3 research outputs found

    A novel approach to MDO using an adaptive multi-agent system

    Get PDF
    International audienceMultiDisciplinary Optimization (MDO) problems represent one of the hardest and broadest domains of continuous optimization, often too complex to be tackled by classical optimization methods. We propose an original approach for taking into account this complexity using a self-adaptive multi-agent system where each elements of the problem become an agent in charge of a small part of the problem

    An adaptive multi-agent system for self-organizing continuous optimization

    Get PDF
    Cette thèse présente une nouvelle approche pour la distribution de processus d'optimisation continue dans un réseau d'agents coopératifs. Dans le but de résoudre de tels problèmes, le domaine de l'optimisation multidisciplinaire a été proposé. Les méthodes d'optimisation multidisciplinaire proposent de distribuer le processus d'optimisation, généralement en reformulant le problème original d'une manière qui réduit les interconnexions entre les disciplines. Cependant, ces méthodes présentent des désavantages en ce qui concerne la difficulté de les appliquer correctement, ainsi que leur manque de flexibilité. En se basant sur la théorie des AMAS (Adaptive Multi-Agent Systems), nous proposent une représentation générique à base d'agents des problèmes d'optimisation continue. A partir de cette représentation, nous proposons un comportement nominal pour les agents afin d'exécuter le processus d'optimisation. Nous identifions ensuite certaines configurations spécifiques qui pourraient perturber le processus, et présentons un ensemble de comportements coopératifs pour les agents afin d'identifier et de résoudre ces configurations problématiques. Enfin, nous utilisons les mécanismes de coopération que nous avons introduit comme base à des patterns de résolution coopérative de problèmes. Ces patterns sont des recommandations de haut niveau pour identifier et résoudre des configurations potentiellement problématiques qui peuvent survenir au sein de systèmes de résolution collective de problèmes. Ils fournissent chacun un mécanisme de résolution coopérative pour les agents, en utilisant des indicateurs abstraits qui doivent être instanciés pour le problème en cours.In an effort to tackle such complex problems, the field of multidisciplinary optimization methods was proposed. Multidisciplinary optimization methods propose to distribute the optimization process, often by reformulating the original problem is a way that reduce the interconnections between the disciplines. However these methods present several drawbacks regarding the difficulty to correctly apply them, as well as their lack of flexibility. Based on the AMAS (Adaptive Multi-Agent Systems) theory, we propose a general agent-based representation of continuous optimization problems. From this representation we propose a nominal behavior for the agents in order to do the optimization process. We then identify some specific configurations which would disturb this nominal optimization process, and present a set of cooperative behaviors for the agents to identify and solve these problematic configurations. At last, we use the cooperation mechanisms we introduced as the basis for more general Collective Problem Solving Patterns. These patterns are high-level guideline to identify and solve potential problematic configurations which can arise in distributed problem solving systems. They provide a specific cooperative mechanism for the agents, using abstract indicators that are to be instantiated on the problem at hand

    Experimenting on a Novel Approach to MDO using an Adaptive Multi-Agent System (WCSMO 2013)

    No full text
    International audienceMultiDisciplinary Optimization (MDO) problems represent one of the hardest and broadest domains of continuous optimization. By involving both the models and criteria of different disciplines, MDO problems are often too complex to be tackled by classical optimization methods. We propose an approach for taking into account this complexity using a new formalism (NDMO - Natural Domain Modeling for Optimization) and a self-adaptive multi-agent algorithm. Our method agentifies the different elements of the problem (such as the variables, the models, the objectives). Each agent is in charge of a small part of the problem and cooperates with its neighbors to find equilibrium on conflicting values. Despite the fact that no agent of the system has a complete view of the entire problem, the mechanisms we provide make the emergence of a coherent solution possible. Evaluations on several academic and industrial test cases are provided
    corecore