
Energy Efficient Scheduling and Routing via
Randomized Rounding
Evripidis Bampis∗1, Alexander Kononov†2, Dimitrios Letsios∗1,3,
Giorgio Lucarelli∗1,3, and Maxim Sviridenko‡4

1 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis,Giorgio.Lucarelli}@lip6.fr

2 Sobolev Institute of Mathematics, Novosibirsk, Russia
alvenko@math.nsc.ru

3 IBISC, Université d’ Évry, France
dimitris.letsios@ibisc.univ-evry.fr

4 Department of Computer Science, University of Warwick, UK
M.I.Sviridenko@warwick.ac.uk

Abstract
We propose a unifying framework based on configuration linear programs and randomized round-
ing, for different energy optimization problems in the dynamic speed-scaling setting. We apply
our framework to various scheduling and routing problems in heterogeneous computing and net-
working environments. We first consider the energy minimization problem of scheduling a set
of jobs on a set of parallel speed-scalable processors in a fully heterogeneous setting. For both
the preemptive-non-migratory and the preemptive-migratory variants, our approach allows us to
obtain solutions of almost the same quality as for the homogeneous environment. By exploiting
the result for the preemptive-non-migratory variant, we are able to improve the best known ap-
proximation ratio for the single processor non-preemptive problem. Furthermore, we show that
our approach allows to obtain a constant-factor approximation algorithm for the power-aware
preemptive job shop scheduling problem. Finally, we consider the min-power routing problem
where we are given a network modeled by an undirected graph and a set of uniform demands that
have to be routed on integral routes from their sources to their destinations so that the energy
consumption is minimized. We improve the best known approximation ratio for this problem.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems]: Sequencing
and scheduling

Keywords and phrases randomized rounding, scheduling; approximation, energy-aware; config-
uration linear program

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2013.449

1 Introduction

We focus on energy minimization problems in heterogeneous computing and networking
environments in the dynamic speed-scaling setting. For many years, the exponential increase
of processors’ frequencies followed Moore’s law. This is no more possible because of physical

∗ Supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-010,
and by the project ALGONOW under the program THALES.
† Supported by the RFBR grant No 12-01-00184.
‡ Supported by EPSRC grants EP/J021814/1, EP/D063191/1, FP7 Marie Curie Career Integration Grant

and Royal Society Wolfson Research Merit Award.

© Evripidis Bampis, Alexander Kononov, Dimitrios Letsios, Giorgio Lucarelli, and Maxim Sviridenko;
licensed under Creative Commons License CC-BY

33rd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013).
Editors: Anil Seth and Nisheeth K. Vishnoi; pp. 449–460

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.449
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

450 Energy Efficient Scheduling and Routing via Randomized Rounding

(thermal) constraints. Today, for improving the performance of modern computing systems,
designers use parallelism, i.e., multiple cores running at lower frequencies but offering better
performances than a single core. These systems can be either homogeneous where an identical
core is used many times, or heterogeneous combining general-purpose and special-purpose
cores. Heterogeneity offers the possibility of further improving the performance of the system
by executing each job on the most appropriate type of processors [9]. However in order to
exploit the opportunities offered by the heterogeneous systems, it is essential to focus on
the design of new efficient power-aware algorithms taking into account the heterogeneity of
these architectures. In this direction, Gupta et al. in [12] have studied the impact of the
heterogeneity on the difficulty of various power-aware scheduling problems.

In this paper, we show that rounding configuration linear programs helps in handling the
heterogeneity of both the jobs and the processors. We adopt one of the main mechanisms for
reducing the energy consumption in modern computer systems which is based on the use of
speed scalable processors. Starting from the seminal paper of Yao et al. [15], many papers
adopted the speed-scaling model in which if a processor runs at speed s, then the rate of the
energy consumption, i.e., the power, is P (s) = sα with α a constant close to 3 (new studies
show that α is rather smaller: 1.11 for Intel PXA 270, 1.62 for Pentium M770 and 1.66 for
a TCP offload engine [14]). Moreover, the energy consumption is the integral of the power
over time. This model captures the intuitive idea that the faster a processor works the more
energy it consumes.

We first consider a fully heterogeneous environment where both, the jobs’ characteristics
are processor-dependent and every processor has its own power function. Formally, we
consider the following problem: we are given a set J of n jobs and a set P of m parallel
processors. Every processor i ∈ P obeys to a different speed-to-power function, i.e., it is
associated with a different αi ≥ 1 and hence if a job runs at speed s on processor i, then
the power is P (s) = sαi . Each job j ∈ J has a different release date ri,j , deadline di,j and
workload wi,j if job j is executed on processor i ∈ P. The goal is to find a schedule of
minimum energy respecting the release dates and the deadlines of the jobs.

In this paper we propose a unifying framework for minimizing energy in different het-
erogeneous computing and networking environments. We first consider two variants of the
heterogeneous multiprocessor preemptive problem. In both cases, the execution of a job may
be interrupted and resumed later. In the non-migratory case each job has to be entirely
executed on a single processor. In the migratory case each job may be executed by more
than one processors, without allowing parallel execution of a job. We also focus on the
non-preemptive single processor case. Furthermore, we consider the energy minimization
problem in an heterogeneous job shop environment where the jobs can be preempted. Finally,
we consider the min-power routing problem, introduced in [4], where a set of uniform demands
have to be routed on integral routes from their sources to their destinations so that the
energy consumption to be minimized. We believe that our general techniques will find further
applications in energy optimization.

1.1 Related Work
Yao et al. [15] proposed an optimal algorithm for finding a feasible preemptive schedule
with minimum energy consumption when a single processor is available. The homogeneous
multiprocessor case has been solved optimally in polynomial time when both the preemption
and the migration of jobs are allowed [2, 5, 7, 8]. Albers et al. [3] considered the homogeneous
multiprocessor preemptive problem, where the migration of the jobs is not allowed. They
proved that the problem is NP-hard even for instances with common release dates and

E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko 451

common deadlines. Greiner et al. [10] gave a generic reduction transforming an optimal
schedule for the homogeneous multiprocessor problem with migration, to a Bdαe-approximate
solution for the homogeneous multiprocessor preemptive problem without migration, where
Bdαe is the dαe-th Bell number. Antoniadis and Huang [6] proved that the single processor
non-preemptive problem is NP-hard even for instances in which for any two jobs j and j′
with rj ≤ rj′ it holds that dj ≥ dj′ . They also proposed a 25α−4-approximation algorithm
for general instances. Andrews et al. [4] studied the min-power routing problem and
for uniform demands, i.e. for the case where all the demands have the same value, they
proposed a γ-approximation algorithm, where γ = max{1 + τ2α(τ+1) log e, 2 + τ2α(τ+1)}, with
τ = d2 log(α+ 4)e. For non-uniform demands, they proposed a O(logα−1D)-approximation
algorithm, where D is the maximum value of the demands. For further results see [1].

1.2 Notation
Given a schedule S we denote by E(S) the total energy consumed by S. We denote by S∗
an optimal schedule and by OPT the energy consumption of S∗. For each job j ∈ J , we
say that j is alive on processor i ∈ P during the interval [ri,j , di,j]. Let α = maxi∈P{αi}.
The Bell number, Bn, is defined for any integer n ≥ 0 and corresponds to the number of
partitions of a set of n items. It is well known that Bell numbers satisfy the following equality

Bn =
∞∑
k=0

kne−1

k!

known as Dobinski’s formula. Another way to state this formula is that n-th Bell number is
equal to the n-th moment of Poisson random variable with parameter (expected value) 1.
That naturally leads to a more general definition. The generalized Bell number, denoted
by B̃α =

∑∞
k=0

kαe−1

k! , is defined for any α ∈ R+ and corresponds to the α-th (fractional)
moment of Poisson random variable with parameter 1. Note that the ratios of our algorithms
depend on the generalized Bell number. Due to space constraints, some results and proofs
will be given in the full version of the paper.

1.3 Our Contribution
In this paper we formulate heterogeneous scheduling and routing problems using configuration
linear programs (LPs) and we apply randomized rounding. In Section 3, we consider the
heterogeneous multiprocessor speed-scaling problem without migrations and we propose
an approximation algorithm of ratio (1 + ε)B̃α. As this LP has an exponential number of
variables, we give an alternative (compact) formulation of the problem using a polynomial
number of variables and we prove the equivalence between the two LP relaxations. For real
values of α our result improves the Bdαe approximation ratio of [10] for the homogeneous
case to (1 + ε)B̃α for the fully heterogeneous environment that we consider here (see Table 1).
In Section 4, using again a configuration LP formulation, we present an algorithm for the
heterogeneous multiprocessor speed-scaling problem with migration. This algorithm returns
a solution within an additive factor of ε far from the optimal solution and runs in time
polynomial to the size of the instance and to 1/ε. This result generalizes the results of
[2, 5, 7, 8] from an homogeneous environment to a fully heterogeneous environment. In
Section 5, we transform the single processor speed-scaling problem without preemptions to
the heterogeneous multiprocessor problem without migrations and we give an approximation
algorithm of ratio 2α−1(1 + ε)B̃α, improving upon the previous known 25α−4-approximation
algorithm in [6] for any α < 114 (see Table 1). In Section 6, we study the power-aware

FSTTCS 2013

452 Energy Efficient Scheduling and Routing via Randomized Rounding

Table 1 Comparison of our approximation ratios vs. better previous known ratios for: (i) the
preemptive multiprocessor problem without migrations, (ii) the single processor non-preemptive
problem, and (iii) the min-power routing problem.

Preemptive Non-preemptive Routing
Value without migrations single processor uniform demands
of α Homogeneous Heterogeneous [6] This paper [4] This paper

[10] This paper

1.11 2 1.07(1+ε) 2.93 1.15(1+ε) 375 1.07
1.62 2 1.49(1+ε) 17.15 2.30(1+ε) 2196 1.49
1.66 2 1.54(1+ε) 19.70 2.43(1+ε) 2522 1.54

2 2 2(1+ε) 64 4(1+ε) 8193 2
2.5 5 3.08(1+ε) 362 8.72(1+ε) 46342 3.08
3 5 5(1+ε) 2048 20(1+ε) 262145 5

preemptive job shop scheduling problem and we propose a ((1 + ε)B̃α)-approximation
algorithm, where µ is the number of all the operations. Finally, in Section 7, we improve
the analysis for the min-power routing problem with uniform demands given in [4], based
on the randomized rounding analysis that we propose in this paper. Our approach gives an
approximation ratio of B̃α significantly improving the analysis given in [4] (see Table 1).

2 Technical Probabilistic Propositions

I Proposition 1. Consider a set of real numbers {Y1, Y2, . . . , Yn} such that Yi ∈ [0, 1] for
all i ∈ {1, . . . , n} and a set of non-negative constants {e1, e2, . . . , en}. Assume that we split
Yn to Y ′n ≥ 0 and Y ′n+1 ≥ 0 such that Yn = Y ′n + Y ′n+1. Let en+1 = en and Y ′j = Yj,
j ∈ {1, 2, . . . , n− 1}. It holds that

∑
S⊆{1,2,...,n}

|S|α−1

(∑
j∈S

ej

)∏
j∈S

Yj

∏
j 6∈S

(1− Yj) ≤
∑

S⊆{1,2,...,n+1}

|S|α−1

(∑
j∈S

ej

)∏
j∈S

Y
′
j

∏
j 6∈S

(1− Y ′j)

I Proposition 2. For any α ≥ 1, the function f(x) = xα and parameter a ∈ [0, 1] we have

E[f(Ba)] ≤ E[f(Pa)]

where Ba is a sum of n independent Bernoulli random variables, E[Ba] = a and Pa is a
Poisson random variable with parameter a.

I Proposition 3. For any real α ≥ 1 and a Poisson random variable Pλ with parameter
λ ≥ 0, we have:
(a) If 0 ≤ λ ≤ 1, then E[Pαλ] ≤ λE[Pα1].
(b) If λ > 1, then E[Pαλ] ≤ λαE[Pα1].

3 Heterogeneous Multiprocessor without Migrations

In this section we consider the case where the migration of jobs is not permitted, but their
preemption is allowed. The corresponding homogeneous problem is known to be NP-hard
even if all jobs have common release dates and deadlines [3]. We propose an approximation
algorithm by formulating the problem as a configuration integer program (IP) with an

E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko 453

exponential number of variables and a polynomial number of constraints. Given an optimal
solution for the configuration LP relaxation, we apply randomized rounding to get a feasible
schedule for our problem. In order to get a polynomial-time algorithm, we can give another
(compact) formulation of our problem with a polynomial number of variables and constraints
and we can show that the relaxations of the two formulations are equivalent.

In order to formulate our problem as a configuration IP we need to discretize the time.
In the following lemma we assume that the release dates and the deadlines of all jobs in all
processors are integers.

I Lemma 4. There is a feasible schedule with energy consumption at most ((1 + ε
1−ε)(1 +

2
n−2))α ·OPT in which each piece of each job j ∈ J (j is executed on processor i ∈ P) starts
and ends at a time point ri,j + k ε

n3 (di,j − ri,j), where k ≥ 0 is an integer.

Let S be a schedule that satisfies Lemma 4 and let j ∈ J be a job executed on the
processor i ∈ P in S. The above lemma implies that the interval (ri,j , di,j] can be partitioned
into polynomial, with respect to n and 1/ε, number of equal length slots. In each of these
slots, j either is executed during the whole slot or is not executed at all. In what follows we
consider schedules that satisfy Lemma 4.

3.1 Linear Programming Relaxation
A configuration c is a schedule for a single job on a single processor. Specifically, a config-
uration determines the slots, with respect to Lemma 4, during which one job is executed.
Given a configuration c for a job j ∈ J , we can define the execution time of j that is equal
to the number of slots in c multiplied by the length of the slot. Due to the convexity of the
speed-to-power function, in a minimum energy schedule that satisfies Lemma 4, the job j
runs at a constant speed sj . Hence, sj is equal to the work of j over its execution time. Let
Cij be the set of all possible feasible configurations for all jobs in all processors.

In order to ensure the feasibility of our schedule we need to further partition the time,
by merging the slots for all jobs. Given a processor i ∈ P, consider the time points of all
jobs of the form ri,j + k ε

n3 (di,j − ri,j) as introduced in Lemma 4. Let ti,1, ti,2, . . . , ti,`i be the
ordered sequence of these time points. Consider now the intervals (ti,p, ti,p+1], 1 ≤ p ≤ `i− 1.
In a schedule that satisfies Lemma 4, in each such interval either there is exactly one job that
is executed during the whole interval or the interval is idle. Note also that these intervals
might not have the same length. Let I be the set of all these intervals for all processors.

We introduce the binary variable xi,j,c that is equal to one if the job j ∈ J is entirely
executed on the processor i ∈ P according to the configuration c, and zero otherwise. Note
that, given the configuration and the processor i where the job j is executed, we can compute
the energy consumption Ei,j,c for the execution of j. For ease of notation, we say I ∈ (i, j, c)
if the interval I ∈ I is included in the configuration c of processor i ∈ P for the job j ∈ J ,
that is there is a slot (ri,j + k ε

n3 (di,j − ri,j), ri,j + (k + 1) ε
n3 (di,j − ri,j)] in c that contains I.

min
∑
i,j,c

Ei,j,c · xi,j,c∑
i,c

xi,j,c ≥ 1 ∀j ∈ J (1)

∑
(i,j,c):I∈(i,j,c)

xi,j,c ≤ 1 ∀I ∈ I (2)

xi,j,c ∈ {0, 1} ∀i ∈ P, j ∈ J , c ∈ Cij (3)

FSTTCS 2013

454 Energy Efficient Scheduling and Routing via Randomized Rounding

Inequality (1) enforces that each job is entirely executed according to exactly one configuration.
Inequality (2) ensures that at most one job is executed in each interval (ti,p, ti,p+1], 1 ≤ p ≤
`i− 1. We next relax the constraints (3) such that xi,j,c ≥ 0. Since the structure of this LP is
quite simple we can define an equivalent compact LP relaxation with polynomial number of
constraints and variables. We describe how to do it in the full version of the paper. For now
we assume that we can find an optimal solution of our configuration LP in polynomial time.

3.2 Randomized Rounding
In this section, we show how to apply randomized rounding to get an approximation algorithm
for our problem. Our algorithm follows.

Algorithm 1
1: Solve the configuration LP relaxation.
2: For each job j ∈ J , choose a configuration at random with probability xi,j,c.
3: Let KI be the number of configurations that contain the interval I. Scale the speeds

during I by a factor of KI .

I Theorem 5. Assume that αi ≥ 1 for all i = 1, . . . ,m. Algorithm 1 achieves an approx-
imation ratio of ((1 + ε

1−ε)(1 + 2
n−2))αB̃α for the heterogeneous multiprocessor preempt-

ive speed-scaling problem without migrations in time polynomial to n and to 1/ε, where
α = maxi∈P αi.

Proof. For each interval I ∈ I, we estimate its expected energy consumption. By definition,
an interval corresponds to a single processor i ∈ P . Given a job j ∈ J , let nj be the number
of the non-zero xi,j,c variables such that I belongs to configuration c. Moreover, let Xj,k be
the k-th, 1 ≤ k ≤ nj , of the above non-zero variables and sj,k be the corresponding speed.

Let Yj be the probability that the job j is assigned to be processed in the interval I by
the randomized rounding procedure, that is Yj =

∑nj
k=1Xj,k. By the constraint (2), we know

that
∑n
j=1 Yj ≤ 1. The expected energy that the job j consumes on the interval I under the

condition that j is assigned to be processed in the interval I without considering the other
jobs is ej =

∑nj

k=1
|I|sαi

j,k
Xj,k

Yj
.

The energy consumption in the interval I achieved by the optimal solution of the LP
relaxation is LP ∗ =

∑n
j=1 ejYj . If the randomized rounding assigns a set S of jobs to be

processed during the interval I then we need to speed up the execution of all jobs in the
intervals I by factor |S|. This means that the energy consumption increases by the factor
|S|αi−1. Therefore, the expected energy consumption during the interval I in the final
approximate schedule is

EI =
∑

S⊆{1,2,...,n}

|S|αi−1

∑
j∈S

ej

PS(Y ′1 , Y ′2 , . . . , Y ′n)

where PS(Y ′1 , Y ′2 , . . . , Y ′n) is the probability that exactly the jobs in the set S are selected
during I, and Y ′1 , Y ′2 , . . . , Y ′n are independent Bernoulli random variables with Pr(Y ′j = 1) =
Yj . Therefore, we have that

EI =
∑

S⊆{1,2,...,n}

|S|αi−1

∑
j∈S

ej

∏
j∈S

Yj
∏

j∈J\S

(1− Yj)

E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko 455

We can assume that there exists Q ∈ N such that Yj = qj
Q , 1 ≤ j ≤ n, for some qj ∈ N (we

don’t make any assumptions on the encoding length of these numbers, we use them only for
analysis purposes) since these numbers come from solving an LP with rational coefficients.
Hence we can chop each Yj into qj pieces Yj,` = 1

Q = Y . Let q =
∑n
j=1 qj be the number

of all chopped pieces and ej,` = ej , 1 ≤ j ≤ n and 1 ≤ ` ≤ qj . Note that, q ≤ Q since∑n
j=1 Yj ≤ 1. For the ease of exposition we identify the set {1, 2, . . . , q} with the set of all

pairs (j, `) such that 1 ≤ j ≤ n and 1 ≤ ` ≤ qj . Using Proposition 1 we get

EI ≤
∑

S⊆{1,2,...,q}

|S|αi−1

 ∑
(j,`)∈S

ej,`

Y |S|(1− Y)q−|S|

=
q∑

k=1

∑
S⊆{1,2,...,q},|S|=k

 ∑
(j,`)∈S

ej,`

 kαi−1Y k(1− Y)q−k

By changing the order of the sums in the above inequality we get

EI ≤

 n∑
j=1

qj∑
`=1

ej,`

 q∑
k=1

(
q − 1
k − 1

)
kαi−1Y k(1− Y)q−k

=

 n∑
j=1

qjej

 q∑
k=1

(
q

k

)(q−1
k−1
)(

q
k

) kαi−1Y k(1− Y)q−k

=
(∑n

j=1 qjej

q

)
q∑

k=1

(
q

k

)
kαiY k(1− Y)q−k = Q

q
LP ∗I

q∑
k=1

(
q

k

)
kαiY k(1− Y)q−k

≤ Q

q
LP ∗I E[Bαiq/Q]

where
(
q−1
k−1
)
is the number of sets of cardinality k that contain j. Moreover, Bq/Q is a random

variable with expectation q
Q which corresponds to the sum of q independent Bernoulli random

variables. Therefore,

EI ≤ Q

q
LP ∗I · E[Bαiq/Q] ≤ Q

q
LP ∗I · E[Pαiq/Q] ≤ Q

q
LP ∗I ·

q

Q
E[Pαi1]

where the second inequality follows from Proposition 2 and the last inequality follows
from Proposition 3(a). Therefore, by summing over all intervals and processors and as
α = maxi∈P αi, we get

E ≤ LP ∗ · E[Pα1] = LP ∗ · B̃α

and then the theorem follows. J

4 Heterogeneous Multiprocessor with Migrations

In this section we present an algorithm for the heterogeneous multiprocessor speed-scaling
problem with preemptions and migrations. We assume that, if x units of work for the job
j are executed on the processor i, then x/wi,j portion of j is accomplished by i. We first
formulate the problem as a configuration LP with an exponential number of variables and
a polynomial number of constraints. Then, we consider the dual LP and we show how to
apply the Ellipsoid algorithm to it and obtain an OPT + ε solution for the primal LP.

FSTTCS 2013

456 Energy Efficient Scheduling and Routing via Randomized Rounding

A configuration c is a one-to-one assignment of nc, 0 ≤ nc ≤ m, jobs to the m processors
as well as an assignment of a speed value for every processor. We denote by C the set of all
possible configurations. A well defined schedule for our problem has to specify exactly one
configuration at each time t. The cardinality of C is unbounded, since the processors’ speeds
may be real values. Hence, we have to discretize the possible speed values and consider only
a finite number of speeds at which the processors can run.

I Lemma 6. There is a feasible schedule of energy consumption at most OPT + ε that uses
a finite (exponential to the size of the instance and polynomial to 1/ε) number of discrete
processors’ speeds.

In what follows in this section, we deal with schedules that satisfy Lemma 6. Let, now,
t0 < t1 < . . . < t` be the time instants that correspond to release dates and deadlines of jobs
so that there is a time ti for every possible release date and deadline. We denote by I the
set of all possible intervals of the form (ti−1, ti], for 1 ≤ i ≤ `. Let |I| be the length of the
interval I.

We introduce a variable xI,c, for each I ∈ I and c ∈ C, which corresponds to the
total processing time during the interval I ∈ I that the processors run according to the
configuration c ∈ C. We denote by EI,c the instantaneous energy consumption of the
processors if they run with respect to the configuration c during the interval I. Moreover, let
sj,c be the speed of the job j according to the configuration c. For notational convenience, we
denote by (I, c) the set of jobs which are alive during the interval I and which are executed
on some processor by the configuration c. Finally, let i(j, c) be the processor on which the
job j is assigned into configuration c. We propose the following configuration LP:

min
∑

I∈I,c∈C
EI,c · xI,c∑

c∈C
xI,c ≤ |I| ∀I ∈ I (4)

∑
I,c: j∈(I,c)

sj,c
wi(j,c),j

xI,c ≥ 1 ∀j ∈ J (5)

xI,c ≥ 0 ∀I ∈ I, c ∈ C

Consider the schedule for the interval I that occurs by an arbitrary order of the configurations
assigned to I. This schedule is feasible, as the processing time of all configurations assigned
to I is equal to the length of the interval. Hence, Inequality (4) ensures that for each interval
I there is exactly one configuration for each time t ∈ I. Inequality (5) implies that each job
j is entirely executed.

The above LP has an exponential number of variables. In order to handle this, we create
the dual LP, which has an exponential number of constraints. In the full version of the
paper we will show how to efficiently apply the Ellipsoid algorithm to it (see [11]). For
this, we provide a separation oracle, i.e., we give a polynomial-time algorithm which given a
solution for the dual LP decides if this solution is feasible or otherwise it identifies a violated
constraint. As we can compute an optimal solution for the dual LP, we can also find an
optimal solution for the primal LP by solving it with the variables corresponding to the
constraints that were found to be violated during the run of the ellipsoid method and setting
all other primal variables to be zero. The number of these violated constraints is polynomial
to the size of the instance and to 1/ε. Thus, we can solve the primal LP with a polynomial
number of variables.

E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko 457

I Theorem 7. A schedule for the heterogeneous multiprocessor speed-scaling problem with
migrations of energy consumption OPT + ε can be found in polynomial time with respect to
the size of the instance and to 1/ε.

5 Single processor without Preemptions

In this section we present an approximation algorithm for the single processor speed-scaling
problem when the preemption of jobs is not allowed. As a single processor is available, each
job j ∈ J has a unique release date rj , deadline dj and amount of work wj , while when the
processor runs at speed s, it consumes energy with rate sα. Due to the convexity of the speed-
to-power function, j runs at a constant speed sj in an optimal schedule S∗. Antoniadis and
Huang [6] proved that this problem is NP-hard and gave a 25α−4-approximation algorithm.

The algorithm in [6] consists of a series of transformations of the initial instance. Our
algorithm applies the first of these transformations. Then, we give a transformation to the
heterogeneous multiprocessor speed-scaling problem without migrations. For completeness,
we describe the first transformation given in [6]. We partition the time as follows: let t1
be the smallest deadline of any job in J , i.e., t1 = min{dj : j ∈ J }. Let J1 ⊆ J be
the set of jobs which are released before t1, i.e., J1 = {j ∈ J : rj ≤ t1}. Next, we set
t2 = min{dj : j ∈ J \ J1} and J2 = {j ∈ J : t1 < rj ≤ t2}, and we continue this procedure
until all jobs are assigned into a subset of jobs. Let k be the number of subsets of jobs that
have been created. Moreover, let t0 = min{rj : j ∈ J } and tk+1 = max{dj : j ∈ J }.

Consider the intervals (ti−1, ti], 1 ≤ i ≤ k + 1. Let Ij be the set of intervals in which the
job j ∈ J is alive. In some of them j is alive during the whole interval, while in at most two
of them it is alive during a part of the interval. Consider now the non-preemptive problem
in which the execution of j should take place into exactly one interval I ∈ Ij . Note that the
execution of j should respect its release date and its deadline.

I Proposition 8. Let S be an optimal non-preemptive schedule for the problem in which the
execution of each job j ∈ J should take place into exactly one interval I ∈ Ij. It holds that
E(S) ≤ 2α−1OPT .

Next, we describe how to pass from the transformed problem to the heterogeneous
multiprocessor speed-scaling problem without migrations. For every interval (ti−1, ti], 1 ≤
i ≤ k+ 1, we create a processor i. For every job j ∈ J which is alive during a part or during
the whole interval (ti−1, ti], 1 ≤ i ≤ k + 1, we set: (i) ri,j = 0 if rj ≤ ti−1 or ri,j = rj − ti−1
if rj > ti−1, (ii) di,j = ti − ti−1 if dj > ti or ri,j = dj − ti−1 if dj ≤ ti, and (iii) wi,j = wj .
For each processor i, 1 ≤ i ≤ k + 1, we set αi = α.

We next apply the approximation algorithm presented in Section 3. This algorithm will
create a preemptive schedule S. However, we can transform S into a non-preemptive schedule
S ′ of the same energy consumption. To see this, note that in each processor i, 1 ≤ i ≤ k + 1,
each job j ∈ J has ri,j = 0 or di,j = ti − ti−1. Hence, by applying the Earliest Deadline
First policy to each processor separately we can get the non-preemptive schedule S ′.

I Theorem 9. The single processor speed-scaling problem without preemptions can be ap-
proximated within a factor of 2α−1((1 + ε

1−ε)(1 + 2
n−2))αB̃α.

6 Job Shop Scheduling with Preemptions

In this section, we consider the energy minimization problem in a job shop environment.
The instance of the problem consists of a set of jobs J , where each job j ∈ J consists of µj

FSTTCS 2013

458 Energy Efficient Scheduling and Routing via Randomized Rounding

operations Oj,1, Oj,2, . . . , Oj,µj , which must be executed in this order. That is, Ok+1,j can
start only once the operation Oj,k has finished. Let µ be the number of all the operations, i.e.
µ =

∑
j∈J µj . Each operation Oj,k has an amount of work wj,k. Moreover, we are given a set

of m heterogeneous processors P. Each operation Oj,k, j ∈ J and 1 ≤ k ≤ µj , is associated
with a single processor i ∈ P on which it must be entirely executed. Note that more than
one operations of the same job may have to be executed on the same processor. Furthermore,
for each operation Oj,k, we are given a release date rj,k and a deadline dj,k. For each j ∈ J ,
we can assume that rj,1 ≤ rj,2 ≤ . . . ≤ rj,µj as well as dj,1 ≤ dj,2 ≤ . . . ≤ dj,µj . Preemptions
of operations are allowed. The objective is to find a feasible schedule of minimum energy
consumption.

We propose a configuration IP for the job shop problem. A configuration is a schedule
for a job, i.e., a schedule for all its operations. To define the configurations, we discretize
the time into a number of length slots, which is polynomial to the size of the instance and
to 1/ε. As the configuration LP relaxation has an exponential number of variables and a
polynomial number of constraints, we consider its dual and we propose a separation oracle
for it. Thus, we can solve our problem by applying the Ellipsoid algorithm. Then we apply
the same randomized rounding as in Section 3.2 and the following theorem holds (we will
give a formal proof in the full version).
I Theorem 10. There is an algorithm of complexity polynomial to µ and to 1/ε with
approximation ratio (1 + ε)α(1 + 2

µ−2)α(1 + ε
1−ε)αB̃α for the preemptive job shop scheduling

problem with the energy objective.

7 Routing

We are given a directed graph G = (V,E). We are also given a set of demands D. The
demand i ∈ D is associated with a source node si and a destination node ti and it requests
di integer units of bandwidth. We consider the special case where all the demands request
the same bandwidth, i.e. di = d for all i ∈ D. Each edge e ∈ E is associated with a constant
αe such that if f units of demand cross e, then there is an energy consumption equal to
cef

αe . The objective is to route all the demands from their sources to their destinations so
that the total energy consumption is minimized. We consider the unsplittable version of the
problem where each demand has to be routed through a single path.

The min-power routing problem can be formulated as an integer convex program (see [4]).
Specifically, we introduce a variable xe, for all e ∈ E, which corresponds to the number of
demands that cross the edge e and a binary variable yi,e which indicates if the demand i ∈ D
crosses the edge e. Then, we obtain the following integer convex program suggested in [4].

min
∑
e∈E

ced
αe max{xe, xαee }

xe =
∑
i

yi,e ∀e ∈ E (6)∑
e∈Γ+(u)

yi,e −
∑

e∈Γ−(u)

yi,e = 0 ∀i ∈ D, u ∈ V \ {si, ti} (7)

∑
e∈Γ+(si)

yi,e = 1 ∀i ∈ D (8)

∑
e∈Γ−(ti)

yi,e = 1 ∀i ∈ D (9)

yi,e ∈ {0, 1} ∀i ∈ D, e ∈ E (10)

E. Bampis, A. Kononov, D. Letsios, G. Lucarelli, and M. Sviridenko 459

The above integer convex program is a valid formulation for our problem. Note first that
our original goal is to minimize the total energy consumption for all edges, i.e.,

∑
e∈E ced

αexαee .
Since in an optimal integral solution using this objective all variables xe are integers, the
above program has the same optimal integral solution as if we have used as objective the∑
e∈E ced

αexαee . However, the use of this objective leads to an integer program with large
integrality gap [4]. For this reason, we modify the objective to be

∑
e∈E ced

αe max{xe, xαee }
obtaining a program with smaller integrality gap. Equation (6) relates the variables xe and
yi,e, while Equations (7)-(9) ensure the flow conservation.

In order to obtain a feasible integral solution for our problem, we solve the relaxation of
the above convex program, where the constraints yi,e ∈ {0, 1} are relaxed so that yi,e ≥ 0,
and we obtain a fractional solution. Then, we apply a randomized rounding procedure,
introduced by Raghavan and Thompson [13], in order to select a path for each demand.
Specifically, for each demand i ∈ D, we consider the subgraph of G that contains only the
edges with yi,e > 0 and define the standard flow decomposition. We compute a (si, ti)-path
p on this graph and we set zi,p = mine∈p{yi,e}. Then, we subtract zi,p from the variables
yi,e which correspond to the edges of the path p. We continue this procedure until there are
no (si, ti)-paths. Due to the flow conservation, at this point there are no edges with yi,e > 0.

The randomized rounding algorithm chooses a path p for the demand i with probability
zi,p. Note that

∑
p zi,p = 1.

I Theorem 11. There is a B̃α-approximation algorithm for the min-power routing problem
with uniform demands.

Proof. Consider an edge e ∈ E and let λe =
∑
i∈D yi,e be the expected value of the number

of demands that cross e. The expected energy consumption on the edge e is

Ee = ced
αe
∑
S⊆D

|S|αePr(S)

where Pr(S) is the probability that exactly the demands in S are routed through (cross) the
edge e. Hence, we have

Ee = ced
αe
∑
S⊆D

|S|αe
∏
i∈S

yi,e
∏
i 6∈S

(1− yi,e).

Since yi,e come from a mathematical programming solver we can assume that that there exist
N ∈ N such that yie = λe · qi,eN for some qi,e ∈ N. Similarly with the proof of Theorem 5, we
can chop each yi,e into qi,e pieces zi,e,` = λe

N . Note that, N =
∑
i∈D qi,e since

∑
i∈D

yi,e
λe

= 1.
For the ease of exposition we identify the set {1, 2, . . . , N} with the set of all pairs ((i, e), `)
such that i ∈ D and 1 ≤ ` ≤ qi,e. Iteratively applying Proposition 1 we get

Ee ≤ ced
αe

∑
S⊆{1,2,...,N}

|S|αe
(
λe
N

)|S|(
1− λe

N

)N−|S|

= ced
αe

N∑
k=0

∑
S∈{1,2,...,N},|S|=k

kαe
(
λe
N

)k (
1− λe

N

)N−k

= ced
αe

N∑
k=0

kαe
(
N

k

)(
λe
N

)k (
1− λe

N

)N−k
as there are

(
N
k

)
subsets of {1, 2, . . . , N} with k elements. The sum in the last expression is

the αe-th moment of Binomial random variable (sum of independent Bernoulli trials) with

FSTTCS 2013

460 Energy Efficient Scheduling and Routing via Randomized Rounding

expectation λe and hence by using Propositions 2 and 3 we get

Ee ≤ cedαeE[Pαeλe] ≤ cedαe max{λe, λαee }E[Pαe1] = LP ∗e B̃αe

where Pλe is a Poisson random variable with parameter λe. By summing up over all edges
and setting α = maxe∈E{αe}, the theorem follows. J

In Table 1, we show that our analysis for the algorithm presented in [4] leads to a
significantly better approximation ratio.

Acknowledgements. We would like to thank Oleg Pikhurko for providing the original proof
of Part (b) of the Proposition 3.

References
1 S. Albers. Algorithms for dynamic speed scaling. In STACS, LIPIcs, Vol. 9, pages 1–11,

2011. doi: 10.4230/LIPIcs.STACS.2011.1
2 S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling with migration:

extended abstract. In SPAA, pages 279–288. ACM, 2011.
3 S. Albers, F. Müller, and S. Schmelzer. Speed scaling on parallel processors. In SPAA,

pages 289–298. ACM, 2007.
4 M. Andrews, A. F. Anta, L. Zhang, and W. Zhao. Routing for power minimization in the

speed scaling model. IEEE/ACM Trans. on Networking, 20:285–294, 2012.
5 E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling on parallel processors with

migration. In Euro-Par, volume 7484 of LNCS, pages 128–140, 2012.
6 A. Antoniadis and C.-C. Huang. Non-preemptive speed scaling. In SWAT, volume 7357 of

LNCS, pages 249–260. Springer, 2012.
7 E. Bampis, D. Letsios, and G. Lucarelli. Green scheduling, flows and matchings. In ISAAC,

volume 7676 of LNCS, pages 106–115. Springer, 2012.
8 B. D. Bingham and M. R. Greenstreet. Energy optimal scheduling on multiprocessors with

migration. In ISPA, pages 153–161. IEEE, 2008.
9 A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli. State-of-

the-art in heterogeneous computing. Sci. Program., 18:1–33, 2010.
10 G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multiprocessor

scheduling. In SPAA, pages 11–18. ACM, 2009.
11 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Op-

timizations, 2nd corrected edition. Springer-Verlag, 1993.
12 A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling heterogeneous

processors isn’t as easy as you think. In SODA, pages 1242–1253, 2012.
13 P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good

algorithms and algorithmic proofs. Comninatorica, 7:365–374, 1991.
14 A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing

systems. In INFOCOM, pages 2007–2015, 2009.
15 F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In FOCS,

pages 374–382, 1995.

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.1

	Introduction
	Related Work
	Notation
	Our Contribution

	Technical Probabilistic Propositions
	Heterogeneous Multiprocessor without Migrations
	Linear Programming Relaxation
	Randomized Rounding

	Heterogeneous Multiprocessor with Migrations
	Single processor without Preemptions
	Job Shop Scheduling with Preemptions
	Routing

