58,551 research outputs found

    Efficient resources assignment schemes for clustered multithreaded processors

    Get PDF
    New feature sizes provide larger number of transistors per chip that architects could use in order to further exploit instruction level parallelism. However, these technologies bring also new challenges that complicate conventional monolithic processor designs. On the one hand, exploiting instruction level parallelism is leading us to diminishing returns and therefore exploiting other sources of parallelism like thread level parallelism is needed in order to keep raising performance with a reasonable hardware complexity. On the other hand, clustering architectures have been widely studied in order to reduce the inherent complexity of current monolithic processors. This paper studies the synergies and trade-offs between two concepts, clustering and simultaneous multithreading (SMT), in order to understand the reasons why conventional SMT resource assignment schemes are not so effective in clustered processors. These trade-offs are used to propose a novel resource assignment scheme that gets and average speed up of 17.6% versus Icount improving fairness in 24%.Peer ReviewedPostprint (published version

    Modula-2*: An extension of Modula-2 for highly parallel programs

    Get PDF
    Parallel programs should be machine-independent, i.e., independent of properties that are likely to differ from one parallel computer to the next. Extensions are described of Modula-2 for writing highly parallel, portable programs meeting these requirements. The extensions are: synchronous and asynchronous forms of forall statement; and control of the allocation of data to processors. Sample programs written with the extensions demonstrate the clarity of parallel programs when machine-dependent details are omitted. The principles of efficiently implementing the extensions on SIMD, MIMD, and MSIMD machines are discussed. The extensions are small enough to be integrated easily into other imperative languages

    Loo.py: From Fortran to performance via transformation and substitution rules

    Full text link
    A large amount of numerically-oriented code is written and is being written in legacy languages. Much of this code could, in principle, make good use of data-parallel throughput-oriented computer architectures. Loo.py, a transformation-based programming system targeted at GPUs and general data-parallel architectures, provides a mechanism for user-controlled transformation of array programs. This transformation capability is designed to not just apply to programs written specifically for Loo.py, but also those imported from other languages such as Fortran. It eases the trade-off between achieving high performance, portability, and programmability by allowing the user to apply a large and growing family of transformations to an input program. These transformations are expressed in and used from Python and may be applied from a variety of settings, including a pragma-like manner from other languages.Comment: ARRAY 2015 - 2nd ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming (ARRAY 2015

    Expression Templates Revisited: A Performance Analysis of the Current ET Methodology

    Full text link
    In the last decade, Expression Templates (ET) have gained a reputation as an efficient performance optimization tool for C++ codes. This reputation builds on several ET-based linear algebra frameworks focused on combining both elegant and high-performance C++ code. However, on closer examination the assumption that ETs are a performance optimization technique cannot be maintained. In this paper we demonstrate and explain the inability of current ET-based frameworks to deliver high performance for dense and sparse linear algebra operations, and introduce a new "smart" ET implementation that truly allows the combination of high performance code with the elegance and maintainability of a domain-specific language.Comment: 16 pages, 7 figure

    pocl: A Performance-Portable OpenCL Implementation

    Get PDF
    OpenCL is a standard for parallel programming of heterogeneous systems. The benefits of a common programming standard are clear; multiple vendors can provide support for application descriptions written according to the standard, thus reducing the program porting effort. While the standard brings the obvious benefits of platform portability, the performance portability aspects are largely left to the programmer. The situation is made worse due to multiple proprietary vendor implementations with different characteristics, and, thus, required optimization strategies. In this paper, we propose an OpenCL implementation that is both portable and performance portable. At its core is a kernel compiler that can be used to exploit the data parallelism of OpenCL programs on multiple platforms with different parallel hardware styles. The kernel compiler is modularized to perform target-independent parallel region formation separately from the target-specific parallel mapping of the regions to enable support for various styles of fine-grained parallel resources such as subword SIMD extensions, SIMD datapaths and static multi-issue. Unlike previous similar techniques that work on the source level, the parallel region formation retains the information of the data parallelism using the LLVM IR and its metadata infrastructure. This data can be exploited by the later generic compiler passes for efficient parallelization. The proposed open source implementation of OpenCL is also platform portable, enabling OpenCL on a wide range of architectures, both already commercialized and on those that are still under research. The paper describes how the portability of the implementation is achieved. Our results show that most of the benchmarked applications when compiled using pocl were faster or close to as fast as the best proprietary OpenCL implementation for the platform at hand.Comment: This article was published in 2015; it is now openly accessible via arxi
    • …
    corecore