9,325 research outputs found

    Controlled Fuzzy Parallel Rewriting

    Get PDF
    We study a Lindenmayer-like parallel rewriting system to model the growth of filaments (arrays of cells) in which developmental errors may occur. In essence this model is the fuzzy analogue of the derivation-controlled iteration grammar. Under minor assumptions on the family of control languages and on the family of fuzzy languages in the underlying iteration grammar, we show (i) regular control does not provide additional generating power to the model, (ii) the number of fuzzy substitutions in the underlying iteration grammar can be reduced to two, and (iii) the resulting family of fuzzy languages possesses strong closure properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed full Abstract Family of Fuzzy Languages

    Pattern matching in compilers

    Get PDF
    In this thesis we develop tools for effective and flexible pattern matching. We introduce a new pattern matching system called amethyst. Amethyst is not only a generator of parsers of programming languages, but can also serve as an alternative to tools for matching regular expressions. Our framework also produces dynamic parsers. Its intended use is in the context of IDE (accurate syntax highlighting and error detection on the fly). Amethyst offers pattern matching of general data structures. This makes it a useful tool for implementing compiler optimizations such as constant folding, instruction scheduling, and dataflow analysis in general. The parsers produced are essentially top-down parsers. Linear time complexity is obtained by introducing the novel notion of structured grammars and regularized regular expressions. Amethyst uses techniques known from compiler optimizations to produce effective parsers.Comment: master thesi

    Extended macro grammars and stack controlled machines

    Get PDF
    K-extended basic macro grammars are introduced, where K is any class of languages. The class B(K) of languages generated by such grammars is investigated, together with the class LB(K) of languages generated by the corresponding linear basic grammars. For any full semi-AFL K, B(K) is a full AFL closed under iterated LB(K)-substitution, but not necessarily under substitution. For any machine type D, the stack controlled machine type corresponding to D is introduced, denoted S(D), and the checking-stack controlled machine type CS(D). The data structure of this machine is a stack which controls a pushdown of data structures from D. If D accepts K, then S(D) accepts B(K) and CS(D) accepts LB(K). Thus the classes B(K) are characterized by stack controlled machines and the classes LB(K), i.e., the full hyper-AFLs, by checking-stack controlled machines. A full basic-AFL is a full AFL K such that B(K)C K. Every full basic-AFL is a full hyper-AFL, but not vice versa. The class of OI macro languages (i.e., indexed languages, i.e., nested stack automaton languages) is a full basic-AFL, properly containing the smallest full basic-AFL. The latter is generated by the ultrabasic macro grammars and accepted by the nested stack automata with bounded depth of nesting (and properly contains the stack languages, the ETOL languages, i.e., the smallest full hyper-AFL, and the basic macro languages). The full basic-AFLs are characterized by bounded nested stack controlled machines

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of our approach is validated through an extensive experimental evaluation

    Algebraic Aspects of Families of Fuzzy Languages

    Get PDF
    We study operations on fuzzy languages such as union, concatenation, Kleene \star, intersection with regular fuzzy languages, and several kinds of (iterated) fuzzy substitution. Then we consider families of fuzzy languages, closed under a fixed collection of these operations, which results in the concept of full Abstract Family of Fuzzy Languages or full AFFL. This algebraic structure is the fuzzy counterpart of the notion of full Abstract Family of Languages that has been encountered frequently in investigating families of crisp (i.e., non-fuzzy) languages. Some simpler and more complicated algebraic structures (such as full substitution-closed AFFL, full super-AFFL, full hyper-AFFL) will be considered as well.\ud In the second part of the paper we focus our attention to full AFFL's closed under iterated parallel fuzzy substitution, where the iterating process is prescribed by given crisp control languages. Proceeding inductively over the family of these control languages, yields an infinite sequence of full AFFL-structures with increasingly stronger closure properties

    Hierarchies of hyper-AFLs

    Get PDF
    For a full semi-AFL K, B(K) is defined as the family of languages generated by all K-extended basic macro grammars, while H(K) B(K) is the smallest full hyper-AFL containing K; a full basic-AFL is a full AFL K such that B(K) = K (hence every full basic-AFL is a full hyper-AFL). For any full semi-AFL K, K is a full basic-AFL if and only if B(K) is substitution closed if and only if H(K) is a full basic-AFL. If K is not a full basic-AFL, then the smallest full basic-AFL containing K is the union of an infinite hierarchy of full hyper-AFLs. If K is a full principal basic-AFL (such as INDEX, the family of indexed languages), then the largest full AFL properly contained in K is a full basic-AFL. There is a full basic-AFL lying properly in between the smallest full basic-AFL and the largest full basic-AFL in INDEX

    The Lambek calculus with iteration: two variants

    Full text link
    Formulae of the Lambek calculus are constructed using three binary connectives, multiplication and two divisions. We extend it using a unary connective, positive Kleene iteration. For this new operation, following its natural interpretation, we present two lines of calculi. The first one is a fragment of infinitary action logic and includes an omega-rule for introducing iteration to the antecedent. We also consider a version with infinite (but finitely branching) derivations and prove equivalence of these two versions. In Kleene algebras, this line of calculi corresponds to the *-continuous case. For the second line, we restrict our infinite derivations to cyclic (regular) ones. We show that this system is equivalent to a variant of action logic that corresponds to general residuated Kleene algebras, not necessarily *-continuous. Finally, we show that, in contrast with the case without division operations (considered by Kozen), the first system is strictly stronger than the second one. To prove this, we use a complexity argument. Namely, we show, using methods of Buszkowski and Palka, that the first system is Π10\Pi_1^0-hard, and therefore is not recursively enumerable and cannot be described by a calculus with finite derivations
    corecore