3,462 research outputs found

    Speed-scaling with no Preemptions

    Full text link
    We revisit the non-preemptive speed-scaling problem, in which a set of jobs have to be executed on a single or a set of parallel speed-scalable processor(s) between their release dates and deadlines so that the energy consumption to be minimized. We adopt the speed-scaling mechanism first introduced in [Yao et al., FOCS 1995] according to which the power dissipated is a convex function of the processor's speed. Intuitively, the higher is the speed of a processor, the higher is the energy consumption. For the single-processor case, we improve the best known approximation algorithm by providing a (1+ϵ)αB~α(1+\epsilon)^{\alpha}\tilde{B}_{\alpha}-approximation algorithm, where B~α\tilde{B}_{\alpha} is a generalization of the Bell number. For the multiprocessor case, we present an approximation algorithm of ratio B~α((1+ϵ)(1+wmaxwmin))α\tilde{B}_{\alpha}((1+\epsilon)(1+\frac{w_{\max}}{w_{\min}}))^{\alpha} improving the best known result by a factor of (52)α1(wmaxwmin)α(\frac{5}{2})^{\alpha-1}(\frac{w_{\max}}{w_{\min}})^{\alpha}. Notice that our result holds for the fully heterogeneous environment while the previous known result holds only in the more restricted case of parallel processors with identical power functions

    Energy Efficient Scheduling and Routing via Randomized Rounding

    Get PDF
    We propose a unifying framework based on configuration linear programs and randomized rounding, for different energy optimization problems in the dynamic speed-scaling setting. We apply our framework to various scheduling and routing problems in heterogeneous computing and networking environments. We first consider the energy minimization problem of scheduling a set of jobs on a set of parallel speed scalable processors in a fully heterogeneous setting. For both the preemptive-non-migratory and the preemptive-migratory variants, our approach allows us to obtain solutions of almost the same quality as for the homogeneous environment. By exploiting the result for the preemptive-non-migratory variant, we are able to improve the best known approximation ratio for the single processor non-preemptive problem. Furthermore, we show that our approach allows to obtain a constant-factor approximation algorithm for the power-aware preemptive job shop scheduling problem. Finally, we consider the min-power routing problem where we are given a network modeled by an undirected graph and a set of uniform demands that have to be routed on integral routes from their sources to their destinations so that the energy consumption is minimized. We improve the best known approximation ratio for this problem.Comment: 27 page

    Energy-efficient algorithms for non-preemptive speed-scaling

    Full text link
    We improve complexity bounds for energy-efficient speed scheduling problems for both the single processor and multi-processor cases. Energy conservation has become a major concern, so revisiting traditional scheduling problems to take into account the energy consumption has been part of the agenda of the scheduling community for the past few years. We consider the energy minimizing speed scaling problem introduced by Yao et al. where we wish to schedule a set of jobs, each with a release date, deadline and work volume, on a set of identical processors. The processors may change speed as a function of time and the energy they consume is the α\alphath power of its speed. The objective is then to find a feasible schedule which minimizes the total energy used. We show that in the setting with an arbitrary number of processors where all work volumes are equal, there is a 2(1+ε)(5(1+ε))α1B~α=Oα(1)2(1+\varepsilon)(5(1+\varepsilon))^{\alpha -1}\tilde{B}_{\alpha}=O_{\alpha}(1) approximation algorithm, where B~α\tilde{B}_{\alpha} is the generalized Bell number. This is the first constant factor algorithm for this problem. This algorithm extends to general unequal processor-dependent work volumes, up to losing a factor of ((1+r)r2)α(\frac{(1+r)r}{2})^{\alpha} in the approximation, where rr is the maximum ratio between two work volumes. We then show this latter problem is APX-hard, even in the special case when all release dates and deadlines are equal and rr is 4. In the single processor case, we introduce a new linear programming formulation of speed scaling and prove that its integrality gap is at most 12α112^{\alpha -1}. As a corollary, we obtain a (12(1+ε))α1(12(1+\varepsilon))^{\alpha -1} approximation algorithm where there is a single processor, improving on the previous best bound of 2α1(1+ε)αB~α2^{\alpha-1}(1+\varepsilon)^{\alpha}\tilde{B}_{\alpha} when α25\alpha \ge 25
    corecore