89,062 research outputs found

    Club guessing and the universal models

    Full text link
    We survey the use of club guessing and other pcf constructs in the context of showing that a given partially ordered class of objects does not have a largest, or a universal element

    On the threshold-width of graphs

    Full text link
    The GG-width of a class of graphs GG is defined as follows. A graph G has GG-width k if there are k independent sets N1,...,Nk in G such that G can be embedded into a graph H in GG such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in Ni. For the class TH of threshold graphs we show that TH-width is NP-complete and we present fixed-parameter algorithms. We also show that for each k, graphs of TH-width at most k are characterized by a finite collection of forbidden induced subgraphs

    Decomposing 1-Sperner hypergraphs

    Full text link
    A hypergraph is Sperner if no hyperedge contains another one. A Sperner hypergraph is equilizable (resp., threshold) if the characteristic vectors of its hyperedges are the (minimal) binary solutions to a linear equation (resp., inequality) with positive coefficients. These combinatorial notions have many applications and are motivated by the theory of Boolean functions and integer programming. We introduce in this paper the class of 11-Sperner hypergraphs, defined by the property that for every two hyperedges the smallest of their two set differences is of size one. We characterize this class of Sperner hypergraphs by a decomposition theorem and derive several consequences from it. In particular, we obtain bounds on the size of 11-Sperner hypergraphs and their transversal hypergraphs, show that the characteristic vectors of the hyperedges are linearly independent over the reals, and prove that 11-Sperner hypergraphs are both threshold and equilizable. The study of 11-Sperner hypergraphs is motivated also by their applications in graph theory, which we present in a companion paper

    The algebra of adjacency patterns: Rees matrix semigroups with reversion

    Full text link
    We establish a surprisingly close relationship between universal Horn classes of directed graphs and varieties generated by so-called adjacency semigroups which are Rees matrix semigroups over the trivial group with the unary operation of reversion. In particular, the lattice of subvarieties of the variety generated by adjacency semigroups that are regular unary semigroups is essentially the same as the lattice of universal Horn classes of reflexive directed graphs. A number of examples follow, including a limit variety of regular unary semigroups and finite unary semigroups with NP-hard variety membership problems.Comment: 30 pages, 9 figure

    Invariant measures concentrated on countable structures

    Get PDF
    Let L be a countable language. We say that a countable infinite L-structure M admits an invariant measure when there is a probability measure on the space of L-structures with the same underlying set as M that is invariant under permutations of that set, and that assigns measure one to the isomorphism class of M. We show that M admits an invariant measure if and only if it has trivial definable closure, i.e., the pointwise stabilizer in Aut(M) of an arbitrary finite tuple of M fixes no additional points. When M is a Fraisse limit in a relational language, this amounts to requiring that the age of M have strong amalgamation. Our results give rise to new instances of structures that admit invariant measures and structures that do not.Comment: 46 pages, 2 figures. Small changes following referee suggestion
    corecore