1,273 research outputs found

    Quality-Oriented Perceptual HEVC Based on the Spatiotemporal Saliency Detection Model

    Get PDF
    Perceptual video coding (PVC) can provide a lower bitrate with the same visual quality compared with traditional H.265/high efficiency video coding (HEVC). In this work, a novel H.265/HEVC-compliant PVC framework is proposed based on the video saliency model. Firstly, both an effective and efficient spatiotemporal saliency model is used to generate a video saliency map. Secondly, a perceptual coding scheme is developed based on the saliency map. A saliency-based quantization control algorithm is proposed to reduce the bitrate. Finally, the simulation results demonstrate that the proposed perceptual coding scheme shows its superiority in objective and subjective tests, achieving up to a 9.46% bitrate reduction with negligible subjective and objective quality loss. The advantage of the proposed method is the high quality adapted for a high-definition video application

    Background suppressing Gabor energy filtering

    Get PDF
    In the field of facial emotion recognition, early research advanced with the use of Gabor filters. However, these filters lack generalization and result in undesirably large feature vector size. In recent work, more attention has been given to other local appearance features. Two desired characteristics in a facial appearance feature are generalization capability, and the compactness of representation. In this paper, we propose a novel texture feature inspired by Gabor energy filters, called background suppressing Gabor energy filtering. The feature has a generalization component that removes background texture. It has a reduced feature vector size due to maximal representation and soft orientation histograms, and it is awhite box representation. We demonstrate improved performance on the non-trivial Audio/Visual Emotion Challenge 2012 grand-challenge dataset by a factor of 7.17 over the Gabor filter on the development set. We also demonstrate applicability of our approach beyond facial emotion recognition which yields improved classification rate over the Gabor filter for four bioimaging datasets by an average of 8.22%

    Efficient use of bit planes in the generation of motion stimuli

    Get PDF
    The production of animated motion sequences on computer-controlled display systems presents a technical problem because large images cannot be transferred from disk storage to image memory at conventional frame rates. A technique is described in which a single base image can be used to generate a broad class of motion stimuli without the need for such memory transfers. This technique was applied to the generation of drifting sine-wave gratings (and by extension, sine wave plaids). For each drifting grating, sine and cosine spatial phase components are first reduced to 1 bit/pixel using a digital halftoning technique. The resulting pairs of 1-bit images are then loaded into pairs of bit planes of the display memory. To animate the patterns, the display hardware's color lookup table is modified on a frame-by-frame basis; for each frame the lookup table is set to display a weighted sum of the spatial sine and cosine phase components. Because the contrasts and temporal frequencies of the various components are mutually independent in each frame, the sine and cosine components can be counterphase modulated in temporal quadrature, yielding a single drifting grating. Using additional bit planes, multiple drifting gratings can be combined to form sine-wave plaid patterns. A large number of resultant plaid motions can be produced from a single image file because the temporal frequencies of all the components can be varied independently. For a graphics device having 8 bits/pixel, up to four drifting gratings may be combined, each having independently variable contrast and speed

    Spatiotemporal adaptive quantization for the perceptual video coding of RGB 4:4:4 data

    Get PDF
    Due to the spectral sensitivity phenomenon of the Human Visual System (HVS), the color channels of raw RGB 4:4:4 sequences contain significant psychovisual redundancies; these redundancies can be perceptually quantized. The default quantization systems in the HEVC standard are known as Uniform Reconstruction Quantization (URQ) and Rate Distortion Optimized Quantization (RDOQ); URQ and RDOQ are not perceptually optimized for the coding of RGB 4:4:4 video data. In this paper, we propose a novel spatiotemporal perceptual quantization technique named SPAQ. With application for RGB 4:4:4 video data, SPAQ exploits HVS spectral sensitivity-related color masking in addition to spatial masking and temporal masking; SPAQ operates at the Coding Block (CB) level and the Prediction Unit (PU) level. The proposed technique perceptually adjusts the Quantization Step Size (QStep) at the CB level if high variance spatial data in G, B and R CBs is detected and also if high motion vector magnitudes in PUs are detected. Compared with anchor 1 (HEVC HM 16.17 RExt), SPAQ considerably reduces bitrates with a maximum reduction of approximately 80%. The Mean Opinion Score (MOS) in the subjective evaluations, in addition to the SSIM scores, show that SPAQ successfully achieves perceptually lossless compression compared with anchors

    Frequency-dependent perceptual quantisation for visually lossless compression applications

    Get PDF
    The default quantisation algorithms in the state-of-the-art High Efficiency Video Coding (HEVC) standard, namely Uniform Reconstruction Quantisation (URQ) and Rate-Distortion Optimised Quantisation (RDOQ), do not take into account the perceptual relevance of individual transform coefficients. In this paper, a Frequency-Dependent Perceptual Quantisation (FDPQ) technique for HEVC is proposed. FDPQ exploits the well-established Modulation Transfer Function (MTF) characteristics of the linear transformation basis functions by taking into account the Euclidean distance of an AC transform coefficient from the DC coefficient. As such, in luma and chroma Cb and Cr Transform Blocks (TBs), FDPQ quantises more coarsely the least perceptually relevant transform coefficients (i.e., the high frequency AC coefficients). Conversely, FDPQ preserves the integrity of the DC coefficient and the very low frequency AC coefficients. Compared with RDOQ, which is the most widely used transform coefficient-level quantisation technique in video coding, FDPQ successfully achieves bitrate reductions of up to 41%. Furthermore, the subjective evaluations confirm that the FDPQ-coded video data is perceptually indistinguishable (i.e., visually lossless) from the raw video data for a given Quantisation Parameter (QP)

    Saliency-Enabled Coding Unit Partitioning and Quantization Control for Versatile Video Coding

    Get PDF
    The latest video coding standard, versatile video coding (VVC), has greatly improved coding efficiency over its predecessor standard high efficiency video coding (HEVC), but at the expense of sharply increased complexity. In the context of perceptual video coding (PVC), the visual saliency model that utilizes the characteristics of the human visual system to improve coding efficiency has become a reliable method due to advances in computer performance and visual algorithms. In this paper, a novel VVC optimization scheme compliant PVC framework is proposed, which consists of fast coding unit (CU) partition algorithm and quantization control algorithm. Firstly, based on the visual saliency model, we proposed a fast CU division scheme, including the redetermination of the CU division depth by calculating Scharr operator and variance, as well as the executive decision for intra sub-partitions (ISP), to reduce the coding complexity. Secondly, a quantization control algorithm is proposed by adjusting the quantization parameter based on multi-level classification of saliency values at the CU level to reduce the bitrate. In comparison with the reference model, experimental results indicate that the proposed method can reduce about 47.19% computational complexity and achieve a bitrate saving of 3.68% on average. Meanwhile, the proposed algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality
    corecore