9 research outputs found

    Biosensors for Diagnosis and Monitoring

    Get PDF
    Biosensor technologies have received a great amount of interest in recent decades, and this has especially been the case in recent years due to the health alert caused by the COVID-19 pandemic. The sensor platform market has grown in recent decades, and the COVID-19 outbreak has led to an increase in the demand for home diagnostics and point-of-care systems. With the evolution of biosensor technology towards portable platforms with a lower cost on-site analysis and a rapid selective and sensitive response, a larger market has opened up for this technology. The evolution of biosensor systems has the opportunity to change classic analysis towards real-time and in situ detection systems, with platforms such as point-of-care and wearables as well as implantable sensors to decentralize chemical and biological analysis, thus reducing industrial and medical costs. This book is dedicated to all the research related to biosensor technologies. Reviews, perspective articles, and research articles in different biosensing areas such as wearable sensors, point-of-care platforms, and pathogen detection for biomedical applications as well as environmental monitoring will introduce the reader to these relevant topics. This book is aimed at scientists and professionals working in the field of biosensors and also provides essential knowledge for students who want to enter the field

    Urinary Stents

    Get PDF
    This open access book provides a concise overview of a range of aspects related to urinary stents. Sections within the work cover clinical and recent technological advancements in the field. Chapters feature detailed coverage of the different surgical, pharmacological and palliative treatments currently available. Insight is also given on current limitations of urinary stents and how these can be overcome by utilizing anti-biofilm coatings; new biomaterials, drug-eluting stents, and biodegradable stents. Therefore, enabling the reader to systematically gain a detailed understanding of the subject. Urinary Stents is a practical, multi-disciplinary focused resource on the complications and applications of ureteral, urethral and prostatic stents in day-to-day clinical practice. A vital read for all medical professionals and researchers who work in this area

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)

    Nanoparticles: Potential for Use to Prevent Infections

    Get PDF
    One of the major issues related to medical devices and especially urinary stents are infections caused by different strains of bacteria and fungi, mainly in light of the recent rise in microbial resistance to existing antibiotics. Lately, it has been shown that nanomaterials could be superior alternatives to conventional antibiotics. Generally, nanoparticles are used for many applications in the biomedical field primarily due to the ability to adjust and control their physicochemical properties as well as their great reactivity due to the large surface-to-volume ratio. This has led to the formation of a new research field called nanomedicine which can be defined as the use of nanotechnology and nanomaterials in diagnostics, imaging, observing, prevention, control, and treatment of diseases. For example, coverings or coatings based on nanomaterials are now seen as a promising strategy for preventing or treating biofilms formation on healthcare kits, implants, and medical devices. Toxicity, inappropriate delivery, or degradation of conventionally used drugs for the treatment of infections may be avoided by using nanoparticles without or with encapsulated/immobilized active substances. Most of the materials which are used and examined for the preparation of the nanoparticles with encapsulated/immobilized active substances or smart reactive nanomaterials with antimicrobial effects are polymers, naturally derived antimicrobials, metal-based and non-metallic materials. This chapter provides an overview of the current state and future perspectives of the nanoparticle-based systems based on these materials for prevention, control, or elimination of biofilm-related infections on urinary stents. It also addresses manufacturing conditions indicating the huge potential for the improvement of existing and development of new promising stent solutions

    Urinary Stents

    Get PDF
    This open access book provides a concise overview of a range of aspects related to urinary stents. Sections within the work cover clinical and recent technological advancements in the field. Chapters feature detailed coverage of the different surgical, pharmacological and palliative treatments currently available. Insight is also given on current limitations of urinary stents and how these can be overcome by utilizing anti-biofilm coatings; new biomaterials, drug-eluting stents, and biodegradable stents. Therefore, enabling the reader to systematically gain a detailed understanding of the subject. Urinary Stents is a practical, multi-disciplinary focused resource on the complications and applications of ureteral, urethral and prostatic stents in day-to-day clinical practice. A vital read for all medical professionals and researchers who work in this area
    corecore