation. 

However, the GPS-based control schemes are vulnerable to GPS signal failure. In Chapter 3 

of the thesis, a new synchronization strategy is proposed to enhance the robustness of the V-I 

droop method with respect to GPS signal failure. By using an adaptive Q-f droop controller 

as a backup, each DER is able to remain synchronized with the rest of the MG during GPS 

signal interruptions.  

Generally, the accuracy of active and/or reactive power sharing of droop schemes is 

dependent on the line impedances. Furthermore, the droop characteristics change the voltage 
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magnitude with the load, which degrades the power quality. In Chapter 4 of the thesis, a 

distributed secondary control method is presented to enhance voltage regulation and improve 

the sharing accuracy. Unlike the existing secondary control methods, the proposed scheme 

takes into account the high R/X ratio of line impedances in low voltage MGs. 

The operation of MGs is affected by the limitations of energy resources. Specifically, if 

the DER is supplied by a combination of PV and battery storage, SoC of batteries and the 

intermittency of the PV should be considered in the power sharing policy. In Chapter 5, a 

distributed control framework is proposed to manage the sharing of power among the ESUs 

so as to balance the SoCs. In addition, PV curtailment and load shedding are deployed to 

protect the ESUs from deep discharging and overcharging. Therefore, safe operation of the 

ESUs and associated DC/DC and DC/AC converters is guaranteed.  

Unbalanced and nonlinear loads, which are common in low voltage MGs degrade the 

power quality. In addition, sharing of negative sequence and harmonic components of the 

load current is a challenging task. In Chapter 6, a model predictive supplementary droop 

controller is introduced as a mechanism for limiting the current and active power to the rated 

value and reducing the voltage unbalance.  

In Chapter 7, a hierarchical control framework comprising of primary and secondary 

control levels is proposed for accurate load sharing and power quality improvement in MGs. 

At the primary level, modified V-I droop characteristics is introduced to enable accurate 

sharing of instantaneous current among the DER units. The secondary level facilitates 

accurate sharing of active power as well as compensating voltage distortions. The distinctive 

feature of this control strategy compared to the existing hierarchical schemes is simple 

structure, emphasis on the instantaneous current sharing and elimination of the transformation 

errors resulting from Park / inverse Park Transformations. 

It is worth mentioning the challenges faced during this PhD project. The first challenge 

was the development of a decentralized control method, which is in accordance with the fast 

dynamics of the inverter-based DERs and has a simple structure. The solution was V-I droop 

scheme, which addresses the aforementioned objectives by employing current sharing instead 

of power sharing. Another problem was definition of a suitable plant model for the MPC 

controller. From practical point of view, experimental implementation of GPS 

synchronization was an important issue. While the GPS receivers and dSPACE controllers 

were available on the market, there was neither any standard hardware nor software available 

for interconnecting dSPACE with the GPS receiver. To solve this issue, an interface board 

was designed and implemented to enable connection of the 1-pps signal of the GPS to one of 

the digital inputs of the dSPACE controller. Furthermore, an S-function was developed in 

MATLAB and included in the Simulink model to enable time synchronization. 
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8-2  Scope of the future work 

This research work opens up a new approach for load sharing and voltage control in low 

voltage islanded MGs. There is more to explore in this line of research. Suggested research 

work is listed below. 

8-2-1  Network-based time synchronization  

The proposed approach makes use of GPS technology for time synchronization. Another 

approach is to use communication networks to synchronize the inverter units. In this method, 

a control unit broadcasts a time stamp signal to another unit. The received signal is then used 

to align the local time of the second unit with the first one. To improve the synchronization 

accuracy, the time delay corresponding with transmitter, receiver and also time of arrival of 

the signal can be estimated and compensated by the receiver.  

The network-based synchronization method has been widely utilized in wireless sensor 

networks [111]. Nevertheless, the applicability of this method to MG control applications is 

yet to be investigated. The main issues in this line of work are the accuracy of timing, cost of 

implementation, reliability and expandability. 

8-2-2  V-I droop method for active distribution networks 

The thesis is mainly focused on the islanded MGs, which are limited in size and power 

capacity. However, the V-I droop concept can also be applied to active distribution networks, 

which include several MG clusters. In that sense, the DERs can be coordinated by some form 

of modified V-I droop function. Furthermore, by using GPS technology, the MG clusters 

remain synchronized with the rest of the network. This way, each of the clusters can be 

connected/disconnected from the system without incurring transient current overshoot and/or 

oscillations. 

8-2-3  GPS synchronization for both control and protection 

GPS technology is well-known in power industry for its application in protection systems. 

In this context, GPS receivers are used as the core of phase measurement units (PMUs), 

which are interconnected together through communication links. A supervisor receives the 

measured phase angles and calculates the state of the system. 

On the other hand, the V-I droop method suggests the integration of GPS timing 

technology into each of the DER units. In addition to advantages provided in terms of 

control, GPS technology provides the backbone for the realization of sophisticated and 

advanced protection schemes in which each DER serves as a PMU.  
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