97,293 research outputs found

    An artificial intelligence approach to predicting personality types in dogs

    Get PDF
    Canine personality and behavioural characteristics have a significant influence on relationships between domestic dogs and humans as well as determining the suitability of dogs for specific working roles. As a result, many researchers have attempted to develop reliable personality assessment tools for dogs. Most previous work has analysed dogs’ behavioural patterns collected via questionnaires using traditional statistical analytic approaches. Artificial Intelligence has been widely and successfully used for predicting human personality types. However, similar approaches have not been applied to data on canine personality. In this research, machine learning techniques were applied to the classification of canine personality types using behavioural data derived from the C-BARQ project. As the dataset was not labelled, in the first step, an unsupervised learning approach was adopted and K-Means algorithm was used to perform clustering and labelling of the data. Five distinct categories of dogs emerged from the K-Means clustering analysis of behavioural data, corresponding to five different personality types. Feature importance analysis was then conducted to identify the relative importance of each behavioural variable’s contribution to each cluster and descriptive labels were generated for each of the personality traits based on these associations. The five personality types identified in this paper were labelled: “Excitable/Hyperattached”, “Anxious/Fearful”, “Aloof/Predatory”, “Reactive/Assertive”, and “Calm/Agreeable”. Four machine learning models including Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Naïve Bayes, and Decision Tree were implemented to predict the personality traits of dogs based on the labelled data. The performance of the models was evaluated using fivefold cross validation method and the results demonstrated that the Decision Tree model provided the best performance with a substantial accuracy of 99%. The novel AI-based methodology in this research may be useful in the future to enhance the selection and training of dogs for specific working and non-working roles

    Brain image clustering by wavelet energy and CBSSO optimization algorithm

    Get PDF
    Previously, the diagnosis of brain abnormality was significantly important in the saving of social and hospital resources. Wavelet energy is known as an effective feature detection which has great efficiency in different utilities. This paper suggests a new method based on wavelet energy to automatically classify magnetic resonance imaging (MRI) brain images into two groups (normal and abnormal), utilizing support vector machine (SVM) classification based on chaotic binary shark smell optimization (CBSSO) to optimize the SVM weights. The results of the suggested CBSSO-based KSVM are compared favorably to several other methods in terms of better sensitivity and authenticity. The proposed CAD system can additionally be utilized to categorize the images with various pathological conditions, types, and illness modes

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Efficient classification using parallel and scalable compressed model and Its application on intrusion detection

    Full text link
    In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal com-pression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average
    • …
    corecore