500 research outputs found

    Interest-Based Access Control for Content Centric Networks (extended version)

    Full text link
    Content-Centric Networking (CCN) is an emerging network architecture designed to overcome limitations of the current IP-based Internet. One of the fundamental tenets of CCN is that data, or content, is a named and addressable entity in the network. Consumers request content by issuing interest messages with the desired content name. These interests are forwarded by routers to producers, and the resulting content object is returned and optionally cached at each router along the path. In-network caching makes it difficult to enforce access control policies on sensitive content outside of the producer since routers only use interest information for forwarding decisions. To that end, we propose an Interest-Based Access Control (IBAC) scheme that enables access control enforcement using only information contained in interest messages, i.e., by making sensitive content names unpredictable to unauthorized parties. Our IBAC scheme supports both hash- and encryption-based name obfuscation. We address the problem of interest replay attacks by formulating a mutual trust framework between producers and consumers that enables routers to perform authorization checks when satisfying interests from their cache. We assess the computational, storage, and bandwidth overhead of each IBAC variant. Our design is flexible and allows producers to arbitrarily specify and enforce any type of access control on content, without having to deal with the problems of content encryption and key distribution. This is the first comprehensive design for CCN access control using only information contained in interest messages.Comment: 11 pages, 2 figure

    Timed Analysis of Security Protocols

    Get PDF
    We propose a method for engineering security protocols that are aware of timing aspects. We study a simplified version of the well-known Needham Schroeder protocol and the complete Yahalom protocol, where timing information allows the study of different attack scenarios. We model check the protocols using UPPAAL. Further, a taxonomy is obtained by studying and categorising protocols from the well known Clark Jacob library and the Security Protocol Open Repository (SPORE) library. Finally, we present some new challenges and threats that arise when considering time in the analysis, by providing a novel protocol that uses time challenges and exposing a timing attack over an implementation of an existing security protocol

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Execution Models for Choreographies and Cryptoprotocols

    Get PDF
    A choreography describes a transaction in which several principals interact. Since choreographies frequently describe business processes affecting substantial assets, we need a security infrastructure in order to implement them safely. As part of a line of work devoted to generating cryptoprotocols from choreographies, we focus here on the execution models suited to the two levels. We give a strand-style semantics for choreographies, and propose a special execution model in which choreography-level messages are faithfully delivered exactly once. We adapt this model to handle multiparty protocols in which some participants may be compromised. At level of cryptoprotocols, we use the standard Dolev-Yao execution model, with one alteration. Since many implementations use a "nonce cache" to discard multiply delivered messages, we provide a semantics for at-most-once delivery

    Specifying authentication using signal events in CSP

    Get PDF
    The formal analysis of cryptographic protocols has developed into a comprehensive body of knowledge, building on a wide variety of formalisms and treating a diverse range of security properties, foremost of which is authentication. The formal specification of authentication has long been a subject of examination. In this paper, we discuss the use of correspondence to formally specify authentication and focus on Schneider's use of signal events in the process algebra Communicating Sequential Processes (CSP) to specify authentication. The purpose of this effort is to strengthen this formalism further. We develop a formal structure for these events and use them to specify a general authentication property. We then develop specifications for recentness and injectivity as sub-properties, and use them to refine authentication further. Finally, we use signal events to specify a range of authentication definitions and protocol examples to clarify their use and make explicit related theoretical issues. our work is motivated by the desire to effectively analyse and express security properties in formal terms, so as to make them precise and clear. (C) 2008 Elsevier Ltd. All rights reserved

    Verification Based on Set-Abstraction Using the AIF Framework

    Get PDF

    A formal specification and verification framework for timed security protocols

    Get PDF
    Nowadays, protocols often use time to provide better security. For instance, critical credentials are often associated with expiry dates in system designs. However, using time correctly in protocol design is challenging, due to the lack of time related formal specification and verification techniques. Thus, we propose a comprehensive analysis framework to formally specify as well as automatically verify timed security protocols. A parameterized method is introduced in our framework to handle timing parameters whose values cannot be decided in the protocol design stage. In this work, we first propose timed applied π-calculus as a formal language for specifying timed security protocols. It supports modeling of continuous time as well as application of cryptographic functions. Then, we define its formal semantics based on timed logic rules, which facilitates efficient verification against various authentication and secrecy properties. Given a parameterized security protocol, our method either produces a constraint on the timing parameters which guarantees the security property satisfied by the protocol, or reports an attack that works for any parameter value. The correctness of our verification algorithm has been formally proved. We evaluate our framework with multiple timed and untimed security protocols and successfully find a previously unknown timing attack in Kerberos V
    corecore