5,077 research outputs found

    Automatic Detection of Online Jihadist Hate Speech

    Full text link
    We have developed a system that automatically detects online jihadist hate speech with over 80% accuracy, by using techniques from Natural Language Processing and Machine Learning. The system is trained on a corpus of 45,000 subversive Twitter messages collected from October 2014 to December 2016. We present a qualitative and quantitative analysis of the jihadist rhetoric in the corpus, examine the network of Twitter users, outline the technical procedure used to train the system, and discuss examples of use.Comment: 31 page

    Challenges and solutions for Latin named entity recognition

    Get PDF
    Although spanning thousands of years and genres as diverse as liturgy, historiography, lyric and other forms of prose and poetry, the body of Latin texts is still relatively sparse compared to English. Data sparsity in Latin presents a number of challenges for traditional Named Entity Recognition techniques. Solving such challenges and enabling reliable Named Entity Recognition in Latin texts can facilitate many down-stream applications, from machine translation to digital historiography, enabling Classicists, historians, and archaeologists for instance, to track the relationships of historical persons, places, and groups on a large scale. This paper presents the first annotated corpus for evaluating Named Entity Recognition in Latin, as well as a fully supervised model that achieves over 90% F-score on a held-out test set, significantly outperforming a competitive baseline. We also present a novel active learning strategy that predicts how many and which sentences need to be annotated for named entities in order to attain a specified degree of accuracy when recognizing named entities automatically in a given text. This maximizes the productivity of annotators while simultaneously controlling quality

    Computational Sociolinguistics: A Survey

    Get PDF
    Language is a social phenomenon and variation is inherent to its social nature. Recently, there has been a surge of interest within the computational linguistics (CL) community in the social dimension of language. In this article we present a survey of the emerging field of "Computational Sociolinguistics" that reflects this increased interest. We aim to provide a comprehensive overview of CL research on sociolinguistic themes, featuring topics such as the relation between language and social identity, language use in social interaction and multilingual communication. Moreover, we demonstrate the potential for synergy between the research communities involved, by showing how the large-scale data-driven methods that are widely used in CL can complement existing sociolinguistic studies, and how sociolinguistics can inform and challenge the methods and assumptions employed in CL studies. We hope to convey the possible benefits of a closer collaboration between the two communities and conclude with a discussion of open challenges.Comment: To appear in Computational Linguistics. Accepted for publication: 18th February, 201

    A semi-supervised learning approach to arabic named entity recognition

    Get PDF
    We present ASemiNER, a semi-supervised algorithm for identifying Named Entities (NEs) in Arabic text. ASemiNER does not require annotated training data, or gazetteers. It also can be easily adapted to handle more than the three standard NE types (Person, Location, and Organisation). To our knowledge, our algorithm is the first study that intensively investigates the semi-supervised pattern-based learning approach to Arabic Named Entity Recognition (NER). We describe ASemiNER and compare its performance with different supervised systems. We evaluate this algorithm by way of experiments to extract the three standard named-entity types. Ultimately, our algorithm outperforms simple supervised systems and also performs well when we evaluate its performance in order to extract three new, specialised types of NEs (Politicians, Sportspersons, and Artists)

    Combining Minimally-supervised Methods for Arabic Named Entity Recognition.

    Get PDF
    Supervised methods can achieve high performance on NLP tasks, such as Named Entity Recognition (NER), but new annotations are required for every new domain and/or genre change. This has motivated research in minimally supervised methods such as semi-supervised learning and distant learning, but neither technique has yet achieved performance levels comparable to those of supervised methods. Semi-supervised methods tend to have very high precision but comparatively low recall, whereas distant learning tends to achieve higher recall but lower precision. This complementarity suggests that better results may be obtained by combining the two types of minimally supervised methods. In this paper we present a novel approach to Arabic NER using a combination of semi-supervised and distant learning techniques. We trained a semi-supervised NER classifier and another one using distant learning techniques, and then combined them using a variety of classifier combination schemes, including the Bayesian Classifier Combination (BCC) procedure recently proposed for sentiment analysis. According to our results, the BCC model leads to an increase in performance of 8 percentage points over the best base classifiers

    Mining complex trees for hidden fruit : a graph–based computational solution to detect latent criminal networks : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Technology at Massey University, Albany, New Zealand.

    Get PDF
    The detection of crime is a complex and difficult endeavour. Public and private organisations – focusing on law enforcement, intelligence, and compliance – commonly apply the rational isolated actor approach premised on observability and materiality. This is manifested largely as conducting entity-level risk management sourcing ‘leads’ from reactive covert human intelligence sources and/or proactive sources by applying simple rules-based models. Focusing on discrete observable and material actors simply ignores that criminal activity exists within a complex system deriving its fundamental structural fabric from the complex interactions between actors - with those most unobservable likely to be both criminally proficient and influential. The graph-based computational solution developed to detect latent criminal networks is a response to the inadequacy of the rational isolated actor approach that ignores the connectedness and complexity of criminality. The core computational solution, written in the R language, consists of novel entity resolution, link discovery, and knowledge discovery technology. Entity resolution enables the fusion of multiple datasets with high accuracy (mean F-measure of 0.986 versus competitors 0.872), generating a graph-based expressive view of the problem. Link discovery is comprised of link prediction and link inference, enabling the high-performance detection (accuracy of ~0.8 versus relevant published models ~0.45) of unobserved relationships such as identity fraud. Knowledge discovery uses the fused graph generated and applies the “GraphExtract” algorithm to create a set of subgraphs representing latent functional criminal groups, and a mesoscopic graph representing how this set of criminal groups are interconnected. Latent knowledge is generated from a range of metrics including the “Super-broker” metric and attitude prediction. The computational solution has been evaluated on a range of datasets that mimic an applied setting, demonstrating a scalable (tested on ~18 million node graphs) and performant (~33 hours runtime on a non-distributed platform) solution that successfully detects relevant latent functional criminal groups in around 90% of cases sampled and enables the contextual understanding of the broader criminal system through the mesoscopic graph and associated metadata. The augmented data assets generated provide a multi-perspective systems view of criminal activity that enable advanced informed decision making across the microscopic mesoscopic macroscopic spectrum

    A survey on recent advances in named entity recognition

    Full text link
    Named Entity Recognition seeks to extract substrings within a text that name real-world objects and to determine their type (for example, whether they refer to persons or organizations). In this survey, we first present an overview of recent popular approaches, but we also look at graph- and transformer- based methods including Large Language Models (LLMs) that have not had much coverage in other surveys. Second, we focus on methods designed for datasets with scarce annotations. Third, we evaluate the performance of the main NER implementations on a variety of datasets with differing characteristics (as regards their domain, their size, and their number of classes). We thus provide a deep comparison of algorithms that are never considered together. Our experiments shed some light on how the characteristics of datasets affect the behavior of the methods that we compare.Comment: 30 page
    corecore