250 research outputs found

    On the Beck-Fiala Conjecture for Random Set Systems

    Get PDF
    Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random sparse set systems. Concretely, these are set systems (X,Σ)(X,\Sigma), where each element xXx \in X lies in tt randomly selected sets of Σ\Sigma, where tt is an integer parameter. We provide new bounds in two regimes of parameters. We show that when ΣX|\Sigma| \ge |X| the hereditary discrepancy of (X,Σ)(X,\Sigma) is with high probability O(tlogt)O(\sqrt{t \log t}); and when XΣt|X| \gg |\Sigma|^t the hereditary discrepancy of (X,Σ)(X,\Sigma) is with high probability O(1)O(1). The first bound combines the Lov{\'a}sz Local Lemma with a new argument based on partial matchings; the second follows from an analysis of the lattice spanned by sparse vectors

    Bounds for approximate discrete tomography solutions

    Full text link
    In earlier papers we have developed an algebraic theory of discrete tomography. In those papers the structure of the functions f:A{0,1}f: A \to \{0,1\} and f:AZf: A \to \mathbb{Z} having given line sums in certain directions have been analyzed. Here AA was a block in Zn\mathbb{Z}^n with sides parallel to the axes. In the present paper we assume that there is noise in the measurements and (only) that AA is an arbitrary or convex finite set in Zn\mathbb{Z}^n. We derive generalizations of earlier results. Furthermore we apply a method of Beck and Fiala to obtain results of he following type: if the line sums in kk directions of a function h:A[0,1]h: A \to [0,1] are known, then there exists a function f:A{0,1}f: A \to \{0,1\} such that its line sums differ by at most kk from the corresponding line sums of hh.Comment: 16 page

    On the discrepancy of random low degree set systems

    Get PDF
    Motivated by the celebrated Beck-Fiala conjecture, we consider the random setting where there are nn elements and mm sets and each element lies in tt randomly chosen sets. In this setting, Ezra and Lovett showed an O((tlogt)1/2)O((t \log t)^{1/2}) discrepancy bound in the regime when nmn \leq m and an O(1)O(1) bound when nmtn \gg m^t. In this paper, we give a tight O(t)O(\sqrt{t}) bound for the entire range of nn and mm, under a mild assumption that t=Ω(loglogm)2t = \Omega (\log \log m)^2. The result is based on two steps. First, applying the partial coloring method to the case when n=mlogO(1)mn = m \log^{O(1)} m and using the properties of the random set system we show that the overall discrepancy incurred is at most O(t)O(\sqrt{t}). Second, we reduce the general case to that of nmlogO(1)mn \leq m \log^{O(1)}m using LP duality and a careful counting argument

    An Algorithm for Koml\'os Conjecture Matching Banaszczyk's bound

    Get PDF
    We consider the problem of finding a low discrepancy coloring for sparse set systems where each element lies in at most t sets. We give an efficient algorithm that finds a coloring with discrepancy O((t log n)^{1/2}), matching the best known non-constructive bound for the problem due to Banaszczyk. The previous algorithms only achieved an O(t^{1/2} log n) bound. The result also extends to the more general Koml\'{o}s setting and gives an algorithmic O(log^{1/2} n) bound

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful
    corecore