404 research outputs found

    Cooperative UAV Trajectory Planning with Multiple Dynamic Targets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83660/1/AIAA-2010-8437-330.pd

    Robustness of Mission Plans for Unmanned Aircraft.

    Full text link
    This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120837/1/mniendo_1.pd

    Noise Aware Path Planning and Power Management of Hybrid Fuel UAVs

    Full text link
    Hybrid fuel Unmanned Aerial Vehicles (UAV), through their combination of multiple energy sources, offer several advantages over the standard single fuel source configuration, the primary one being increased range and efficiency. Multiple power or fuel sources also allow the distinct pitfalls of each source to be mitigated while exploiting the advantages within the mission or path planning. We consider here a UAV equipped with a combustion engine-generator and battery pack as energy sources. We consider the path planning and power-management of this platform in a noise-aware manner. To solve the path planning problem, we first present the Mixed Integer Linear Program (MILP) formulation of the problem. We then present and analyze a label-correcting algorithm, for which a pseudo-polynomial running time is proven. Results of extensive numerical testing are presented which analyze the performance and scalability of the labeling algorithm for various graph structures, problem parameters, and search heuristics. It is shown that the algorithm can solve instances on graphs as large as twenty thousand nodes in only a few seconds.Comment: 11 pages, 12 figure

    The Covering-Assignment Problem for Swarm-powered Ad-hoc Clouds: A Distributed 3D Mapping Use-case

    Full text link
    The popularity of drones is rapidly increasing across the different sectors of the economy. Aerial capabilities and relatively low costs make drones the perfect solution to improve the efficiency of those operations that are typically carried out by humans (e.g., building inspection, photo collection). The potential of drone applications can be pushed even further when they are operated in fleets and in a fully autonomous manner, acting de facto as a drone swarm. Besides automating field operations, a drone swarm can serve as an ad-hoc cloud infrastructure built on top of computing and storage resources available across the swarm members and other connected elements. Even in the absence of Internet connectivity, this cloud can serve the workloads generated by the swarm members themselves, as well as by the field agents operating within the area of interest. By considering the practical example of a swarm-powered 3D reconstruction application, we present a new optimization problem for the efficient generation and execution, on top of swarm-powered ad-hoc cloud infrastructure, of multi-node computing workloads subject to data geolocation and clustering constraints. The objective is the minimization of the overall computing times, including both networking delays caused by the inter-drone data transmission and computation delays. We prove that the problem is NP-hard and present two combinatorial formulations to model it. Computational results on the solution of the formulations show that one of them can be used to solve, within the configured time-limit, more than 50% of the considered real-world instances involving up to two hundred images and six drones

    Dynamic Resource Allocation for Efficient Sharing of Services from Heterogeneous Autonomous Vehicles

    Get PDF
    A novel dynamic resource allocation model is introduced for efficient sharing of services provided by ad hoc assemblies of heterogeneous autonomous vehicles. A key contribution is the provision of capability to dynamically select sensors and platforms within constraints imposed by time dependencies, refueling, and transportation services. The problem is modeled as a connected network of nodes and formulated as an integer linear program. Solution fitness is prioritized over computation time. Simulation results of an illustrative scenario are used to demonstrate the ability of the model to plan for sensor selection, refueling, collaboration, and cooperation between heterogeneous resources. Prioritization of operational cost leads to missions that use cheaper resources but take longer to complete. Prioritization of completion time leads to shorter missions at the expense of increased overall resource cost. Missions can be successfully replanned through dynamic reallocation of new requests during a mission. Monte Carlo studies on systems of increasing complexity show that good solutions can be obtained using low time resolutions, with small time windows at a relatively low computational cost. In comparison with other approaches, the developed integer linear program model provides best solutions at the expense of longer computation time

    Task scheduling system for UAV operations in indoor environment

    Get PDF

    Image collection optimization in the design and operation of lightweight, low areal-density space telescopes

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2008.Includes bibliographical references (p. 149-155).Demand for space imagery has increased dramatically over the past several decades. Scientific and government agencies rely on Earth-observing space assets for a variety of functions, including mapping, agriculture, and intelligence. In recent years, online interactive mapping services have created a large demand for high-resolution commercial satellite imagery. The satellite systems launched to meet the demand for imagery have two major objectives: 1) efficient global Earth coverage and 2) responsiveness to real-time events. Depending on the specific application, mission architects may particularly value one objective. Commercial satellites need to fulfill tasking requests from customers and are primarily focused on global accessibility and efficient imaging. Engineers may design military or environmental warning satellites, on the other hand, to focus on quickly responding to events in unpredictable locations. This thesis investigates two elements in support of the design of Earth observing satellite systems. The first part is a study of a responsive satellite constellation architecture. The focus within the Responsive Space community has primarily been on small, lightweight, disposable satellite systems. Industry and academia have done less work to consider architectures that meet the responsiveness objective while still providing global coverage with sustainable orbits. This thesis analyzes an architecture that supports objectives of efficient coverage of the globe and also responsiveness to arising targets. The space community has also demonstrated significant interest in lightweight space telescopes. These systems offer launch cost savings and, in the case of segmented aperture optics, can be stowed and deployed on orbit.(cont.) The reduction in mass comes, however, at the price of structural flexibility, which affects the satellite's ability to efficiently image targets. The second part of this thesis explores how satellite dynamic properties affect the ability to provide efficient imaging. Satellite scheduling optimization formulations, including graph search, integer programming, and dynamic programming, enable evaluation of imaging efficiency. Integration of imaging performance metrics into a trade-space analysis tool allows for more informed decisions early in the satellite design process.by Josef Roach Bogosian.S.M

    Surveillance Planning against Smart Insurgents in Complex Terrain

    Get PDF
    This study is concerned with finding a way to solve a surveillance system allocation problem based on the need to consider intelligent insurgency that takes place in a complex geographical environment. Although this effort can be generalized to other situations, it is particularly geared towards protecting military outposts in foreign lands. The technological assets that are assumed available include stare-devices, such as tower-cameras and aerostats, as well as manned and unmanned aerial systems. Since acquiring these assets depends on the ability to control and monitor them on the target terrain, their operations on the geo-location of interest ought to be evaluated. Such an assessment has to also consider the risks associated with the environmental advantages that are accessible to a smart adversary. Failure to consider these aspects might render the forces vulnerable to surprise attacks. The problem of this study is formulated as follows: given a complex terrain and a smart adversary, what types of surveillance systems, and how many entities of each kind, does a military outpost need to adequately monitor its surrounding environment? To answer this question, an analytical framework is developed and structured as a series of problems that are solved in a comprehensive and realistic fashion. This includes digitizing the terrain into a grid of cell objects, identifying high-risk spots, generating flight tours, and assigning the appropriate surveillance system to the right route or area. Optimization tools are employed to empower the framework in enforcing constraints--such as fuel/battery endurance, flying assets at adequate altitudes, and respecting the climbing/diving rate limits of the aerial vehicles--and optimizing certain mission objectives--e.g. revisiting critical regions in a timely manner, minimizing manning requirements, and maximizing sensor-captured image quality. The framework is embedded in a software application that supports a friendly user interface, which includes the visualization of maps, tours, and related statistics. The final product is expected to support designing surveillance plans for remote military outposts and making critical decisions in a more reliable manner

    Resource Scheduling for UAVs-aided D2D Networks: A Multi-objective Optimization Approach

    Full text link
    Unmanned aerial vehicles (UAVs)-aided device-todevice (D2D) networks have attracted great interests with the development of 5G/6G communications, while there are several challenges about resource scheduling in UAVs-aided D2D networks. In this work, we formulate a UAVs-aided D2D network resource scheduling optimization problem (NetResSOP) to comprehensively consider the number of deployed UAVs, UAV positions, UAV transmission powers, UAV flight velocities, communication channels, and UAV-device pair assignment so as to maximize the D2D network capacity, minimize the number of deployed UAVs, and minimize the average energy consumption over all UAVs simultaneously. The formulated NetResSOP is a mixed-integer programming problem (MIPP) and an NP-hard problem, which means that it is difficult to be solved in polynomial time. Moreover, there are trade-offs between the optimization objectives, and hence it is also difficult to find an optimal solution that can simultaneously make all objectives be optimal. Thus, we propose a non-dominated sorting genetic algorithm-III with a Flexible solution dimension mechanism, a Discrete part generation mechanism, and a UAV number adjustment mechanism (NSGA-III-FDU) for solving the problem comprehensively. Simulation results demonstrate the effectiveness and the stability of the proposed NSGA-III-FDU under different scales and settings of the D2D networks
    • …
    corecore