3,298 research outputs found

    On Buffon Machines and Numbers

    Get PDF
    The well-know needle experiment of Buffon can be regarded as an analog (i.e., continuous) device that stochastically "computes" the number 2/pi ~ 0.63661, which is the experiment's probability of success. Generalizing the experiment and simplifying the computational framework, we consider probability distributions, which can be produced perfectly, from a discrete source of unbiased coin flips. We describe and analyse a few simple Buffon machines that generate geometric, Poisson, and logarithmic-series distributions. We provide human-accessible Buffon machines, which require a dozen coin flips or less, on average, and produce experiments whose probabilities of success are expressible in terms of numbers such as, exp(-1), log 2, sqrt(3), cos(1/4), aeta(5). Generally, we develop a collection of constructions based on simple probabilistic mechanisms that enable one to design Buffon experiments involving compositions of exponentials and logarithms, polylogarithms, direct and inverse trigonometric functions, algebraic and hypergeometric functions, as well as functions defined by integrals, such as the Gaussian error function.Comment: Largely revised version with references and figures added. 12 pages. In ACM-SIAM Symposium on Discrete Algorithms (SODA'2011

    Pseudorandom sequence generation using binary cellular automata

    Get PDF
    Tezin basılısı İstanbul Şehir Üniversitesi Kütüphanesi'ndedir.Random numbers are an integral part of many applications from computer simulations, gaming, security protocols to the practices of applied mathematics and physics. As randomness plays more critical roles, cheap and fast generation methods are becoming a point of interest for both scientific and technological use. Cellular Automata (CA) is a class of functions which attracts attention mostly due to the potential it holds in modeling complex phenomena in nature along with its discreteness and simplicity. Several studies are available in the literature expressing its potentiality for generating randomness and presenting its advantages over commonly used random number generators. Most of the researches in the CA field focus on one-dimensional 3-input CA rules. In this study, we perform an exhaustive search over the set of 5-input CA to find out the rules with high randomness quality. As the measure of quality, the outcomes of NIST Statistical Test Suite are used. Since the set of 5-input CA rules is very large (including more than 4.2 billions of rules), they are eliminated by discarding poor-quality rules before testing. In the literature, generally entropy is used as the elimination criterion, but we preferred mutual information. The main motive behind that choice is to find out a metric for elimination which is directly computed on the truth table of the CA rule instead of the generated sequence. As the test results collected on 3- and 4-input CA indicate, all rules with very good statistical performance have zero mutual information. By exploiting this observation, we limit the set to be tested to the rules with zero mutual information. The reasons and consequences of this choice are discussed. In total, more than 248 millions of rules are tested. Among them, 120 rules show out- standing performance with all attempted neighborhood schemes. Along with these tests, one of them is subjected to a more detailed testing and test results are included. Keywords: Cellular Automata, Pseudorandom Number Generators, Randomness TestsContents Declaration of Authorship ii Abstract iii Öz iv Acknowledgments v List of Figures ix List of Tables x 1 Introduction 1 2 Random Number Sequences 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Theoretical Approaches to Randomness . . . . . . . . . . . . . . . . . . . 5 2.2.1 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 Computability Theory . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Random Number Generator Classification . . . . . . . . . . . . . . . . . . 7 2.3.1 Physical TRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Non-Physical TRNGs . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3 Pseudorandom Number Generators . . . . . . . . . . . . . . . . . . 10 2.3.3.1 Generic Design of Pseudorandom Number Generators . . 10 2.3.3.2 Cryptographically Secure Pseudorandom Number Gener- ators . . . . . . . . . . . . . .11 2.3.4 Hybrid Random Number Generators . . . . . . . . . . . . . . . . . 13 2.4 A Comparison between True and Pseudo RNGs . . . . . . . . . . . . . . . 14 2.5 General Requirements on Random Number Sequences . . . . . . . . . . . 14 2.6 Evaluation Criteria of PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Statistical Test Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 NIST Test Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.1 Hypothetical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.2 Tests in NIST Test Suite . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2.1 Frequency Test . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8.2.2 Block Frequency Test . . . . . . . . . . . . . . . . . . . . 20 2.8.2.3 Runs Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.2.4 Longest Run of Ones in a Block . . . . . . . . . . . . . . 21 2.8.2.5 Binary Matrix Rank Test . . . . . . . . . . . . . . . . . . 21 2.8.2.6 Spectral Test . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8.2.7 Non-overlapping Template Matching Test . . . . . . . . . 22 2.8.2.8 Overlapping Template Matching Test . . . . . . . . . . . 22 2.8.2.9 Universal Statistical Test . . . . . . . . . . . . . . . . . . 23 2.8.2.10 Linear Complexity Test . . . . . . . . . . . . . . . . . . . 23 2.8.2.11 Serial Test . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8.2.12 Approximate Entropy Test . . . . . . . . . . . . . . . . . 24 2.8.2.13 Cumulative Sums Test . . . . . . . . . . . . . . . . . . . . 24 2.8.2.14 Random Excursions Test . . . . . . . . . . . . . . . . . . 24 2.8.2.15 Random Excursions Variant Test . . . . . . . . . . . . . . 25 3 Cellular Automata 26 3.1 History of Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . .26 3.1.1 von Neumann’s Work . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Conway’s Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 Wolfram’s Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Cellular Automata and the Definitive Parameters . . . . . . . . . . . . . . 31 3.2.1 Lattice Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 Cell Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.3 Guiding Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.4 Neighborhood Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 A Formal Definition of Cellular Automata . . . . . . . . . . . . . . . . . . 37 3.4 Elementary Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 Rule Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6 Producing Randomness via Cellular Automata . . . . . . . . . . . . . . . 42 3.6.1 CA-Based PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6.2 Balancedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.6.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Test Results 47 4.1 Output of a Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Testing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Interpretation of the Test Results . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Rate of success over all trials . . . . . . . . . . . . . . . . . . . . . 49 4.3.2 Distribution of P-values . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 Testing over a big space of functions . . . . . . . . . . . . . . . . . . . . . 50 4.5 Our Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.6 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6.1 Change in State Width . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6.2 Change in Neighborhood Scheme . . . . . . . . . . . . . . . . . . . 53 4.6.3 Entropy vs. Statistical Quality . . . . . . . . . . . . . . . . . . . . 58 4.6.4 Mutual Information vs. Statistical Quality . . . . . . . . . . . . . . 60 4.6.5 Entropy vs. Mutual Information . . . . . . . . . . . . . . . . . . . 62 4.6.6 Overall Test Results of 4- and 5-input CA . . . . . . . . . . . . . . 6 4.7 The simplest rule: 1435932310 . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 Conclusion 74 A Test Results for Rule 30 and Rule 45 77 B 120 Rules with their Shortest Boolean Formulae 80 Bibliograph

    Fiber-on-Chip: Digital Emulation of Channel Impairments for Real-Time DSP Evaluation

    Get PDF
    We describe the Fiber-on-Chip (FoC) approach to verification of digital signal processing (DSP) circuits, where digital models of a fiber-optic communication system are implemented in the same hardware as the DSP under test. The approach can enable cost-effective long-term DSP evaluations without the need for complex optical-electronic testbeds with high-speed interfaces, shortening verification time and enabling deep bit-error rate evaluations. Our FoC system currently contains a digital model of a transmitter generating a pseudo-random bitstream and a digital model of a channel with additive white Gaussian noise, phase noise and polarization-mode dispersion. In addition, the FoC system contains digital features for real-time control of channel parameters, using low-speed communication interfaces, and for autonomous real-time analysis, which enable us to batch multiple unsupervised emulations on the same hardware. The FoC system can target both field-programmable gate arrays, for fast evaluation of fixed-point logic, and application-specific integrated circuits, for accurate power dissipation measurements
    corecore