29,388 research outputs found

    MIR task and evaluation techniques

    Get PDF
    Existing tasks in MIREX have traditionally focused on low-level MIR tasks working with flat (usually DSP-only) ground-truth. These evaluation techniques, however, can not evaluate the increasing number of algorithms that utilize relational data and are not currently utilizing the state of the art in evaluating ranked or ordered output. This paper summarizes the state of the art in evaluating relational ground-truth. These components are then synthesized into novel evaluation techniques that are then applied to 14 concrete music document retrieval tasks, demonstrating how these evaluation techniques can be applied in a practical context

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page

    Content-Based Weak Supervision for Ad-Hoc Re-Ranking

    Full text link
    One challenge with neural ranking is the need for a large amount of manually-labeled relevance judgments for training. In contrast with prior work, we examine the use of weak supervision sources for training that yield pseudo query-document pairs that already exhibit relevance (e.g., newswire headline-content pairs and encyclopedic heading-paragraph pairs). We also propose filtering techniques to eliminate training samples that are too far out of domain using two techniques: a heuristic-based approach and novel supervised filter that re-purposes a neural ranker. Using several leading neural ranking architectures and multiple weak supervision datasets, we show that these sources of training pairs are effective on their own (outperforming prior weak supervision techniques), and that filtering can further improve performance.Comment: SIGIR 2019 (short paper

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University
    • ā€¦
    corecore